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1 Constituency

1.1 What is a constituent?

• Sentences have internal structure that is comprised of constituents.

• We have intuitions about what is and what is not a constituent in any sentence X.
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The tree on the left claims that in the sen-
tence every child studies, every child is a
constituent, but child studies is not.

1.2 How can we identify constituents?

• There are constituency tests you can run by taking the string you want to test
and creating a new sentence with it in different ways. If the resulting sentence is
grammatical, that string is a constituent. If the resulting sentence is ungrammatical,
that string is probably NOT a constituent1.

• Examples of constituency tests:

– Coordination test: Take the string and try to coordinate it in a new sentence.

(2) If we want to test if every child is a constituent in every child studies :
[Every child] and [many dogs] saw a bird.

(3) If we want to test if child studies is a constituent in every child studies :
*Every [child studies] and [man studies].

1Not all constituency tests work for all kinds of strings, so getting an ungrammatical sentence as a result
of a constituency test doesn’t necessarily mean that string is not a constituent. To work around this, it’s
always a good idea to run several types of constituency tests for every string you want to test.
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=⇒ [Every child] is a constituent, but [child studies] is (probably) NOT a con-
stituent.

– Cleft test: Replace X in the following frame with the string you want to test and
complete the rest of the new sentence: “It was X that . . . ”.

(4) If we want to test if every child is a constituent in every child studies :
It was [every child] that. . . left early.

(5) If we want to test if child studies is a constituent in every child studies :
*It was [child studies] that left early.

=⇒ [Every child] is a constituent, but [child studies] is (probably) NOT a con-
stituent.

– Question-answer test: Try to form a question that can be answered solely by the
string you want to test.

(6) If we want to test if every child is a constituent in every child studies :
Q: Who hates waking up early?
A: [Every child].

(7) If we want to test if child studies is a constituent in every child studies :
Q: Who hates waking up early?
A: *[Child studies].

=⇒ [Every child] is a constituent, but [child studies] is (probably) NOT a con-
stituent.

2 Sets and ordering

• Order doesn’t matter in sets. So, the set {a,b} is the same as the set {b,a}.
→ Curly brackets indicate that order doesn’t matter; {a,b} = {b,a}

• Sometimes order matters. We’ll use angled brackets to represent ordered pairs.
→ Angled brackets indicate that order matters; <a,b>6=< b,a>

More generally, we can use angled brackets to represent n-tuples. An ordered triple
has three elements <a, b, c>; an ordered n-tuple has n: <a1, a2,. . . , an>.

3 Relations

3.1 Definitions and examples

• Informally, a relation is something that holds or doesn’t hold between two objects.
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– E.g., a verb (predicate) like loves can be a relation: x and y are in the loves
relation if x loves y. This obviously isn’t the same as saying that y loves x, so we
need ordered pairs.

• More formally:

Definition 3.1. A relation is a set of tuples of the same lengths. The length n is
called the arity of the relation. A 2-ary relation is also called a binary relation, and
a 3-ary relation is also called a ternary relation.

Example 3.2. Some familiar binary relations: = (equal to), < (less than), > (more
than).

Example 3.3. Less than relation in a set of prime numbers below 10 (i.e., 2, 3, 5, 7):

{< 2, 3 >,< 2, 5 >,< 2, 7 >,< 3, 5 >,< 3, 7 >,< 5, 7 >}

Example 3.4. The parent of relation in the set of Simpson family members is defined
by the following set:

• Infix notation for a binary relation R: xRy, which means just the same as 〈x, y〉 ∈ R.
(This is how we typically use binary relations such as =, < and >.)

Example 3.5. We can treat transitive verbs such as give as denoting ternary relations:

JgiveK = {〈x, y, z〉 | x gives y to z}

– Note: This is not the best analysis of transitive verbs (we will discuss better
alternatives later), but it does capture a core aspect of their meanings, e.g., in
the sentence John gives the book to Mary, the subject, the direct object, and the
indirect object must be in a specific relation in order for it to be true.

Definition 3.6. The Cartesian product of sets A1, A2,. . . , An, written as A1

×A2,. . . , ×An, is a set of n-tuples defined as follows.

A1 ×A2,. . . , ×An = {〈a1, a2,. . . , an〉|a1 ∈ A1 and a2 ∈ A2,. . . , and an ∈ An}
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If A1 = A2 = . . . = An, we can also write their Cartesian product as An. In this case,
we will also call any relation R that is a subset of An an n-ary relation on A.

Example 3.7. The Cartesian product of parent Simpsons with child Simpsons gives
us the is a parent of relation on the Simpsons family:

Definition 3.8. For a binary relation R, its inverse relation, written as R-1, is a
relation defined as follows:

R-1 = {〈x, y〉|〈y, x〉 ∈ R}

Definition 3.9. For a binary relation R, its domain and range are sets defined as
follows.

Domain(R) = {x | there is some y such that 〈x, y〉 ∈ R}
Range(R) = {x | there is some y such that 〈y, x〉 ∈ R}

• That is, given a relation R = A × B, the set of first coordinates A is the domain of
R, and the set of second coordinates B is the range of R.

3.2 Properties of relations

Definition 3.10. A relation R is reflexive iff for all x, 〈x, x〉 ∈ R.
A relation R is irreflexive iff for all x, 〈x, x〉 /∈ R.

Example 3.11. Equality is a reflexive relation; for any x, x = x.

Definition 3.12. A relation R is symmetric iff for all x, y if 〈x, y〉 ∈ R, then 〈y, x〉 ∈ R.
A relation R is anti-symmetric iff for all distinct x and y (i.e., x 6= y), if 〈x, y〉 ∈ R, then
〈y, x〉 /∈ R.
A relation R is asymmetric iff for all x, y (which may or may not be the same), if 〈x, y〉 ∈ R,
then 〈y, x〉 /∈ R.
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Example 3.13. The relation sibling of is symmetric, it work both ways.

Definition 3.14. A relation R is transitive iff for all x, y, z, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R,
then 〈x, z〉 ∈ R.
A relation R is anti-transitive iff for all x, y, z, if 〈x, y〉 ∈ R and 〈y, z〉 ∈ R, then 〈x, z〉 /∈ R.

Example 3.15. Less than is a transitive relation: if x < y and y < z, we have x < z.

4 Functions

4.1 Definition and examples

• Intuitively, a function from A to B is a machine that takes an object x as input and
outputs another object y. We will call this input-output relation a function if such a
relation is deterministic, i.e., for any input x there is at most one output y (it is OK
if the function does not output anything at all for x, in which case we will say the
function is undefined for x). The input of a function is also called its argument, and
the output of a function is also called its value.

• We write f : A → B, which means that f is a function that takes elements of the set
A to elements of the set B. A is the domain, and B is the range (sometimes called
the co-domain).

• More formally, a function is a relation that satisfies an additional requirement.

Definition 4.1. A relation f is a function iff for every x, there is at most one y such
that 〈x, y〉 ∈ f .

• For a function f , we typically write f(x) = y or y = f(x) instead of 〈x, y〉 ∈ f .

Example 4.2. The relation the next natural number of is a function. It is called
the successor function, and written as S. For example, S(0) = 1, S(2) = 3, and
S(100) = 101.

Example 4.3. The inverse of the successor function, S-1, is the relation the natural
number right before, which is also a function. For example, S-1(1) = 0, S-1(3) = 2,
S-1(101) = 100.

• The inverse of a function is by definition always a relation. However, it is not necessarily
a function, e.g., the height of is a function, but its inverse is not.

• Since a function is a relation, we can specify it by listing all the pairs in the set. To
highlight the directionality of the input-output relation, we often write x 7→ y instead
of 〈x, y〉 when specifying a function.

Example 4.4. The function the suit name of can be specified as follows:

♣ 7→ club, ♦ 7→ diamond, ♥ 7→ heart, ♠ 7→ spade
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4.2 Properties of functions

Definition 4.5. A function f is total on a set A iff for every x ∈ A, there is a y such that
〈x, y〉 ∈ f . Otherwise it is partial.

Example 4.6. Let N be the set of natural numbers. The successor function S is total on
N. In contrast, the inverse of the successor function, S-1, is not total on N, because S-1(0) is
undefined, i.e., there is no y such that 〈0, y〉 ∈ S-1.

Definition 4.7. A function f : A→ B is surjective (or onto) iff Range(f) = B

Example 4.8. Let A = Z (the integers) and B = 2Z (the even integers). Then, f : A→ B
defined by f(a) = 2a is onto since every even integer is a multiple by 2 of some integer.

Example 4.9. The successor function S : N → N is not surjective/onto because its range
does not include 0. In contrast, its inverse, S-1 : N→ N, is surjective/onto.

Definition 4.10. A function f : A → B is injective (or one-to-one) iff for any y ∈ B,
there is at most one x such that f(x) = y.

Example 4.11. Let A and B both be Z, the integers, and let f : A → B be defined by
f(a) = a + 2. Then f is one-to-one. Any b ∈ B is uniquely mapped to by b2 ∈ A : f(b2) =
(b2) + 2 = b.

Example 4.12. The successor function S : N → N is injective/one-to-one, and so is its
inverse, S-1 : N→ N. The square function 2: R→ R R is not injective/one-to-one because,
e.g., 4 = 22 = (2)2.

Definition 4.13. A function f : A→ B is bijective (or a one-to-one correspondence)
iff it is total on A, injective/one-to-one and surjective/onto.

Example 4.14. The successor function S : N→ N is not bijective because it is not surjec-
tive/onto. Its inverse, S-1 is not bijective either, because it is not total on N. The square
function 2: R→ R is not bijective because it is not injective/one-to-one. The cube function
3: R → R is bijective, because it is total on R, injective/one-to-one, and surjective/onto.
Also, the identity function id : A 7→ A, which always simply returns the input (i.e., id(x)
= x for any x ∈ A), is trivially a bijection.

4.3 Truth values and characteristic functions

• There are two truth values: true and false. We often use T and F (or 1 and 0) to
represent them.

• The set containing the two truth values is called the Boolean domain, and written
as B.

Definition 4.15. B = {T, F}
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• Suppose we have a total function f : D → B. Assume the domain D is the set of suits
and f is defined as follows:

Example 4.16. Let D be the set {♣,♦,♥,♠}, and

f ={♣ 7→ F, ♦ 7→ T, ♥ 7→ T, ♠ 7→ F}

f returns T iff the input is a red suit. Since there are only two possible output values
(T and F), once we know the set of inputs that the function will output T (call it A),
we can determine the output of the function for any input (i.e., if the input is in A,
then the function will output T, otherwise it will output F); the set A encodes all the
relevant information we need to determine the output of the function for any input.
We call this set A the characteristic set of the function f .

Definition 4.17. For a total function f : D 7→ B, its characteristic set is defined to
be the set {x|f(x) = T}.

Example 4.18. The characteristic set of the function in the previous example is
{♦,♥}.

• We have seen above how we can use sets to represent the relevant information of a
function. We can also do it the other way around, i.e., use functions to represent the
relevant information of a set.

Definition 4.19. For a domain/universe D and a subset A, the characteristic func-
tion of A is the function f : D → B that satisfies the following requirement:
f(x) = T iff xA.

Example 4.20. Suppose the domain/universe D is the set {♣,♦,♥,♠}, then the
characteristic function of {♦,♥} is the function specified in example 4.16.
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