Constituency, Relations, and Functions

LINGUIST 130A/230A Section
Winter 2022

1 Constituency

1.1 What is a constituent?

- Sentences have internal structure that is comprised of constituents.
- We have intuitions about what is and what is not a constituent in any sentence X .

The tree on the left claims that in the sentence every child studies, every child is a constituent, but child studies is not.

1.2 How can we identify constituents?

- There are constituency tests you can run by taking the string you want to test and creating a new sentence with it in different ways. If the resulting sentence is grammatical, that string is a constituent. If the resulting sentence is ungrammatical, that string is probably NOT a constituent ${ }^{1}$.
- Examples of constituency tests:
- Coordination test: Take the string and try to coordinate it in a new sentence.
(2) If we want to test if every child is a constituent in every child studies: [Every child] and [many dogs] saw a bird.
(3) If we want to test if child studies is a constituent in every child studies: *Every [child studies] and [man studies].

[^0]\Longrightarrow [Every child] is a constituent, but [child studies] is (probably) NOT a constituent.

- Cleft test: Replace X in the following frame with the string you want to test and complete the rest of the new sentence: "It was $\underline{\mathbf{X}}$ that ...".
(4) If we want to test if every child is a constituent in every child studies: It was [every child] that... left early.
(5) If we want to test if child studies is a constituent in every child studies: *It was [child studies] that left early.
\Longrightarrow [Every child] is a constituent, but [child studies] is (probably) NOT a constituent.
- Question-answer test: Try to form a question that can be answered solely by the string you want to test.
(6) If we want to test if every child is a constituent in every child studies: Q: Who hates waking up early?
A: [Every child].
(7) If we want to test if child studies is a constituent in every child studies: Q: Who hates waking up early?
A: *[Child studies].
\Longrightarrow [Every child] is a constituent, but [child studies] is (probably) NOT a constituent.

2 Sets and ordering

- Order doesn't matter in sets. So, the set $\{a, b\}$ is the same as the set $\{b, a\}$.
\rightarrow Curly brackets indicate that order doesn't matter; $\{\mathrm{a}, \mathrm{b}\}=\{\mathrm{b}, \mathrm{a}\}$
- Sometimes order matters. We'll use angled brackets to represent ordered pairs.
\rightarrow Angled brackets indicate that order matters; $\langle\mathrm{a}, \mathrm{b}\rangle \neq<\mathrm{b}, \mathrm{a}\rangle$
More generally, we can use angled brackets to represent n-tuples. An ordered triple has three elements $<\mathrm{a}, \mathrm{b}, \mathrm{c}>$; an ordered n-tuple has n : $\left.<\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}\right\rangle$.

3 Relations

3.1 Definitions and examples

- Informally, a relation is something that holds or doesn't hold between two objects.
- E.g., a verb (predicate) like loves can be a relation: x and y are in the loves relation if x loves y. This obviously isn't the same as saying that y loves x, so we need ordered pairs.
- More formally:

Definition 3.1. A relation is a set of tuples of the same lengths. The length n is called the arity of the relation. A 2-ary relation is also called a binary relation, and a 3 -ary relation is also called a ternary relation.

Example 3.2. Some familiar binary relations: $=($ equal to $),<($ less than $),>($ more than).

Example 3.3. Less than relation in a set of prime numbers below 10 (i.e., 2, 3, 5, 7): $\{\langle 2,3\rangle,<2,5\rangle,<2,7\rangle,<3,5\rangle,\langle 3,7\rangle,<5,7\rangle\}$

Example 3.4. The parent of relation in the set of Simpson family members is defined by the following set:

We could also write this as:

$$
\{\langle x, y\rangle: x \text { is a parent of } y \text { and } x, y \text { are in the Simpsons family }\}
$$

- Infix notation for a binary relation $R: x R y$, which means just the same as $\langle x, y\rangle \in R$. (This is how we typically use binary relations such as $=,<$ and $>$.)

Example 3.5. We can treat transitive verbs such as give as denoting ternary relations:

$$
\llbracket \text { give } \rrbracket=\{\langle x, y, z\rangle \mid x \text { gives } y \text { to } z\}
$$

- Note: This is not the best analysis of transitive verbs (we will discuss better alternatives later), but it does capture a core aspect of their meanings, e.g., in the sentence John gives the book to Mary, the subject, the direct object, and the indirect object must be in a specific relation in order for it to be true.

Definition 3.6. The Cartesian product of sets $A_{1}, A_{2}, \ldots, A_{n}$, written as A_{1} $\times A_{2}, \ldots, \times A_{n}$, is a set of n-tuples defined as follows.

$$
A_{1} \times A_{2}, \ldots, \times A_{n}=\left\{\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle \mid a_{1} \in A_{1} \text { and } a_{2} \in A_{2}, \ldots, \text { and } a_{n} \in A_{n}\right\}
$$

If $A_{1}=A_{2}=\ldots=A_{n}$, we can also write their Cartesian product as A^{n}. In this case, we will also call any relation R that is a subset of A^{n} an n-ary relation on A.

Example 3.7. The Cartesian product of parent Simpsons with child Simpsons gives us the is a parent of relation on the Simpsons family:

Definition 3.8. For a binary relation R, its inverse relation, written as R^{-1}, is a relation defined as follows:

$$
R^{-1}=\{\langle x, y\rangle \mid\langle y, x\rangle \in R\}
$$

Definition 3.9. For a binary relation R, its domain and range are sets defined as follows.

$$
\begin{gathered}
\operatorname{Domain}(R)=\{x \mid \text { there is some } y \text { such that }\langle x, y\rangle \in R\} \\
\text { Range }(R)=\{x \mid \text { there is some } y \text { such that }\langle y, x\rangle \in R\}
\end{gathered}
$$

- That is, given a relation $R=A \times B$, the set of first coordinates A is the domain of R, and the set of second coordinates B is the range of R.

3.2 Properties of relations

Definition 3.10. A relation R is reflexive iff for all $x,\langle x, x\rangle \in R$.
A relation R is irreflexive iff for all $x,\langle x, x\rangle \notin R$.
Example 3.11. Equality is a reflexive relation; for any $x, x=x$.
Definition 3.12. A relation R is symmetric iff for all x, y if $\langle x, y\rangle \in R$, then $\langle y, x\rangle \in R$.
A relation R is anti-symmetric iff for all distinct x and y (i.e., $x \neq y$), if $\langle x, y\rangle \in R$, then $\langle y, x\rangle \notin R$.
A relation R is asymmetric iff for all x, y (which may or may not be the same), if $\langle x, y\rangle \in R$, then $\langle y, x\rangle \notin R$.

Example 3.13. The relation sibling of is symmetric, it work both ways.
Definition 3.14. A relation R is transitive iff for all x, y, z, if $\langle x, y\rangle \in R$ and $\langle y, z\rangle \in R$, then $\langle x, z\rangle \in R$.
A relation R is anti-transitive iff for all x, y, z, if $\langle x, y\rangle \in R$ and $\langle y, z\rangle \in R$, then $\langle x, z\rangle \notin R$.
Example 3.15. Less than is a transitive relation: if $x<y$ and $y<z$, we have $x<z$.

4 Functions

4.1 Definition and examples

- Intuitively, a function from A to B is a machine that takes an object x as input and outputs another object y. We will call this input-output relation a function if such a relation is deterministic, i.e., for any input x there is at most one output y (it is OK if the function does not output anything at all for x, in which case we will say the function is undefined for x). The input of a function is also called its argument, and the output of a function is also called its value.
- We write $f: A \rightarrow B$, which means that f is a function that takes elements of the set A to elements of the set $B . A$ is the domain, and B is the range (sometimes called the co-domain).
- More formally, a function is a relation that satisfies an additional requirement.

Definition 4.1. A relation f is a function iff for every x, there is at most one y such that $\langle x, y\rangle \in f$.

- For a function f, we typically write $f(x)=y$ or $y=f(x)$ instead of $\langle x, y\rangle \in f$.

Example 4.2. The relation the next natural number of is a function. It is called the successor function, and written as S. For example, $S(0)=1, S(2)=3$, and $S(100)=101$.

Example 4.3. The inverse of the successor function, S^{-1}, is the relation the natural number right before, which is also a function. For example, $S^{-1}(1)=0, S^{-1}(3)=2$, $S^{-1}(101)=100$.

- The inverse of a function is by definition always a relation. However, it is not necessarily a function, e.g., the height of is a function, but its inverse is not.
- Since a function is a relation, we can specify it by listing all the pairs in the set. To highlight the directionality of the input-output relation, we often write $x \mapsto y$ instead of $\langle x, y\rangle$ when specifying a function.

Example 4.4. The function the suit name of can be specified as follows:

$$
\AA \mapsto \text { club, } \diamond \mapsto \text { diamond, } \diamond \mapsto \text { heart, } \oplus \mapsto \text { spade }
$$

4.2 Properties of functions

Definition 4.5. A function f is total on a set A iff for every $x \in A$, there is a y such that $\langle x, y\rangle \in f$. Otherwise it is partial.

Example 4.6. Let \mathbb{N} be the set of natural numbers. The successor function S is total on \mathbb{N}. In contrast, the inverse of the successor function, S^{-1}, is not total on \mathbb{N}, because $S^{-1}(0)$ is undefined, i.e., there is no y such that $\langle 0, y\rangle \in S^{-1}$.

Definition 4.7. A function $f: A \rightarrow B$ is surjective (or onto) iff Range $(f)=B$
Example 4.8. Let $A=\mathbb{Z}$ (the integers) and $B=2 \mathbb{Z}$ (the even integers). Then, $f: A \rightarrow B$ defined by $f(a)=2 a$ is onto since every even integer is a multiple by 2 of some integer.

Example 4.9. The successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ is not surjective/onto because its range does not include 0 . In contrast, its inverse, $S^{-1}: \mathbb{N} \rightarrow \mathbb{N}$, is surjective/onto.

Definition 4.10. A function $f: A \rightarrow B$ is injective (or one-to-one) iff for any $y \in B$, there is at most one x such that $f(x)=y$.

Example 4.11. Let A and B both be \mathbb{Z}, the integers, and let $f: A \rightarrow B$ be defined by $f(a)=a+2$. Then f is one-to-one. Any $b \in B$ is uniquely mapped to by $b 2 \in A: f(b 2)=$ $(b 2)+2=b$.

Example 4.12. The successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ is injective/one-to-one, and so is its inverse, $S^{-1}: \mathbb{N} \rightarrow \mathbb{N}$. The square function ${ }^{2}: \mathbb{R} \rightarrow \mathbb{R} \mathrm{R}$ is not injective/one-to-one because, e.g., $4=2^{2}=(2)^{2}$.

Definition 4.13. A function $f: A \rightarrow B$ is bijective (or a one-to-one correspondence) iff it is total on A, injective/one-to-one and surjective/onto.

Example 4.14. The successor function $S: \mathbb{N} \rightarrow \mathbb{N}$ is not bijective because it is not surjective/onto. Its inverse, S^{-1} is not bijective either, because it is not total on \mathbb{N}. The square function ${ }^{2}: \mathbb{R} \rightarrow \mathbb{R}$ is not bijective because it is not injective/one-to-one. The cube function ${ }^{3}: \mathbb{R} \rightarrow \mathbb{R}$ is bijective, because it is total on \mathbb{R}, injective/one-to-one, and surjective/onto. Also, the identity function id : $A \mapsto A$, which always simply returns the input (i.e., $\operatorname{id}(x)$ $=x$ for any $x \in A$), is trivially a bijection.

4.3 Truth values and characteristic functions

- There are two truth values: true and false. We often use T and F (or 1 and 0) to represent them.
- The set containing the two truth values is called the Boolean domain, and written as \mathbb{B}.

Definition 4.15. $\mathbb{B}=\{\mathrm{T}, \mathrm{F}\}$

- Suppose we have a total function $f: D \rightarrow B$. Assume the domain D is the set of suits and f is defined as follows:

Example 4.16. Let D be the set $\{\boldsymbol{q}, \diamond, \diamond, \uparrow\}$, and

$$
f=\{\boldsymbol{\mu} \mapsto \mathrm{F}, \diamond \mapsto \mathrm{~T}, \diamond \mapsto \mathrm{~T}, \boldsymbol{\wedge} \mapsto \mathrm{~F}\}
$$

f returns T iff the input is a red suit. Since there are only two possible output values (T and F), once we know the set of inputs that the function will output T (call it A), we can determine the output of the function for any input (i.e., if the input is in A, then the function will output T , otherwise it will output F); the set A encodes all the relevant information we need to determine the output of the function for any input. We call this set A the characteristic set of the function f.

Definition 4.17. For a total function $f: D \mapsto \mathbb{B}$, its characteristic set is defined to be the set $\{x \mid f(x)=\mathrm{T}\}$.

Example 4.18. The characteristic set of the function in the previous example is $\{\diamond, \nabla\}$.

- We have seen above how we can use sets to represent the relevant information of a function. We can also do it the other way around, i.e., use functions to represent the relevant information of a set.

Definition 4.19. For a domain/universe D and a subset A, the characteristic function of A is the function $f: D \rightarrow \mathbb{B}$ that satisfies the following requirement: $f(x)=\mathrm{T}$ iff $x A$.

Example 4.20. Suppose the domain/universe D is the set $\{\boldsymbol{\phi}, \diamond, \diamond, \boldsymbol{\oplus}\}$, then the characteristic function of $\{\diamond, \diamond\}$ is the function specified in example 4.16.

[^0]: ${ }^{1}$ Not all constituency tests work for all kinds of strings, so getting an ungrammatical sentence as a result of a constituency test doesn't necessarily mean that string is not a constituent. To work around this, it's always a good idea to run several types of constituency tests for every string you want to test.

