Some formal analyses of determiners

Chris Potts, Ling 130a/230a: Introduction to semantics and pragmatics, Winter 2022

Feb 3

This handout provides some model answers for the technical questions on Assignment 4. I hope also that it helps to further illuminate the determiner properties of intersectivity, conservativity, and monotonicity.

1 Non-intersectivity of all but two

Here is a possible (though not necessarily empirically correct) definition of the phrasal determiner *all but two as in all but two students passed*:

$$\llbracket all \ but \ two \rrbracket = \lambda X \Big(\lambda Y \Big(\mathsf{T} \ \text{if} \ |X - Y| = 2, \ \text{else } \mathsf{F} \Big) \Big)$$

A determiner *D* is intersective iff D(A)(B) = D(B)(A) for all *A*, *B*. This determiner is not intersective.

Consider $A = \{a, b, c\}$ and $B = \{a\}$. Then

[all but two](A)(B) = T if |A - B| = 2, else F

resolves to T, since $A - B = \{b, c\}$. However,

[all but two](B)(A) = T if |B - A| = 2, else F

resolves to F, since $B - A = \emptyset$, which has cardinality 0. For intersectivity, all it takes is one failure of entailment in one direction to establish that the determiner is not intersective, so our job is done.

2 Monotonicity of the first argument to few

Here is a possible (though not necessarily empirically correct) definition of the determiner [*few*]:

$$\llbracket few \rrbracket = \lambda X \bigg(\lambda Y \Big(\mathsf{T} \text{ if } |X \cap Y| < j, \text{ else } \mathsf{F} \Big) \bigg)$$

where j > 0 is a pragmatic free variable (presumably set to a very small integer, though the size might depend on the nature of the first argument).

A determiner *D* is downward monotone on its first argument iff D(A)(B) entails D(X)(B) for all *A*, *B*, *X* where $X \subseteq A$. We can show that the first argument slot for [few] is downward monotone.

Assume $\llbracket few \rrbracket(A)(B) = T$ for arbitrary *A* and *B*, with *j* also set to some value. Then $|A \cap B| < j$ holds. Moving to a subset *X* of *A* can only make $|X \cap B| \le |A \cap B|$, so truth is preserved no matter how *j* is set, and hence $\llbracket few \rrbracket(X)(B) = T$.

3 Non-monotonicity of the first argument to between 2 and 4

Here's a proposed meaning for the phrasal determiner between 2 and 4:

$$\llbracket between \ 2 \ and \ 4 \rrbracket = \lambda X \bigg(\lambda Y \Big(\mathsf{T} \ \text{if} \ 2 \leq |X \cap Y| \leq 4, \ \text{else F} \Big) \bigg)$$

This determiner is nonmonotone on its first argument. Let $A = \{a, b, c, d, e\}$ and $B = \{b, c, d, e, f\}$. Then

[between 2 and 4]
$$(A)(B) = T$$
 if $2 \leq |A \cap B| \leq 4$, else F

resolves to T because $A \cap B = \{b, c, d, e\}$, which has cardinality 4.

Now suppose we take $X = \{a, b, c, d, e, f\}$. This is a superset of A, but $X \cap B = \{b, c, d, e, f\}$, which has cardinality 5. This shows that the determiner is not upward monotone on the first argument.

Now suppose we set $X = \{b\}$. This is a subset of *A*, but $X \cap B = \{b\}$, which has cardinality 1. This shows that the determiner is not downward on the first argument.

Since [[between 2 and 4]] is neither upward nor downward monotone on its first argument, we conclude that it is nonmonotone on its first argument.

4 Conservativity of not every

Here is a proposed meaning for the phrasal determiner not every;

$$[[not every]] = \lambda X \Big(\lambda Y \Big(\mathsf{T} \text{ if } X \nsubseteq Y, \text{ else } \mathsf{F} \Big) \Big)$$

A determiner *D* is conservative iff $D(A)(B) = D(A)(A \cap B)$ for all *A*, *B*. This determiner is conservative.

To see this, first assume [not every](A)(B) = T for arbitrary sets *A* and *B*. Then we have that $A \nsubseteq B$. This means there is at least one *x* such that $x \in A$ but $x \notin B$. Any such *x* is also not in $A \cap B$ (because that would require $x \in B$), so $A \nsubseteq (A \cap B)$ holds, and thus $[not every](A)(A \cap B) = T$.

For the other direction: assume $[not every](A)(A \cap B) = T$. Then $A \nsubseteq (A \cap B)$ holds. This means there is at least one x such that $x \in A$ but $x \notin (A \cap B)$. Since we know $x \in A$, it must be that $x \notin B$, and thus we have $A \nsubseteq B$, which means [not every](A)(B) = T.

5 A (non-existent) non-conservative determiner

Consider the hypothetical determiner [somenon]:

$$[somenon] = \lambda X \Big(\lambda Y \Big(\mathsf{T} \text{ if } ((U - X) \cap Y) \neq \emptyset, \text{ else } \mathsf{F} \Big) \Big)$$

This hypothetical determiner is not conservative. To see this, we can just note that

$$[somenon](A)(A \cap B) = T$$
 if $((U - A) \cap (A \cap B)) \neq \emptyset$, else F

always resolve to F, since $(U - A) \cap A = \emptyset$ and this is preserved under intersection (of either side). Thus, any situation in which [[somenon]](A)(B) is true will work as a counterexample to conservativity. For example, suppose the universe $U = \{a, b\}, A = \{a\}$, and $B = \{b\}$. Then

$$[somenon](A)(B) = T \text{ if } (\{b\} \cap \{b\}) \neq \emptyset, \text{ else } F$$

which resolves to T, but

 $\llbracket somenon \rrbracket(A)(A \cap B) = \top \text{ if } (\{b\} \cap \{a\} \cap \{b\}) \neq \emptyset, \text{ else } \mathsf{F}$

which resolves to F.