

Linguist 130a/230a: section, week 2

1 Basic set-theoretic concepts

1.1 Definitions

- A set is a collection of objects.

A set is notated by {}.

For instance, {Richard Montague} is the set that contains Richard Montague.

Alternatively, we can say that Richard Montague is a member or an element of the set {Richard Montague}.

{ {Richard Montague} } is the set that contains the set that contains Richard Montague.

- Sets can be empty.

The empty set is notated by \emptyset .

While \emptyset is the empty set, $\{\emptyset\}$ is not the empty set.

$\{\emptyset\}$ is the set that contains the empty set.

- A difference in the order of elements in a set doesn't change set identity.

$$\{1, 2, 3\} = \{2, 1, 3\}$$

- As a set is a collection of objects, multiple occurrences of an element don't change set identity either.

$$\{1, 2\} = \{2, 2, 2, 1, 2\}$$

- There are different ways of defining a given set.

We can define a set by enumeration notation, i.e., by enumerating all of its members: $S = \{2\}$

We can also define a set by predicate notation, i.e., by specifying a property for its members in defining the set:

$$S' = \{x: x \text{ is an even prime}\}$$

The above can be read as S' is the set that contains all x such that x is an even prime.

Is $S = S'$?

- To be able to talk about set sizes and comparing them, we introduce the notion of cardinality.

$A = \{1, 2, 3, 4\}$ contains more things than $B = \{1, 2\}$. In other words, A is larger than B .

More specifically, A contains 4 things and B contains 2 things.

Cardinality of a set is notated by $| |$.

In other words, $|\{1, 2, 3, 4\}|$ tells you the set size of $\{1, 2, 3, 4\}$, which is four.

Where $A = \{1, 2, 3, 4\}$, $|A| = 4$.

Where $A = \{1, 2, 3, 4\}$ and $C = \{100, 1000\}$, $|A| > |C|$.

1.2 \in, \subset , and \subseteq relations

- \in notates the membership relation.

If x is a member of a set A , then it is true that $x \in A$.

For the set $\{1, 2\}$, it is true that $1 \in \{1, 2\}$.

\notin notates that \in doesn't hold.

For the set $\{1, 2\}$, it is true that $3 \notin \{1, 2\}$.

- \subseteq notates the subset relation.

For two sets A and B , $A \subseteq B$ iff for all x , if $x \in A$, then $x \in B$.

For the set $\{1, 2\}$, it is false that $1 \subseteq \{1, 2\}$, as 1 is not a set.

However, for sets $\{1\}$ and $\{1, 2\}$, it is true that $\{1\} \subseteq \{1, 2\}$

\subseteq is a reflexive relation. What does this mean? For any set A , it is true for A that $A \subseteq A$.

$\not\subseteq$ notates that \subseteq doesn't hold.

- \subset notates the proper subset relation.

For sets A and B, if $A \subseteq B$ and $B \not\subseteq A$, then $A \subset B$.

Take $\{1, 2\}$ and $\{1\}$. $\{1\} \subseteq \{1, 2\}$, but $\{1, 2\} \not\subseteq \{1\}$. Therefore, $\{1\} \subset \{1, 2\}$.

Is \subset a reflexive relation?

$\not\subset$ notates that \subset doesn't hold.

1.3 Operations on sets

- $\mathcal{P}(A)$ notates the power set of A.

$\mathcal{P}(A)$ is the set that contains all the subsets of A.

If $A = \{1, 2\}$, then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

- $A \cap B$ is the intersection of A and B.

$A \cap B = \{x: x \in A \text{ and } x \in B\}$

Where $A = \{1, 2, 3\}$ and $B = \{1, 2\}$, $A \cap B = \{1, 2\}$.

- $A \cup B$ is the union of A and B.

$A \cup B = \{x: x \in A \text{ or } x \in B\}$

Where $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, $A \cup B = \{1, 2, 3, 4, 5\}$.

- The complement of a set X is the set of all those things that are not in X .

Let the universe be such that it contains the entities, dax, wif, lug, and zug, and nothing else. Let $A = \{\text{dax}, \text{wif}\}$.

Then the complement of A contains lug and zug, notated as $A^C = \{\text{lug}, \text{zug}\}$.

- We can also talk about complements of a set in another set.

Where $A = \{1, 2, 3, 4\}$ and $B = \{2, 3\}$, the complement of B in A, notated by $A - B$, is the set of all things in A that are not in B.

$A - B = \{1, 4\}$.

2 Exercises

- (1) The following sets are represented in the predicate notation. Convert them to the enumeration notation.
 - a. $\{3v: v \text{ is an even prime number}\}$
 - b. $\{z: z \text{ is an integer and } z > 0 \text{ and } z < 10 \text{ and } z^2 \text{ is a prime number}\}$
 - c. $\{z: z \text{ is an integer and } z > 0 \text{ and } z < 5 \text{ and Barack Obama is a former US president}\}$
- (2) The following sets are represented in the enumeration notation. Convert them to the predicate notation.
 - a. $\{1, 2, 3, 4\}$
 - b. $\{2, 3, 5, 7\}$
 - c. $\{\text{Barack Obama, Donald Trump, Joe Biden}\}$
- (3) Calculate the cardinality of each of the following sets:
 - a. $\{1, 2, 3, 4\}$
 - b. $\{1, 2, \{3, 4\}, 0\}$
 - c. \emptyset
 - d. $\{\emptyset\}$
 - e. $\{\{1, 2\}\}$
 - f. $\{\{1, 2, \{3, 4\}, 5\}, \{6, 7\}, 8\}$
 - g. $\{3v: v \text{ is an even prime number}\}$
- (4) Let A be an arbitrary set. Are the following always true?
 - a. $\emptyset \subset A$
 - b. $\emptyset \subseteq A$
 - c. $\emptyset \in A$
 - d. $A = \{y : y \in A\}$
 - e. $A = \{y : y \subseteq A\}$
- (5) Write out the power set of each of the following sets:
 - a. $\{1, 2\}$
 - b. $\{1, 2, \{3, 4\}, 0\}$
 - c. \emptyset
 - d. $\{\emptyset\}$
- (6) Calculate the following, writing out the answers in enumeration notation:

- a. $\{1, 0, 3\} \cup \{1, 2, 3\}$
- b. $\{1, 0, 3\} \cap \{2, 4\}$
- c. $\{0, 1, 5\} - \{0, 1\}$
- d. $\{0, 1, 5\} - \{2, 5, 8\}$
- e. $\{y: y \text{ is not } 3\}^C$

(7) Suppose $A - B = \emptyset$. Are the following statements true?

- a. $A \cup B = B$
- b. $A \cap B = A$