The Essence of VR

Michael Heim


This is a chapter from Michael Heim's book The Metaphpysics of Virtual Reality (New York: Oxford University Press, 1993: 109-128. It is used here with the permission of the author and Oxford University Press.


What is virtual reality?

A simple enough question.

We might answer: "Here, try this arcade game. It's from the Virtuality series created by Jonathan Waldern. Just put on the helmet and the datagloves, grab the control stick, and enter a world of computer animation. You turn your head and you see a three-dimensional, 360-degree, color landscape. The other players see you appear as an animated character. And lurking around somewhere will be the other animated warriors who will hunt you down. Aim, press the button, and destroy them before they destroy you. Give it a few minutes and you'll get a feel for the game, how to move about, how to be part of a virtual world. That's virtual reality!"

Suppose the sample experience does not satisfy the questioner. Our questioner has already played the Virtuality game. Suppose the question is about virtual reality in general.

Reach for a dictionary. Webster's states:

Virtual: "being in essence or effect though not formally recognized or admitted"

Reality: "a real event, entity, or state of affairs"

We paste the two together and read: "Virtual reality is an event or entity that is real in effect but not in fact."

Not terribly enlightening. You don't learn nuclear physics from dictionaries. We need insight, not word usage.

The dictionary definition does, however, suggest something about VR. There is a sense in which any simulation makes something seem real that in fact is not. The Virtuality game combines head-tracking device, glove, and computer animation to create the "effect" on our senses of "entities" moving at us that are "not in fact real."

But what makes VR distinctive? "What's so special," our questioner might ask, "about these computer-animated monsters? I've seen them before on television and in film. Why call them 'virtual realities'?"

The questioner seeks not information, but clarification.

Pointing to the helmet and gloves, we insist: "Doesn't this feel a lot different from watching TV? Here you can interact with the animated creatures. You shoot them down or hide from them or dodge their ray guns. And they interact with you. They hunt you in three-dimensional space just as you hunt them. That doesn't happen in the movies, does it? Here you're the central actor, you're the star!"

Our answer combines hands-on demonstration with a reminder of other experiences. We draw a contrast, pointing to something that VR is not. We still have not said what it is.

To answer what VR is, we need concepts, not samples or dictionary phrases or negative definitions.

OK, so what is it?

Our next reply must be more informed: "Go to the source. Find the originators of this technology; ask them. For twenty years, scientists and engineers have been working on this thing called virtual reality. Find out exactly what they have been trying to produce."

When we look to the pioneers, we see virtual reality going off in several directions. The pioneers present us with at least seven divergent concepts currently guiding VR research. The different views have built camps that fervently disagree as to what constitutes virtual reality.

Here is a summary of the seven:

Simulation

Computer graphics today have such a high degree of realism that the sharp images evoke the term virtual reality. Just as sound systems were once praised for their high fidelity, present-day imaging systems now deliver virtual reality. The images have a shaded texture and light radiosity that pull the eye into the flat plane with the power of a detailed etching. Landscapes produced on the GE Aerospace "visionics" equipment, for instance, are photorealistic real-time texture-mapped worlds through which users can navigate. These dataworlds spring from military flight simulators. Now they are being applied to medicine, entertainment, and education and training.

The realism of simulations applies to sound as well. Three-dimensional sound systems control every point of digital acoustic space, their precision exceeding earlier sound systems to such a degree that three-dimensional audio contributes to virtual reality.

Interaction

Some people consider virtual reality any electronic representation with which they can interact. Cleaning up our computer desktop, we see a graphic of a trash can on the computer screen, and we use a mouse to drag a junk file down to the trash can to dump it. The desk is not a real desk, but we treat it as though it were, virtually, a desk. The trash can is an icon for a deletion program, but we use it as a virtual trash can. And the files of bits and bytes we dump are not real (paper) files, but function virtually as files. These are virtual realities. What makes the trash can and the desk different from cartoons or photos on TV is that we can interact with them as we do with metal trash cans and wooden desktops. The virtual trash can does not have to fool the eye in order to be virtual. Illusion is not the issue. Rather, the issue is how we interact with the trash can as we go about our work. The trash can is real in the context of our absorption in the work, yet outside the computer work space we would not speak of the trash can except as a virtual trash can. The reality of the trash can comes from its handy place in the world woven by our engagement with a project. It exists through our interaction.

Defined broadly, virtual reality sometimes stretches over many aspects of electronic life. Beyond computer-generated desktops, it includes the virtual persons we know through telephone or computer networks. It includes the entertainer or politician who appears on television to interact on the phone with callers. It includes virtual universities where students attend classes on line, visit virtual classrooms, and socialize in virtual cafeterias.

Artificiality

As long as we are casting our net so wide, why not make it cover everything artificial? On first hearing the term virtual reality, many people respond immediately: "Oh, sure, I live there all the time." By this they mean that their world is largely a human construct. Our environment is thoroughly geared, paved, and wired-not quite solid and real. Planet Earth has become an artifice, a product of natural and human forces combined. Nature itself, the sky with its ozone layer, no longer escapes human influence. And our public life has everywhere been computerized. Computer analysis of purchasing habits tells supermarkets how high and where to shelve the Cheerios. Advertisers boast of "genuine simulated walnut."

But once we extend the term virtual reality to cover everything artificial, we lose the force of the phrase. When a word means everything, it means nothing. Even the term real needs an opposite.

Immersion

Many people in the VR industry prefer to focus on a specific hardware and software configuration. This is the model set for virtual reality by Sutherland, Fisher, Furness, and Brooks, before whom the term virtual reality did not exist, since no hardware or software claimed that name.

The specific hardware first called VR combines two small three-dimensional stereoscopic optical displays, or "eyephones"; a Polhemus head-tracking device to monitor head movement; and a dataglove or hand-held device to add feedback so the user can manipulate objects perceived in the artificial environment. Audio with three-dimensional acoustics can support the illusion of being submerged in a virtual world. That is, the illusion is immersion.

According to this view, virtual reality means sensory immersion in a virtual environment. Such systems, known primarily by their head-mounted displays (HMD) and gloves, were first popularized by Jaron Lanier's VPL (Virtual Programming Language) Incorporated. The HMD cuts off visual and audio sensations from the surrounding world and replaces them with computer-generated sensations. The body moves through artificial space using feedback gloves, foot treadmills, bicycle grips, or joysticks.

A prime example of immersion comes from the U.S. Air Force, which first developed some of this hardware for flight simulation. The computer generates much of the same sensory input that a jet pilot would experience in an actual cockpit. The pilot responds to the sensations by, for instance, turning a control knob, which in turn feeds into the computer, which again adjusts the sensations. In this way, a pilot can get practice or training without leaving the ground. To date, commercial pilots can upgrade their licenses on certain levels by putting in a certain number of hours on a flight simulator.

Computer feedback may do more than readjust the user's sensations to give a pseudoexperience of flying. The feedback may also connect to an actual aircraft, so that when the pilot turns a knob, a real aircraft motor turns over or a real weapon fires. The pilot in this case feels immersed and fully present in a virtual world, which in turn connects to the real world.

When you are flying low in an F-16 Falcon at supersonic speeds over a mountainous terrain, the less you see of the real world, the more control you can have over your aircraft. A virtual cockpit filters the real scene and represents a more readable world. In this sense, VR can preserve the human significance of an overwhelming rush of split-second data. The heads-up display in the cockpit sometimes permits the pilot to view the real landscape behind the virtual images. In such cases, the simulation is an augmented rather than a virtual reality.

The offshoots of this technology, such as the Waldern arcade game, should not distract us-say the immersion pioneers-from the applications being used in molecular biology (docking molecules by sight and touch), airflow simulation, medical training, architecture, and industrial design. Boeing Aircraft plans to project a flight controller into virtual space, so that the controller floats thousands of feet above the airport, looking with an unobstructed view in any direction is (while actually seated in a datasuit on the earth and fed real- time visual data from satellite and multiple camera viewpoints).

A leading model of this research has been the workstation developed at NASA-Ames, the Virtual Interface Environment Workstation (VEW). NASA uses the VEW system for telerobotic tasks, so that an operator on earth feels immersed in a remote but virtual environment and can then see and manipulate objects on the moon or Mars through feedback from a robot. Immersion research concentrates on a specific hardware and software configuration. The immersive tools for pilots, flight controllers, and space explorers are a much more concrete meaning of VR than is the vague generalization "everything artificial."

Telepresence

Robotic presence adds another aspect to virtual reality. To be present somewhere yet present there remotely is to be there virtually (!). Virtual reality shades into telepresence when you are present from a distant location-"present" in the sense that you are aware of what's going on, effective, and able to accomplish tasks by observing, reaching, grabbing, and moving objects with your own hands as though they were close up. Defining VR by telepresence nicely excludes the imaginary worlds of art, mathematics, and entertainment. Robotic telepresence brings real-time human effectiveness to a real-world location without there being a human in the flesh at that location. Mike McGreevy and Lew Hitchner walk on Mars, but in the flesh they sit in a control room at NASA-Ames.

Telepresence medicine places doctors inside the patient's body without major incisions. Medical doctors like Colonel Richard Satava and Dr. Joseph Rosen routinely use telepresence surgery to remove gall bladders without the traditional scalpel incisions. The patient heals from surgery in one-tenth the usual time because telepresence surgery leaves the body nearly intact. Only two tiny incisions are needed to introduce the laparoscopic tools. Telepresence allows surgeons to perform specialist operations at distant sites where no specialist is physically present.

By allowing the surgeon to be there without being there, telepresence is a double-edged sword, so to speak. By permitting immersion, telepresence offers the operator great control over remote processes. But at the same time, a psychotechnological gap opens up between doctor and patient. Surgeons complain of losing hands-on contact as the patient evaporates into a phantom of bits and bytes.

Full Body Immersion

About the same time that head-mounted displays appeared, a radically different approach to VR was emerging. In the late 1960s, Myron Krueger, often called "the father of virtual reality," began creating interactive environments in which the user moves without encumbering gear. Krueger's is come-as-you-are VR. Krueger's work uses cameras and monitors to project a user's body so it can interact with graphic images, allowing hands to manipulate graphic objects on a screen, whether text or pictures. The interaction of computer and human takes place without covering the body. The burden of input rests with the computer, and the body's free movements become text for the computer to read. Cameras follow the user's body, and computers synthesize the user's movements with the artificial environment.

I see a floating ball projected on a screen. My computer-projected hand reaches out and grabs the ball. The computer constantly updates the interaction of my body and the synthetic world that I see, hear, and touch.

In Krueger's Videoplace, people in separate rooms relate interactively by mutual body painting, free-fall gymnastics, and tickling. Krueger's Glowflow, a light-and-sound room, responds to people's movements by lighting phosphorescent tubes and issuing synthetic sounds. Another environment, Psychic Space, allows participants to explore an interactive maze in which each footstep corresponds to a musical tone, all produced with live video images that can be moved, scaled, and rotated without regard to the usual laws of cause and effect.

Networked Communications

Pioneers like Jaron Lanier accept the immersion model of virtual reality but add equal emphasis to another aspect that they see as essential. Because computers make networks, VR seems a natural candidate for a new communications medium. The RB2 (Reality Built for Two) System from VPL highlights the connectivity of virtual worlds. In this view, a virtual world is as much a shared construct as a telephone is. Virtual worlds, then, can evoke unprecedented ways of sharing, what Lanier calls "post-symbolic communication." Because users can stipulate and shape objects and activities of a virtual world, they can share imaginary things and events without using words or real-world references.

Accordingly, communication can go beyond verbal or body language to take on magical, alchemical properties. A virtual-world maker might conjure up hitherto unheard-of mixtures of sight, sound, and motion. Consciously constructed outside the grammar and syntax of language, these semaphores defy the traditional logic of verbal and visual information. VR can convey meaning kinetically and even kinesthetically. Such communication will probably require elaborate protocols as well as lengthy time periods for digesting what has been communicated. Xenolinguists will have a laboratory for experiment when they seek to relate to those whose feelings and world views differ vastly from their own.


"All right, enough!" shouts our questioner, bleary eyed with information overload.

"I've taken your virtual-reality tour, listened to the pioneers, and now my head is spinning. These pioneers do indeed explore in different directions. There's a general drift here but no single destination. Should I go home feeling that the real virtual reality does not exist?"

Let's not lose stamina now. We cannot let the question fizzle. Too much depends on searching for the true virtual reality.

We should not get discouraged because a mention of reality, virtual or otherwise, opens several pathways in the clearing.

Let us recall for a moment just how controversial past attempts were to define the term reality. Recall how many wars were fought over it.

People today shy away from the R-word. Reality used to be the key to a person's philosophy. As a disputed term, reality fails to engage scientific minds because they are wary of any speculation that distracts them from their specialized work. But a skeptical attitude will fall short of the vision and direction we need.

Here's a brief sidebar on how controversial the R-word has been throughout Western history:

Plato holds out ideal forms as the "really real" while he denigrates the raw physical forces studied by his Greek predecessors. Aristotle soon demotes Plato's ideas to a secondary reality, to the flimsy shapes we abstract from the really real which, for Aristotle, are the individual substances we touch and feel around us. In the medieval period, real things are those that shimmer with symbolic significance. The biblical-religious symbols add superreal messages to realities, giving them permanence and meaning, while the merely material aspects of things are less real, merely terrestrial, defective rubbish. In the Renaissance, things counted as real that could be counted and observed repeatedly by the senses. The human mind infers a solid material substrate underlying sense data but the substrate proves less real because it is less quantifiable and observable. Finally, the modern period attributed reality to atomic matter that has internal dynamics or energy, but soon the reality question was doomed by the analytical drive of the sciences toward complexity and by the plurality of artistic styles.

This reminder of metaphysics should fortify us for the long haul. If for two thousand years Western culture has puzzled over the meaning of reality, we cannot expect ourselves in two minutes, or even two decades, to arrive at the meaning of virtual reality.

The reality question has always been a question about direction, about focus, about what we should acknowledge and be concerned with. We should not therefore be surprised when VR proves controversial and elusive. Creating a new layer of reality demands our best shot, all our curiosity and imagination, especially since for us, technology and reality are beginning to merge.

When we look for the essence of a technology, we are engaging in speculation, but not in airy speculation. Our speculation involves where we plant our feet, who we are, and what we choose to be. Behind the development of every major technology lies a vision. The vision gives impetus to developers in the field even though the vision may not be clear, detailed, or even practical. The vision captures the essence of the technology and calls forth the cultural energy needed to propel it forward. Often a technological vision taps mythic consciousness and the religious side of the human spirit.

Consider for a moment the development of space technology. (Keep in mind that an inner connection exists between outer space and cyberspace, as I will point out later.) The U.S. space program enjoyed its most rapid development in the 1960s, culminating in the moon walk in 1969. What was the vision behind it?

The U.S. space program was a child of the cold war. The May 1961 speech by President John F. Kennedy that set NASA's goals incorporated traditional elements of myth: heroic struggle, personal sacrifice, and the quest for national prominence. Yet the impetus for Kennedy's speech came largely from without. What launched the U.S. space program was the fear of being surpassed by the Soviets, who had made a series of bold advances in human space travel. The goal of the moon landing was for the United States an attempt not to be overtaken by the Soviet developments in manned space exploration.

Few Americans know about the vision of their Russian competitors in space exploration. Everyone knows, of course, that the Communist revolution in 1917 froze Russian public goals in the hackneyed single-party language of a Marxist-Leninist agenda. Some historians know the name of the great Russian rocket pioneer Konstantin Tsiolkovsky (1857-1935), who stands with the American Robert H. Goddard (1882-1945) and the German-born Hermann Oberth (b. 1894). But less is known about the background of Tsiolkovsky's thinking and the visionary philosophy that influenced the first generation of Soviet space explorers.

What lay behind the energetic push to send human beings into outer space? The Russians to this day have gathered far more data on human survival in outer space. The need for information was more than curiosity or a vague lust for new frontiers; it was a moral mission, a complex and imaginative grasp of human destiny in the cosmos. The early Russian rocket pioneers, who gave the impetus to the program, felt there was an essence to their space technology, a deep inner fire that inspired and directed the research. They felt an existential imperative that drew on the religious and cultural traditions coming down through the main stream of Russian history. This essence was not itself technological, and so we might call it the esoteric essence of space technology, the hidden core of ideas that in themselves are not technological. In fact, the ideas behind the first space exploration were lofty, awe inspiring, and even mystical.

The visionary ideas fueling Tsiolkovsky and the early Russian explorers came from N. F. Fedorov. Nikolai Fedorovich Fedorov (1828-1903) was a powerful inspiration to Soloviev, Dostoevsky, Tolstoy, and a whole generation of Russians who sought to understand how modernization connects with traditional religion and culture. Even the engineers of the Trans-Siberian Railway came often to sit at the feet of the famous sage. Fedorov lived an intensely spiritual life, dedicated exclusively to ideas and learning. His profound vision applied certain strands of Russian Orthodox spirituality to the harnessing of modern technology.

Sketching a national vision, Fedorov drew large. He argued that Russia should marshal its military and national strength toward a single goal: the conquest of nature. Conquering nature meant regulating the earth as a harmonious system. It meant controlling the weather so that harvests would be plentiful. It meant balancing nature so that all lifeforms could thrive together in harmony. In his vision, Fedorov saw armies producing solar energy and harnessing the electromagnetic energy of the earth, using the energy to regulate the earth's motion in space, turning the earth into a vessel for cosmic cruises. Overpopulation would cease to be a problem as humanity colonized other planets.

Unique to Fedorov's vision is its guiding moral spark. Instead of basing the conquest of nature on dominance, aggression, and egoism, Fedorov shunned the notion that humans should rule the cosmos out of a selfish desire for material wealth and abundance. Instead, he envisioned the conquest of nature as an act of altruism. But being generous to future generations can be less than purely altruistic, for they can return the favor by their acclaim of our deeds. We must regulate the forces of nature, he believed, so altruistically that we serve those who cannot possibly return our favors: we must conquer nature in order to resurrect our ancestors, the ultimate act of altruism.

The resurrection of all our dead ancestors, and it alone, provides a lofty enough ideal to mobilize humanity to explore the entire universe, including outer space. Fedorov found this thought in Russian Orthodox Christianity. According to Christian belief, the dead will rise again so that Christ, in a final judgment, will reorganize and completely redeem the world. The bodies of all human beings will one day rise again, and this resurrection, according to Fedorov, will take place through the work of human beings who carry out the divine plan. The long-range goal of human cooperation must be to discover the laws of nature to such a depth that we can eventually reconstitute the bodies of past human beings from their remaining physical particles still floating about in the universe.

Fedorov's strategy was to channel science and technology toward the reunion of all humanity. He decried the heartless positivism that builds on the sufferings and corpses of previous generations, instead seeking a purely idealistic motive. Without such a high aim, a heartless science would ultimately turn against society. For him, and for the many Soviet scientists inspired by him, the ultimate aim of the space program was quite literally, nothing less than resurrecting the dead.

Contrast this sublime-and to us incredible and bizarre-vision of the space program with current U.S. public policy. "The commercialization of space," as promoted by administrations since the late 1970s, offers civilian entrepreneurs new opportunities for investment. To cover this naked self-interest, a mythic notion from U.S. history adds the sense of a new frontier. As a mere resource for commerce, space holds little allure, but a new frontier beyond earth adds adventure to the hope for personal gain. The vision even draws on the California gold rush in the nineteenth century, the spirit of enterprise.

In fact, this last word, enterprise, shows us where the commercialization of space falls short. Commercialization fails to touch the essence of space exploration, for commercial interests will neglect the long-range research needed for space science. Commercialization also drives up the cost of information derived from space exploration so that the data from space will not be available to small businesses, university scientists, farmers, state and local governments, and developing countries. In short, this kind of exploration envisions no future, only short-range profit.

But for NASA, for space enthusiasts, and for the Pentagon peoples enterprise has a capital E. The word refers to a spirit of business adventure, but it also, in many minds, has another important meaning. Many technical people today also take enterprise to be the proper name in a science fiction myth that of the starship Enterprise in "Star Trek," the popular science fiction television series about twenty-first century space travelers. "Star Trek" contributed the code word, the handshake, the common inspiration for space exploration in he united States. (Shake hands informally with someone at the pentagon or NASA and be prepared with an answer to the "Are you a Trekkie?") For hundreds of technicians, the space program flies on the imaginative wings of Gene Roddenberry's brainchild, born on September 8,1966, when the TV show was first aired. But Roddenberry was no Fedorov. The sage of Pasadena created no unifying vision to direct humanity "where no one has gone before." His fictional productions treated only a motley collection of profound moral questions pertaining to human behavior at any time, any place. But despite the limits of its lineage, "Star Trek" showed us more truly the esoteric essence, the real meaning, of space exploration than did government statements on the commercialization of space. The essence of the American space program, its heart and soul, comes from "Star Trek."

Where in VR is a counterpart to the space program's esoteric essence? What is the essence of VR, its inner spirit, the cultural motor that propels the technology? When the first conferences met on cyberspace and on virtual reality in 1989 and 1990, respectively, two threads of shared vision ran through the diverse groups of participants. One was the cyberpunk writings of William Gibson, known to both technical and literary types as the coiner of the term cyberspace. The other was the Holodeck from "Star Trek: The Next Generation."

Along with its cargo bay of imaginative treasures, the starship Enterprise brought the Holodeck. The Holodeck is familiar furniture in the vocabulary of virtual-reality pioneers. For most people, the Holodeck portrays the ideal human-computer interface. It is a virtual room that transforms spoken commands into realistic landscapes populated with walking, talking humanoids and detailed artifacts appearing so lifelike that they are indistinguishable from reality. The Holodeck is used by the crew of the starship Enterprise to visit faraway times and places such as medieval England and 1920s America. Generally, the Holodeck offers the crew rest and recreation, escape and entertainment, on long interstellar voyages.

While not every VR pioneer explicitly agrees on goals, the Holodeck draws the research onward. Publicly, researchers try to maintain cool and reasonable expectations about VR. Hyperbole from the media often stirs grandiose expectations in the public; when presented with actual prototypes, the public turns away with scorn. So researchers play down talk of the Holodeck. At the MIT Media Lab, leaders such as David Zeltzer avoid the term virtual reality not only because of the specter of metaphysics it evokes, but also because of the large promises it raises. The term seems to make greater claims than do terms like virtual environments (preferred at MIT and NASA) and virtual worlds (preferred at the universities of North Carolina and Washington). But when speaking at a VR conference for the Data Processing Management Association in Washington, D.C., on June 1,1992, Zeltzer made an intriguing aside, one that touches, I think, on the highest possibilities of virtual reality, on its esoteric essence.

Did I say "esoteric essence"? How can we expect to give our young questioner an answer to "What is virtual reality?" when we have left the public, exoteric world of clear explanations and have embarked on a search for the esoteric essence of VR, its underlying vision? Well, our questioner seems to have gotten lost some time ago, most likely during the sidebar on the history of reality. I think I see someone off in the distance pulling avidly on the trigger of the Virtuality game. Maybe more time spent in VR will eventually deliver better answers than any verbal speculation. At any rate, on to the esoteric essence . . .

Zeltzer's remark went something like this: "True virtual reality may not be attainable with any technology we create. The Holodeck may forever remain fiction. Nonetheless, virtual reality serves as the Holy Grail of the research."

"Holy Grail?" Holy Grail!

Now when Zeltzer made this reference, he was not deliberately invoking a Jungian archetype. His remark expressed modesty and diffidence rather than alchemical arrogance. Still, archetypes do not have to hit us in the nose to wield their peculiar power. They work most powerfully at the back of the subconscious mind, and therein lies their magic. An effective archetype works its magic subtly.

David Zeltzer was calling up a mythic image far more ancient and infinitely more profound than "Star Trek." "Star Trek" has, after all, become the stuff of trivia: "Star Trek" ties and boxer shorts, "Star Trek" vinyl characters and mugs ("Fill them with a hot beverage and watch Kirk and Spock beam up to an unknown world"). ('Star Trek" lost any sublimity it may have had when it came to occupy Kmart shelves along with electric flyswatters and noisemaker whoopee cushions.

The Holy Grail, though, sums up the aspirations of centuries. It is an image of the Quest. From Tennyson's romantic Idylls of the King to Malory's King Arthur and the Knights of the Round Table, the ancient Grail legend reaches back to Christian and pre-Christian times. The Grail has always been a symbol of the quest for a better world. In pre-Christian times, the Grail was the cup that holds a cure for an ailing king who, suffering from his own wounds, sees his country turning into a wasteland. Christians believed the Grail to be both the chalice of Jesus' Last Supper and the cup that caught the Savior's blood at the Crucifixion. Medieval legend links the spear that pierced Jesus' side on the cross with the sacred cup that held his blood. Later works of art, from T. S. Eliot's The Wasteland to Richard Wagner's Parsifal, have preserved the Grail story as a symbol of spiritual quest and lofty aspiration.

Perhaps the essence of VR ultimately lies not in technology but in art, perhaps art of the highest order. Rather than control or escape or entertain or communicate, the ultimate promise of VR may be to transform, to redeem our awareness of reality-something that the highest art has attempted to do and something hinted at in the very label virtual reality, a label that has stuck, despite all objections, and that sums up a century of technological innovation. VR promises not a better vacuum cleaner or a more engrossing communications medium or even a friendlier computer interface. It promises the Holy Grail.

We might learn something about the esoteric essence of VR by thinking about Richard Wagner's Parsifal. Wagner himself was searching for a Holodeck, though he did not know it. By the time he finished Parsifal, his final opera, Wagner no longer considered his work to be opera. He did not want it called opera or music or theater or even "art," and certainly not entertainment. By the time he finished his last work, Wagner realized he was trying to create another reality, one that would in turn transform ordinary reality. The term he came to use was "a total work of art," by which he meant a seamless union of vision, sound, movement, and drama that would sweep the viewer to another world, not to escape but to be changed. Nor could the viewer be a mere spectator. Wagner created a specially designed building in Bayreuth, Germany, well off the beaten track, where the audience would have to assemble after a long journey because he forbade the performance of Parsifal in any other building. The audience would have to prepare itself well ahead of time by studying the libretto, because Parsifal was long, mysterious, and full of complex, significant details. (Wagner's Ring cycle takes over fifteen hours to present a related myth.) Looking for the right terms to express his intent, Wagner called Parsifal "a festival play for consecrating the stage" (ein Bühnenweihtestspiel). The Bayreuth theater would become the site for a solemn, nearly liturgical celebration. The mythmaker would create a counterreality, one reminiscent of the solemn mass of the Catholic church, which appeals to all the senses with its sights, sounds, touch, drama, even appealing to smell with incense and candles. The audiences at Bayreuth were to become pilgrims on a quest, immersed in an artificial reality.

The drama Parsifal, like a mysterious dream, resists easy summary, and it eludes interpretation. But the general story outline is clear. The protectors of "correct values" (the Knights) inevitably paint themselves into the corner of righteousness. Paralyzed, unable to act, their leadership suffers intense internal pain (Amfortas). They can regain the power of the Grail that they protect only through the intervention of someone who is still innocent of right and wrong, someone who is by all standards a fool. The innocent fool (Arabic, fal parsi) can clean out the sclerotic righteous society only after passing a test and learning to feel the sufferings of others. Once the innocent fool has acquired compassion for others and sensitivity to life's complexity, he can bring the power (the Spear) back to the righteous Knights of the Holy Grail. The Grail Knights then come to understand more deeply what the work of the Holy Grail, and their mission, means. The Grail grants its full power only to those who can be touched by compassion.

Wagner's Holodeck presents a Parsifal who mirrors the individual audience members at Bayreuth. Wagner shaped the drama with story and music so that strong sensations would engulf the audience and pierce them to the heart. Each listener begins as a naive spectator and is then gradually touched by the painful actions on stage until the listener becomes transformed into a more sensitive and compassionate member, ready to bring to a sick society some measure of healing and renewal.

Wagner hoped to do more than make music and theater; he believed that his music dramas could transform society by imparting new feelings and attitudes. This goal he shared with traditional religion; and religion returns the competition with distrust and the accusation of heterodoxy. For this reason, Wagner's work remains to this day controversial among religious people, including many artists and musicians who have strong religious faith.

How well did Wagner succeed? One of the most telling tributes to the success of Wagner's Parsifal comes from a Jesuit priest, Father Owen Lee, who in a radio broadcast intermission feature from the Metropolitan Opera in New York City said:

I watched as usual from the least expensive seat under the roof, hovering there with an unearthly feeling for long half-hours floating in an immense space, suffused with a sense of what Baudelaire felt listening to Wagner: "A sense of being suspended in an ecstasy compounded of joy and insight." I can remember staggering out of theaters after Parsifal, hardly aware of people applauding, the music streaming through me, carried out of myself, seeing my experience-indeed, feeling that I was seeing all experience at a higher level of awareness, put in touch with a power greater than myself, a kind of holy fool.[1]

Another holy fool was the Finnish composer Jan Sibelius, who wrote: "Heard Parsifal. Nothing else in all the world has made so overwhelming an impression on me. All my heartstrings throbbed." The German composer Max Reger wrote: "Heard Parsifal. Cried for two weeks, then decided to become a composer."

Someday VR will elicit similar rave reviews, not mere thrills, but insight into experience. As it evolves its art form, VR will have certain advantages over Wagner's "total work of art." Certain disadvantages might also plague it where Wagnerian solutions might help.

Activity/Passivity

VR systems, as Jaron Lanier points out, can reduce apathy and the couch-potato syndrome simply by requiring creative decisions. Because computers make VR systems interactive, they also allow the artist to call forth greater participation from users. Whereas traditional art forms struggle with the passivity of the spectator, the VR artist finds a controlled balance between passivity and activity. The model of user navigation can be balanced by the model of pilgrimage and sacred awe.

Manipulation/Receptivity

Some observers date the advent of VR to the moment when the dataglove appeared on the computer screen. At that moment, the user became visible as an active, involved force in the digital world. This implies that VR has a tilt toward manipulation, even a latent tendency toward aggressive, first-person attitudes. The VR artist will need strategies for inducing a more receptive atmosphere, so that the user can be open in all directions, receiving signals from and having empathy for other beings. The user must be able to be touched, emotionally moved, by non-first-person entities in the virtual world. The spear of manipulation must join the cup of sensitivity. If simulators serve to train hand-eye and other coordination skills, VR may take a further step and become a training tool to enhance receptivity.

Remote Presence

The visual bias of current VR brings out a possible detachment in the user's sense of the world. Seeing takes place at a distance, whereas hearing and the other senses are more intimate to our organic life. The visual bias increases the detachment of telepresence. Some VR versions stress the "looking-at" factor, such as David Gelernter's Mirror Worlds, in which, in real-time, users can zoom in on miniature shoe-box worlds containing local homes, businesses, cities, governments, or nations. VR offers the opportunity to shift the Western philosophy of presence. From Pythagoras to Aristotle, from Berkeley to Russell, our philosophical sense of presence has relied on vision, consequently putting us in the position of spectators. To be touched, we need to introduce more sensory awareness. VR may develop a kind of feedback in which presence includes an openness and sensitivity of the whole body.

Augmented Reality

VR will enhance the power of art to transform reality. The picture frame, the proscenium, the movie theater all limit art by blocking it off as a section of reality. VR, with its augmented reality, allows a smoother, more controlled transition from virtual to real and back. This capability, which may frighten psychologists, will offer artists an unprecedented power to transform societies.


These are a few of the differences that make virtual reality different from traditional art forms. They belong to the essence of VR, its Holy Grail. This goal means that we need a different breed of artist as well. And where will we find these new cybersages, these virtual-world makers? I see our young questioner smiling broadly now as yet another wounded pterodactyl drops from the pink sky of Waldern's arcade game. Plenty of fledgling enthusiasm here, and a society that needs healing and renewal.


Notes

[1] Father Owen Lee, "Metropolitan Opera Broadcast Intermission Feature," March 28, 1992. [Return to text]