1.) We seek c, d so that

$$(a + bi)(c + di) = (ac - bd) + (ad + bc)i = 1 + 0i.$$

Thus we solve the linear system:

$$ac - bd = 1, \quad bc + ad = 0$$

for c and d. Manipulation yields $(a^2 + b^2)d = -b, (a^2 + b^2)c = a$ so

$$c + di = \frac{a}{a^2 + b^2} - i \frac{b}{a^2 + b^2}.$$

You may recognize this as the complex conjugate of $a + bi$ divided by the square of the norm.

3.) Both v and $-(-v)$ are the additive inverse of $-v$. Since additive inverses are unique, we have that $v = -(-v)$ (proposition 1.3).

4.) If $a \neq 0$ then we can write

$$0 = \frac{1}{a} 0 = \frac{1}{a} (av) = \left(\frac{1}{a} \cdot a \right) v = 1 \cdot v = v.$$

It follows that either $a = 0$ or $v = 0$.

5.) In each case, call the set in question U.

 a. This is a subspace. We have $0 = \{0,0,0\} \in U$ since $1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 = 0$. Also if $x = \{x_1, x_2, x_3\}$ and $y = \{y_1, y_2, y_3\}$ are two elements of U, and α is a scalar then $x + y = \{x_1 + y_1, x_2 + y_2, x_3 + y_3\}$ satisfies $(x_1 + y_1) + 2(x_2 + y_2) + 3(x_3 + y_3) = (x_1 + 2x_2 + 3x_3) + (y_1 + 2y_2 + 3y_3) = 0 + 0 = 0$ and similarly, $\alpha x = \{\alpha x_1, \alpha x_2, \alpha x_3\}$ satisfies $\alpha x_1 + 2\alpha x_2 + 3\alpha x_3 = \alpha (x_1 + 2x_2 + 3x_3) = \alpha \cdot 0 = 0$. Thus $x + y, \alpha x \in U$ so U has 0 and is closed under addition and scalar multiplication.

 b. This is not a subspace because it is not closed under scalar multiplication. Indeed $\{4,0,0\} \in U$ but $2 \cdot \{4,0,0\} = \{8,0,0\} \not\in U$. In fact, this set fails the other two conditions for a subspace as well.

 c. This is not a subspace because it is not closed under addition. For example, $\{1,0,0\} \in U$ and $\{0,1,1\} \in U$ but $\{1,0,0\} + \{0,1,1\} = \{1,1,1\} \not\in U$.

1
d. This is a subspace. It has 0 since \(\{0,0,0\} \) satisfies 0 = 5 \cdot 0. If \(x = \{x_1,x_2,x_3\} \) and \(y = \{y_1,y_2,y_3\} \) satisfy \(x_1 = 5x_3, y_1 = 5x_3 \) then \(x + y = \{x_1+y_1,x_2+y_2,x_3+y_3\} \) satisfies

\[
(x_1 + y_1) = (5x_3 + 5y_3) = 5(x_3 + y_3)
\]

as well, so \(U \) is closed under addition. Moreover, if \(\alpha \) is some constant, then \(\alpha x = \{\alpha x_1, \alpha x_2, \alpha x_3\} \) satisfies \(\alpha x_1 = \alpha(5x_3) = 5(\alpha x_3) \) and so \(U \) is closed under scalar multiplication.

8.) Write \(U = \bigcap_c U_c \) where \(U_c \) is a collection of subspaces. Since each \(U_c \) is a subspace, each has 0, and thus 0 is in their intersection. Take \(x, y \in U \) and a scalar \(\alpha \). Then \(x, y \in U_c \) for each \(c \). Since \(U_c \) is closed under addition and scalar multiplication, \(x + y, \alpha x \in U_c \) for each \(c \). Thus \(x + y \) and \(\alpha x \) are contained in \(U \) and \(U \) is closed under addition and scalar multiplication.

9.) We first prove that if \(U \subset W \) are subspaces of \(V \) then \(U \cup W \) is a subspace of \(V \). Indeed, \(U \cup W = W \), and this is a subspace.

To prove the reverse implication, suppose that \(U \) and \(W \) are subspaces so that \(U \not\subset W \) and \(W \not\subset U \). We’ll show that \(U \cup W \) is not a subspace. The fact \(U \not\subset W \) implies there is an element \(u \in U \) not in \(W \). Similarly, \(W \not\subset U \) implies there exists \(w \in W \) but not in \(U \). Since \(u \in U, w \in W \) we have \(u, w \in U \cup W \). But \(u + w \) is not in \(U \) or else additive closure would imply \((u + w) - u = w \in U \), a contradiction. Similarly, \(u + w \in W \) would force \(u \in W \), another contradiction. Thus \(u + w \) is not in either \(U \) or \(W \) and hence is not in their union. This proves that \(U \cup W \) is not a subspace since it is not closed under addition.

10.) We’ll show \(U + U = U \). Take \(w \in U + U \). Then \(w \) may be written \(w = u_1 + u_2 \) where \(u_1, u_2 \in U \). Since \(U \) is closed under addition, \(w \in U \) and it follows \(U + U \subset U \). To see the reverse inclusion, observe that for all \(u \in U \), \(0 \in U \) implies \(u + 0 = u \in U + U \). This proves \(U \subset U + U \) so \(U = U + U \).

13.) We provide a counterexample. Let \(V \) be the real vector space \(\mathbb{R}^1 \), \(U_1 \) be the (trivial) subspace \(\{0\} \) and \(U_2 = W = \mathbb{R}^1 \). Any real number can be written as the sum of zero and itself, so \(U_1 + W = \mathbb{R}^1 = U_2 + W \).

14.) Define \(W = \left\{ \sum_{j=0}^{n} a_j z^j : n \geq 6; a_j \in \mathbb{F}; \text{ and } a_2 = a_5 = 0 \right\} \). We show that \(W \) is a subspace of \(\mathcal{P}(\mathbb{F}) \) and \(\mathcal{P}(\mathbb{F}) = U \oplus W \). Take any \(n \) and \(a_j = 0 \) for all \(j \) to see that \(0 \in W \). Suppose \(p_1(z) = \sum_{j=1}^{n} a_j z^j \), and \(p_2(z) = \sum_{j=1}^{m} b_j z^j \) are two elements of \(W \) and hence have \(a_2 = a_5 = b_2 = b_5 = 0 \). Choose \(M \geq \max(m,n) \). Then setting \(a_i = 0 \) for \(i > n \), \(b_j = 0 \) for
\[j > m, \text{ we have} \]

\[p_1(z) + p_2(z) = \sum_{i=0}^{M} a_i z^i + \sum_{j=0}^{M} b_j z^j = \sum_{k=0}^{M} (a_k + b_k) z^k. \]

In this polynomial, \(a_2 + b_2 = a_5 + b_5 = 0 \). Thus \(p_1(z) + p_2(z) \) is a polynomial in \(W \). Again, for \(\alpha \) a constant, \(\alpha p_1(z) = \alpha \sum_{i=1}^{n} a_i z^i = \sum_{i=1}^{n} (\alpha a_i) z^i \). We know \(\alpha a_2 = \alpha a_5 = 0 \) so \(\alpha p_1(z) \) is a member of \(W \) and \(W \) is closed under scalar multiplication.

It remains to show \(\mathcal{P}(F) = U \oplus W \). Take \(p(z) = \sum_{j=0}^{n} a_j z^j \in \mathcal{P}(F) \). Then

\[p(z) = (a_2 z^2 + a_5 z^5) + \sum_{j \neq 2,5, j \leq n} a_j z^j. \]

This expresses \(p \) as the sum of a polynomial in \(U \) and a polynomial in \(W \) so \(U + W = \mathcal{P}(F) \). Moreover, suppose that \(0 = p_1(z) + p_2(z) \) with \(p_1 \in U, p_2 \in W \). Then the sum \(p_1 + p_2 \) is a polynomial with all coefficients zero. The only contributions to the coefficients on \(x^2 \) and \(x^5 \) come from \(p_1 \) and so these are zero. The only contribution to other coefficients come from \(p_2 \) and these are also zero. It follows that \(p_1 = p_2 = 0 \) and this proves that the sum \(U + W \) is direct (proposition 1.8).