

Semantic composition

Chris Potts, Ling 130a/230a: Introduction to semantics and pragmatics, Winter 2025

Jan 28

1 Overview

- This handout describes our core theory of semantic composition. It's a bare-bones theory, but still powerful in the sense that generalizing it to a wider range of sentences is straightforward.
- The theory is *guaranteed compositional* even by the strictest interpretation of the principle.
- The most important conceptual move is to interpret lexical items as sets and functions. Meanings might not literally *be* sets and functions, but, following Lewis's advice, we're hypothesizing that at least these *do what meanings do*.
- We need a bunch of rules in order to respect the syntactic structures. However, there are just a few rules of semantic composition and they are very simple.
- So, in essence, if you know the lexical meanings of your language and you can put them together according to the syntactic rules, then the only other concepts you need to be a full-fledged interpreter are a few simple semantic composition rules.
- The entire grammar presented here is implemented in very simple Python code here:
<https://web.stanford.edu/class/linguist130a/materials/semgrammar130a.py>

2 Notation for describing functions

2.1 Functions

$$\begin{array}{l} \text{IS_EVEN}(x) \\ 1 \quad \text{if } x \bmod 2 = 0 \\ 2 \quad \quad \text{return T} \\ 3 \quad \text{else return F} \end{array} \quad \left[\begin{array}{l} 0 \rightarrow \text{T} \\ 1 \rightarrow \text{F} \\ 2 \rightarrow \text{T} \\ 3 \rightarrow \text{F} \\ \vdots \end{array} \right] \quad \lambda x (\text{T if } x \bmod 2 = 0 \text{ else F})$$

2.2 Function application

$$\begin{array}{l} \text{IS_EVEN}(1) = \text{F} \end{array} \quad \left[\begin{array}{l} 0 \rightarrow \text{T} \\ 1 \rightarrow \text{F} \\ 2 \rightarrow \text{T} \\ 3 \rightarrow \text{F} \\ \vdots \end{array} \right] (1) = \text{F} \quad \begin{array}{l} \left(\lambda x (\text{T if } x \bmod 2 = 0, \text{ else F}) \right) (1) \\ (\text{T if } 1 \bmod 2 = 0, \text{ else F}) \\ \text{F} \end{array}$$

3 Basic semantic objects

3.1 Truth values

\top for truth and \perp for falsity.

3.2 Universe

The set of entities in our tiny possible world:

$$U = \left\{ \begin{array}{c} \text{Maggie} \\ \text{Lisa} \\ \text{Bart} \\ \text{Homer} \end{array} \right. , \quad \left. \begin{array}{c} \text{Marge} \\ \text{Moe} \end{array} \right\}$$

Apologies to Marge! Her hair is so tall that she would make this handout very long!

4 Semantic lexicon

4.1 PNs

Proper names are directly referential:

$$\llbracket \text{Maggie} \rrbracket = \text{Maggie} \quad \llbracket \text{Lisa} \rrbracket = \text{Lisa} \quad \llbracket \text{Bart} \rrbracket = \text{Bart} \quad \llbracket \text{Homer} \rrbracket = \text{Homer}$$

4.2 Ns

Nouns denote sets of entities (subsets of U):

$$(1) \quad \llbracket \text{Simpson} \rrbracket = \left\{ \begin{array}{c} \text{Maggie} \\ \text{Lisa} \\ \text{Bart} \\ \text{Homer} \end{array} \right. , \quad \left. \begin{array}{c} \text{Marge} \\ \text{Moe} \end{array} \right\}$$

$$(2) \quad \llbracket \text{child} \rrbracket = \left\{ \begin{array}{c} \text{Maggie} \\ \text{Lisa} \\ \text{Bart} \end{array} \right. , \quad \left. \begin{array}{c} \text{Moe} \end{array} \right\}$$

$$(3) \quad \llbracket \text{student} \rrbracket = \left\{ \begin{array}{c} \text{Lisa} \\ \text{Bart} \end{array} \right. , \quad \left. \begin{array}{c} \text{Moe} \end{array} \right\}$$

$$(4) \quad \llbracket \text{parent} \rrbracket = \left\{ \begin{array}{c} \text{Moe} \end{array} \right. , \quad \left. \begin{array}{c} \text{Maggie} \\ \text{Lisa} \\ \text{Bart} \\ \text{Homer} \end{array} \right\}$$

4.3 Intransitive Vs

Intransitive verbs also denote sets of entities (subsets of U):

$$(5) \quad \llbracket \text{skateboards} \rrbracket = \left\{ \begin{array}{c} \text{Bart} \\ , \\ \text{Homer} \end{array} \right\}$$

$$(6) \quad \llbracket \text{studies} \rrbracket = \left\{ \begin{array}{c} \text{Maggie} \end{array} \right\}$$

$$(7) \quad \llbracket \text{introspects} \rrbracket = \left\{ \begin{array}{c} \text{Marge} \\ , \\ \text{Bart} \end{array} \right\}$$

$$(8) \quad \llbracket \text{speaks} \rrbracket = \left\{ \begin{array}{c} \text{Bart} \\ , \\ \text{Maggie} \\ , \\ \text{Homer} \end{array} \right\}$$

In our grammar, intransitive Vs will combine with the subject of the sentence to produce a truth-valued claim by testing whether the subject's denotation is a member of the verb's denotation.

Bart $\swarrow \searrow$ skateboards

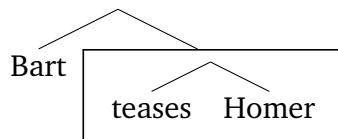
Maggie $\swarrow \searrow$ skateboards

4.4 Transitive Vs

Transitive verbs denote functions from entities into sets of entities:

$$(9) \quad \llbracket \text{teases} \rrbracket = \lambda y \left(\begin{array}{ll} \text{if } y = \text{Homer} & \left\{ \text{Bart, Lisa} \right\} \\ \text{if } y = \text{Lisa} & \left\{ \text{Bart, Homer} \right\} \\ \text{if } y = \text{Bart} & \left\{ \text{Lisa, Homer} \right\} \\ \text{if } y = \text{Maggie} & \left\{ \right\} \end{array} \right)$$

Bart, Lisa, and Homer all tease each other. Maggie neither teases nor is teased. Note: the object comes in first as y , so the return values are the people who tease y .



$$(10) \quad \llbracket \text{admires} \rrbracket = \lambda y \left(\begin{array}{ll} \text{if } y = \text{Homer} & \left\{ \right\} \\ \text{if } y = \text{Lisa} & \left\{ \text{Homer, Bart, Maggie} \right\} \\ \text{if } y = \text{Bart} & \left\{ \right\} \\ \text{if } y = \text{Maggie} & \left\{ \text{Homer, Bart, Lisa} \right\} \end{array} \right)$$

Everyone admires only Lisa and Maggie, but no one admires themselves.

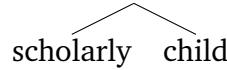
$$(11) \quad \llbracket \text{teases}(\text{Homer}) \rrbracket = \llbracket \text{teases} \rrbracket \left(\text{Homer} \right) = \left\{ \text{Bart, Lisa} \right\}$$

$$(12) \quad \llbracket \text{admires}(\text{Maggie}) \rrbracket =$$

Important insight: once a transitive V combines with its object, it denotes a set of entities – semantically, it's just like an intransitive verb.

4.5 Adjectives

Adjectives combine with noun meanings to produce new noun meanings. The core of it is this very basic constituent structure:



You can see that we're treating the following as intersective adjectives:

$$(13) \quad \llbracket \text{scholarly} \rrbracket = \lambda X \left(\left\{ \begin{array}{c} \text{Maggie} \\ \text{Milhouse} \end{array} \right\} \cap X \right)$$

$$(14) \quad \llbracket \text{distractible} \rrbracket = \lambda X \left(\left\{ \begin{array}{c} \text{Simpson} \\ \text{Bart} \end{array} \right\} \cap X \right)$$

$$(15) \quad \llbracket \text{hungry} \rrbracket = \lambda X \left(\left\{ \begin{array}{c} \text{Maggie} \\ \text{Simpson} \end{array} \right\} \cap X \right)$$

$$(16) \quad \llbracket \text{Springfieldian} \rrbracket =$$

The same semantic types work for the other adjective types, but they don't use \cap or commit to the incoming X being true of the entities in the resulting set:

$$(17) \quad \llbracket \text{alleged} \rrbracket = \lambda X : \{y \in U : \text{someone claimed that } y \in X\}$$

Basic semantic composition:

$$(18) \quad \llbracket \text{scholarly(child)} \rrbracket = \llbracket \text{scholarly} \rrbracket (\llbracket \text{child} \rrbracket) = \left\{ \begin{array}{c} \text{Maggie} \\ \text{Milhouse} \end{array} \right\} \cap \left\{ \begin{array}{c} \text{Maggie} \\ \text{Milhouse} \\ \text{Bart} \end{array} \right\}$$

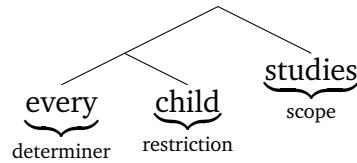
$$(19) \quad \llbracket \text{hungry}(\text{scholarly(child)}) \rrbracket =$$

4.6 Negation

We would like a negation that operates on verb phrases like *skateboards* and *admires Maggie*:

$$(20) \quad \llbracket \text{never} \rrbracket = \lambda X \left(\quad \right)$$

4.7 Quantificational determiners



$$(21) \quad \llbracket \text{every} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } X \subseteq Y, \text{ else } \perp \right) \right)$$

$$(22) \quad \llbracket \text{every}(\text{child}) \rrbracket = \lambda Y \left(\top \text{ if } \llbracket \text{child} \rrbracket \subseteq Y, \text{ else } \perp \right)$$

$$(23) \quad \llbracket \text{every}(\text{child})(\text{studies}) \rrbracket = \top \text{ if } \llbracket \text{child} \rrbracket \subseteq \llbracket \text{studies} \rrbracket, \text{ else } \perp$$

$$(24) \quad \llbracket \text{some} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } X \cap Y \neq \emptyset, \text{ else } \perp \right) \right)$$

$$(25) \quad \llbracket \text{no} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } X \cap Y = \emptyset, \text{ else } \perp \right) \right)$$

$$(26) \quad \llbracket \text{at least three} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } |X \cap Y| \geq 3, \text{ else } \perp \right) \right)$$

$$(27) \quad \llbracket \text{at most three} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } \quad, \text{ else } \perp \right) \right)$$

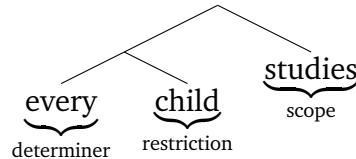
$$(28) \quad \llbracket \text{most} \rrbracket = \lambda X \left(\lambda Y \left(\top \text{ if } \frac{|X \cap Y|}{|X|} > \frac{1}{2}, \text{ else } \perp \right) \right)$$

$$(29) \quad \llbracket \text{between five and ten} \rrbracket =$$

An imagined dialogue about quantificational determiners

(30) You defined quantificational determiners as denoting relations between sets of entities. Isn't that too complicated?

It is complicated, but it's not *too* complicated! It's the least complicated thing we could do! We really need the determiner to control both its restriction and its scope:



(31) But couldn't *every* just denote the universe U ?

No way! We need to consider the role of the restriction: *every child*, *every scholarly parent*, and so forth.

(32) Ok, then let's say that *every student* picks out the set of students, and *every parent* the set of parents, and so forth. That would at least be somewhat simpler.

That still won't work! Suppose $\llbracket \text{every student} \rrbracket$ was the set of students, for example. What would we do about the verb phrase? We need $\llbracket \text{every student skateboards} \rrbracket$ to be false and $\llbracket \text{every student speaks} \rrbracket$ to be true. What are the criteria for making that distinction?

(33) The criteria could be subset, as you gave it. $\llbracket \text{every student skateboards} \rrbracket$ is F because the set of students is not a subset of the set of skateboarders, but $\llbracket \text{every student speaks} \rrbracket$ is T because the set of students is a subset of the set of things that speak. That's just like "if x is a student, then x skateboards". It seems intuitively correct.

Exactly! But that's just a rephrasing of the analysis we gave. You start with

$$T \text{ if } \llbracket \text{student} \rrbracket \subseteq Y, \text{ else } F$$

We explicitly bind the variable Y , as in

$$\lambda Y (T \text{ if } \llbracket \text{student} \rrbracket \subseteq Y, \text{ else } F)$$

This is intuitively a set of sets. That captures the variation we just noted in truth values for different verb phrases. And this is the meaning of *every student*. To get all the way back to $\llbracket \text{every} \rrbracket$, we just bind the slot filled by $\llbracket \text{student} \rrbracket$:

$$\lambda X (\lambda Y (T \text{ if } X \subseteq Y, \text{ else } F))$$

This is what's in (21).

(34) Okay, you convinced me for *every*. But surely *no*, *no student*, etc., can all just denote the empty set. That seems intuitively like what *no* means: nothingness.

No, that won't work! Consider *no parent studies*. This is true in our possible world, but neither $\llbracket \text{parent} \rrbracket$ nor $\llbracket \text{studies} \rrbracket$ is the empty set in our possible world. It's their *intersection*

that is empty if this sentence is true. And we want to say that *in general*, and that's what our theory does. We can again start with a specific claim:

$$\top \text{ if } \llbracket \text{parent} \rrbracket \cap \llbracket \text{studies} \rrbracket = \emptyset, \text{ else } \mathsf{F}$$

And then we back off to get $\llbracket \text{no parent} \rrbracket$:

$$\lambda Y \left(\top \text{ if } \llbracket \text{parent} \rrbracket \cap Y = \emptyset, \text{ else } \mathsf{F} \right)$$

And once more to get the meaning we defined in (25):

$$\lambda X \left(\lambda Y \left(\top \text{ if } X \cap Y = \emptyset, \text{ else } \mathsf{F} \right) \right)$$

(35) **I am starting to see that this is the least complicated thing we can do. And I also see that this basic set-up can work for lots of determiners. We start with our framework**

$$\lambda X \left(\lambda Y \left(\top \text{ if } \quad , \text{ else } \mathsf{F} \right) \right)$$

and then we just need to specify what the relation is for any given determiner.

Yes!

(36) **And, if I want to, I can start with a specific instance of what I want to capture, like**

$$\llbracket \text{most students skateboard} \rrbracket = \top \text{ if } \frac{|\llbracket \text{student} \rrbracket \cap \llbracket \text{skateboards} \rrbracket|}{|\llbracket \text{student} \rrbracket|} > \frac{1}{2}, \text{ else } \mathsf{F}$$

and then just back out the variables with lambda binders, first for the scope:

$$\llbracket \text{most students} \rrbracket = \lambda Y \left(\top \text{ if } \frac{|\llbracket \text{student} \rrbracket \cap Y|}{|\llbracket \text{student} \rrbracket|} > \frac{1}{2}, \text{ else } \mathsf{F} \right)$$

and then for the restriction:

$$\lambda X \left(\lambda Y \left(\top \text{ if } \frac{|X \cap Y|}{|X|} > \frac{1}{2}, \text{ else } \mathsf{F} \right) \right)$$

Beautiful! And remember to always do the binding in the order you did it: restriction outer (comes in first) and scope inside (comes in second). Some determiners are order-sensitive, like *most* and *every*.

5 Semantic grammar

(Lex) Given a leaf node X , $\llbracket X \rrbracket$ is looked up in the lexicon.

(NB) Given a syntactic structure X , $\llbracket X \rrbracket = \llbracket Y \rrbracket$

$$\begin{array}{c} X \\ | \\ Y \end{array}$$

(S) Given a syntactic structure S , $\llbracket S \rrbracket = T$ if $\llbracket PN \rrbracket \in \llbracket VP \rrbracket$, else F

$$\begin{array}{c} S \\ \swarrow \quad \searrow \\ PN \quad VP \end{array}$$

(A) Given a syntactic structure NP_j , $\llbracket NP_j \rrbracket = \llbracket AP \rrbracket(\llbracket NP_i \rrbracket)$

$$\begin{array}{c} NP_j \\ \swarrow \quad \searrow \\ AP \quad NP_i \end{array}$$

(N) Given a syntactic structure VP_j , $\llbracket VP_j \rrbracket = \llbracket never \rrbracket(\llbracket VP_i \rrbracket)$

$$\begin{array}{c} VP_j \\ \swarrow \quad \searrow \\ never \quad VP_i \end{array}$$

(TV) Given a syntactic structure VP , $\llbracket VP \rrbracket = \llbracket V \rrbracket(\llbracket PN \rrbracket)$

$$\begin{array}{c} VP \\ \swarrow \quad \searrow \\ V \quad PN \end{array}$$

(Q1) Given a syntactic structure QP , $\llbracket QP \rrbracket = \llbracket D \rrbracket(\llbracket NP \rrbracket)$

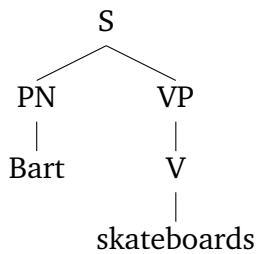
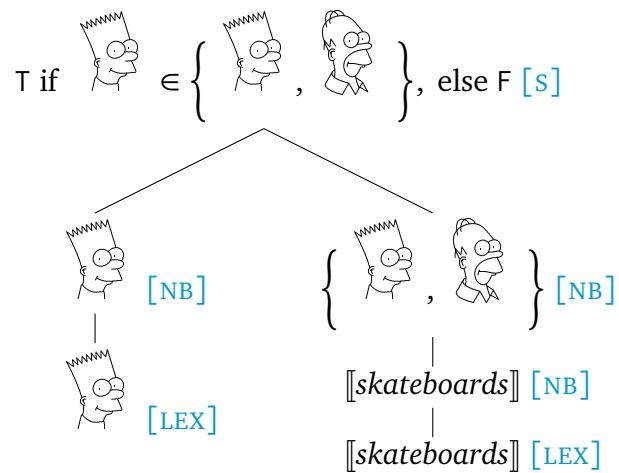
$$\begin{array}{c} QP \\ \swarrow \quad \searrow \\ D \quad NP \end{array}$$

(Q2) Given a syntactic structure S , $\llbracket S \rrbracket = \llbracket QP \rrbracket(\llbracket VP \rrbracket)$

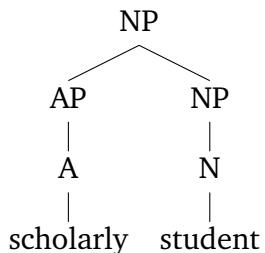
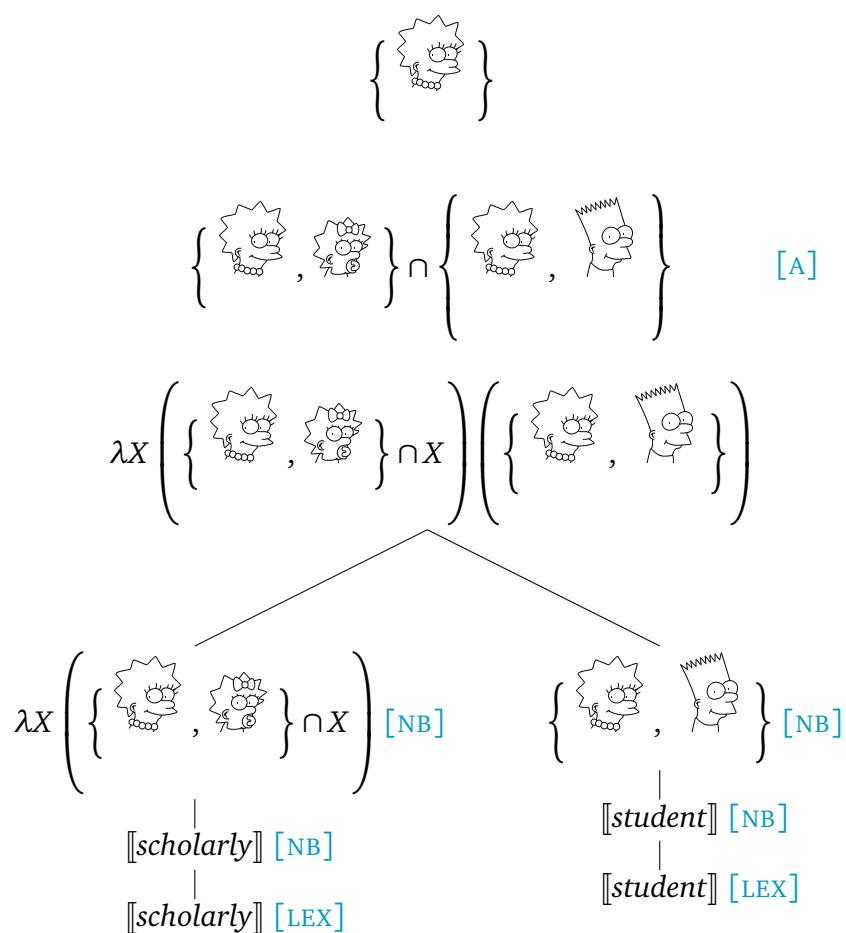
$$\begin{array}{c} S \\ \swarrow \quad \searrow \\ QP \quad VP \end{array}$$

6 Illustrations

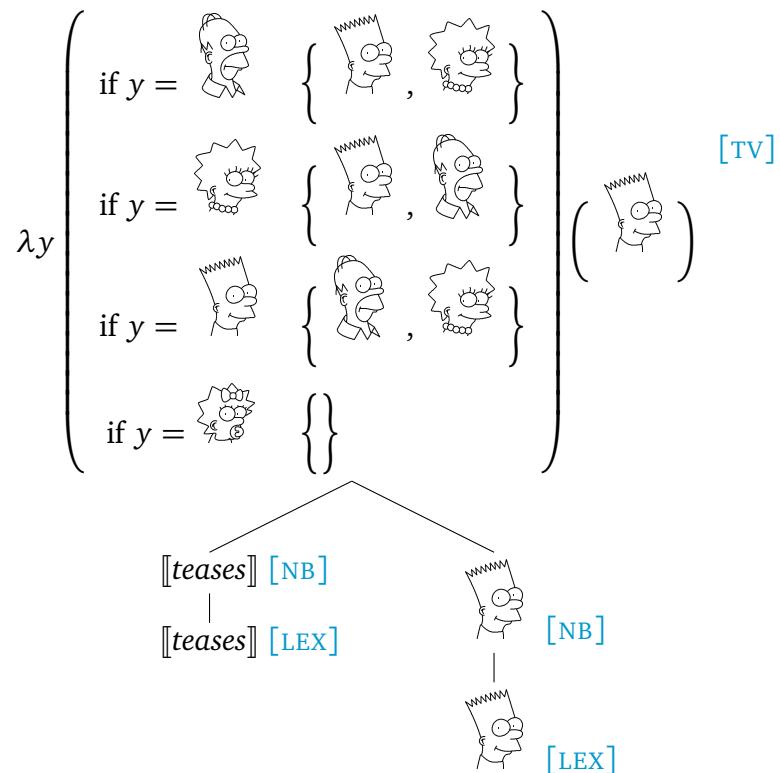
(37)



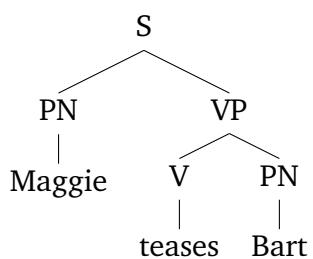
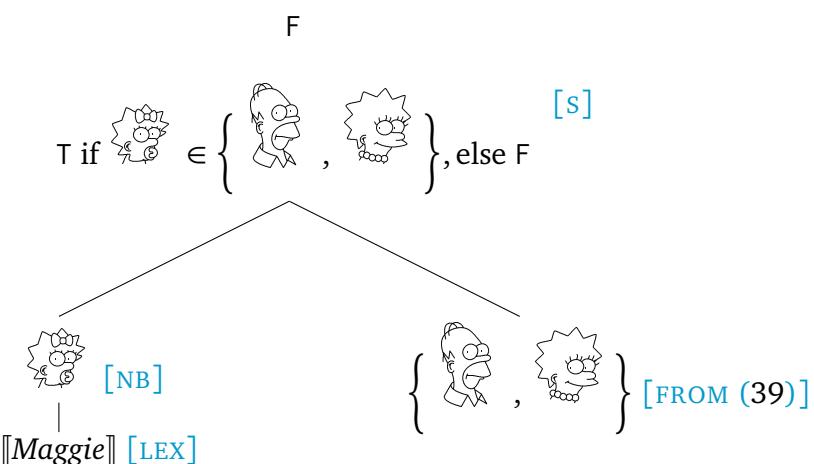
(38)



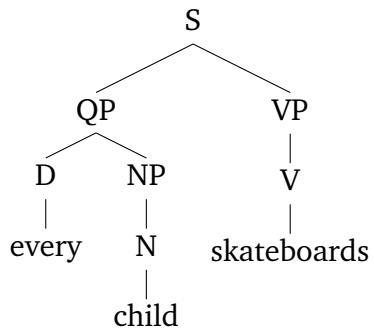
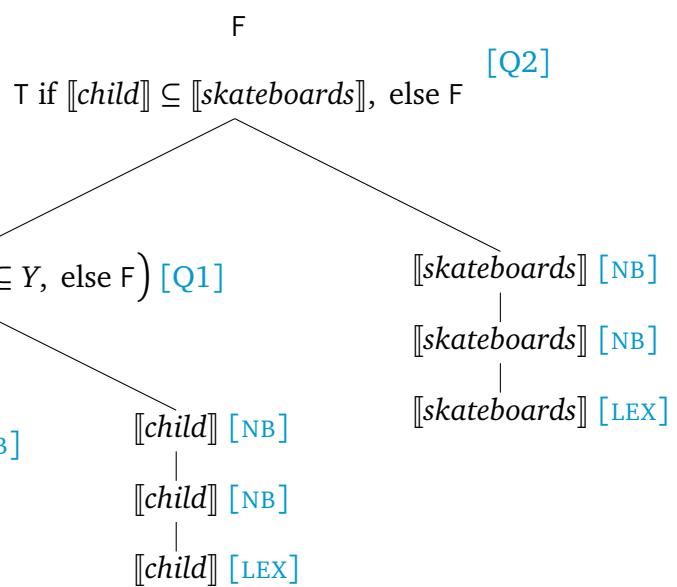
(39)



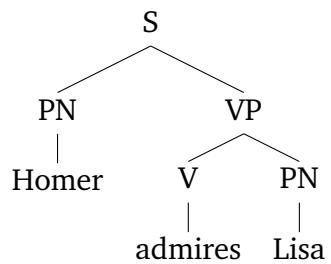
(40)



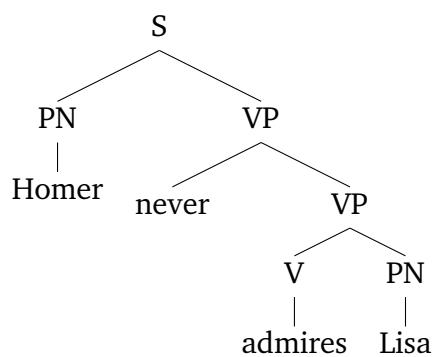
(41)



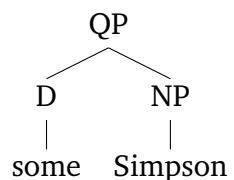
(42)



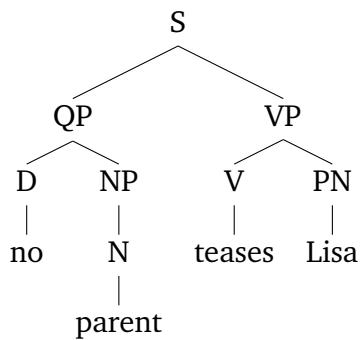
(43)



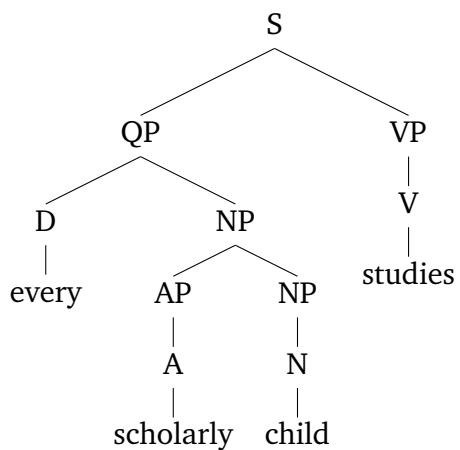
(44)



(45)



(46)



(47)

