Some formal analyses of determiners

Chris Potts, Ling 130a/230a: Introduction to semantics and pragmatics, Winter 2022

Feb 3

This handout provides some model answers for the technical questions on Assignment 4. I hope also that it helps to further illuminate the determiner properties of intersectivity, conservativity, and monotonicity.

1 Non-intersectivity of *all but two*

Here is a possible (though not necessarily empirically correct) definition of the phrasal determiner *all but two* as in *all but two students passed*:

$$
\llbracket all but two \rrbracket = \lambda X \bigg(\lambda Y \Big(T \text{ if } |X - Y| = 2, \text{ else } F \Big) \bigg)
$$

A determiner *D* is intersective iff $D(A)(B) = D(B)(A)$ for all A, B. This determiner is not intersective.

Consider $A = \{a, b, c\}$ and $B = \{a\}$. Then

 \llbracket all but two \llbracket (*A*)(*B*) = T if \vert *A*−*B* \vert = 2, else F

resolves to T, since $A - B = \{b, c\}$. However,

 \llbracket *all but two* \llbracket (*B*)(*A*) = T if \lvert *B* − *A* \mid = 2, else F

resolves to F, since $B - A = \emptyset$, which has cardinality 0. For intersectivity, all it takes is one failure of entailment in one direction to establish that the determiner is not intersective, so our job is done.

2 Monotonicity of the first argument to *few*

Here is a possible (though not necessarily empirically correct) definition of the determiner *[few*]:

$$
\llbracket \text{few} \rrbracket = \lambda X \bigg(\lambda Y \big(\text{if } |X \cap Y| < j, \text{ else } \text{F} \big) \bigg)
$$

where $j > 0$ is a pragmatic free variable (presumably set to a very small integer, though the size might depend on the nature of the first argument).

A determiner *D* is downward monotone on its first argument iff *D*(*A*)(*B*) entails *D*(*X*)(*B*) for all *A*, *B*, *X* where *X* \subseteq *A*. We can show that the first argument slot for $\Vert f e w \Vert$ is downward monotone.

Assume $\lceil \frac{few}{A}(A)(B) \rceil = T$ for arbitrary *A* and *B*, with *j* also set to some value. Then $|A \cap B| < j$ holds. Moving to a subset *X* of *A* can only make $|X \cap B| \leq |A \cap B|$, so truth is preserved no matter how *j* is set, and hence $\left[\text{few}\right](X)(B) = T$.

3 Non-monotonicity of the first argument to *between 2 and 4*

Here's a proposed meaning for the phrasal determiner *between 2 and 4*:

[between 2 and 4] =
$$
\lambda X \Big(\lambda Y \Big(T \text{ if } 2 \le |X \cap Y| \le 4, \text{ else } F \Big) \Big)
$$

This determiner is nonmonotone on its first argument. Let $A = \{a, b, c, d, e\}$ and $B = \{b, c, d, e, f\}$. Then

[*between 2 and 4*](*A*)(*B*) = T if
$$
2 \le |A \cap B| \le 4
$$
, else F

resolves to T because $A \cap B = \{b, c, d, e\}$, which has cardinality 4.

Now suppose we take $X = \{a, b, c, d, e, f\}$. This is a superset of *A*, but $X \cap B = \{b, c, d, e, f\}$, which has cardinality 5. This shows that the determiner is not upward monotone on the first argument.

Now suppose we set $X = \{b\}$. This is a subset of *A*, but $X \cap B = \{b\}$, which has cardinality 1. This shows that the determiner is not downward on the first argument.

Since *[between 2 and 4]* is neither upward nor downward monotone on its first argument, we conclude that it is nonmonotone on its first argument.

4 Conservativity of *not every*

Here is a proposed meaning for the phrasal determiner *not every*;

$$
[\![not\; every]\!] = \lambda X \bigg(\lambda Y \big(\text{if } X \nsubseteq Y, \text{ else } \text{F} \big) \bigg)
$$

A determiner *D* is conservative iff $D(A)(B) = D(A)(A \cap B)$ for all A, B. This determiner is conservative.

To see this, first assume $\lceil \text{not every} \rceil(A)(B) = \text{T}$ for arbitrary sets *A* and *B*. Then we have that $A \nsubseteq B$. This means there is at least one *x* such that $x \in A$ but $x \notin B$. Any such *x* is also not in $A \cap B$ (because that would require $x \in B$), so $A \nsubseteq (A \cap B)$ holds, and thus $[not \; every] (A)(A \cap B) = T$.

For the other direction: assume $\lceil \text{not every} \rceil(A)(A \cap B) = T$. Then $A \nsubseteq (A \cap B)$ holds. This means there is at least one *x* such that $x \in A$ but $x \notin (A \cap B)$. Since we know $x \in A$, it must be that $x \notin B$, and thus we have $A \nsubseteq B$, which means $\lceil \text{not every} \rceil(A)(B) = T$.

5 A (non-existent) non-conservative determiner

Consider the hypothetical determiner *[somenon]*:

$$
[\text{somenon}] = \lambda X \bigg(\lambda Y \big(\text{Tr} \left((U - X) \cap Y \right) \neq \emptyset, \text{ else } \mathsf{F} \big) \bigg)
$$

This hypothetical determiner is not conservative. To see this, we can just note that

$$
[\text{somenon}](A)(A \cap B) = T \text{ if } ((U - A) \cap (A \cap B)) \neq \emptyset, \text{ else } F
$$

always resolve to F, since $(U - A) ∩ A = ∅$ and this is preserved under intersection (of either side). Thus, any situation in which \lceil somenon $\rceil(A)(B)$ is true will work as a counterexample to conservativity. For example, suppose the universe $U = \{a, b\}$, $A = \{a\}$, and $B = \{b\}$. Then

$$
[sonenon](A)(B) = T \text{ if } (\{b\} \cap \{b\}) \neq \emptyset, \text{ else } F
$$

which resolves to T, but

 \llbracket somenon $\llbracket (A)(A \cap B) = \top$ if $($ {*b*} ∩ {*a*} ∩ {*b*} $) \neq \emptyset$, else F

which resolves to F.