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Rootfinding
Bisection method

Guiding question How can I solve an equation? In particular, given a function
f , how can I find x such that f(x) = 0?

Definition 1. A zero or a root of f is an element x in the domain of f such that
f(x) = 0.

Remark 1. Note that the problem of solving an equation f(x) = a reduces to finding
a root of g(x) = f(x)−a. In the general case both x and f are vector-valued (systems
of equations) but for now we’ll focus on scalar-valued functions of a single var.

The most interesting case in our course is made un by functions which cannot be
solved for analytically.

Example 2. (Vander Waals equations) Recall from introductory chemistry the ideal
gas law PV = nRT used to model ideal gases. Real gases are in fact not fully
compressible and there are attractive forces among their molecules, so a better model
for their behavior is

!
P +

n2a

V 2

"!
V − nb

"
= nRT, (1)

where a and b are correction terms. In a lab, suppose 1 mol of chlorine gas has a pres-
sure of 2 atm and a temperature of 313K, for chlorine, a = 6.29 atm L2/mol2, b =
0.0562L/mol. What is the volume?

We can’t just “isolate” V . (Granted, in this simple case we obtain a low-degree
polynomial in V and there are special methods for finding their roots. In this special
case, the cubic formula will suffice.)
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https://mathworld.wolfram.com/CubicFormula.html


Bisection Method (Enclosure vs fixed point iteration schemes).
A basic example of enclosure methods: knowing f has a root p in [a, b], we “trap”

p in smaller and smaller intervals by halving the current interval at each step and
choosing the half containing p.

Our method for determining which half of the current interval contains the root
p is based on the intermediate value theorem.

Theorem 3 (IVT). Let f be a continuous function on [a, b] and let k be any number
between f(a) and f(b). Then there exists c in (a, b) such that f(c) = k.

Informally, “A continuous function on an interval achieves all values between its
values at the end points.”

What does the IVT tell us about root finding?
Consider sgn(f(a)f(b)). If f(a)f(b) < 0, what can you say?

Remark 2. Note that the same conclusion holds regardless of the magnitude of f(a)
and f(b): only the sign of their product matters.

Example 4. f(x) = x3 + 2x2 − 3x = 1

f(−3) = −1, f(−1) = 3, f(1) = −1

f(−2) = 5, f(0) = −1, f(2) = 9.

Draw a picture! See Figure 1.

The Method Begin with an interval [a, b] such that f(a) · f(b) < 0. Find p =
(a + b)/2. Test wether f(a) · f(p) < 0. If so, then f has a root in [a, p]. Make [a, p]
the new interval and repeat the process. If not, then f(a) and f(p) have the same
sign and therefore we are guaranteed that f(p)f(b) < 0 (since f(a) and f(b) have
opposite signs), which then implies f has a root in [p, b].

Make this the new interval and repeat the process. Generate a sequence of interval
[an, bn] each guaranteed to contain a root of f and at each step use the approximation

pn =
an + bn

2
(2)

of the enclosed root. Stop when pn is “close enough” to a root of f in p.
The following example might suggest how to devise a stopping condition.

Example 5. Square root via bisection.
f(x) = x2 − 2, start with [0, 2]
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Figure 1: f(x) = x3 + 2x2 − 3x− 1

1. Note f(0) · f(2) = (−2)(2) = −4 < 0, so f indeed has a root in [0, 2] by IVT.
Set p1 = 1 and notice f(0) · f(1) = (−2)(−1) > 0, so choose [a2, b2] = [1, 2].

2. Set p2 = 1+2
2

= 3
2

and notice f(a2) · f(p2) = (−1)(9
4
− 2) = −1

4
< 0 so choose

[a3, b3][1,
3
2
].

3. Set p3 =
1+ 3

2

2
= 5

4
and notice f(a3) · f(p3) = (−1)(25

16
− 2) = 7

32
> 0, so choose

[a4, b4] = [5
4
, 3
2
].

4. Now p4 =
5
4
+ 3

2

2
= 11

8
= 1.375 . . .

Note that at iteration n our root approximation pn is contained in an interval
[an, bn] that is half the size of the previous interval [an−1, bn−1]. Are we guaranteed
convergence? If so in which cases?

Theorem 6. Let f be a continuous function on [a, b] and suppose that f(a)·f(b) < 0.
Then the bisection method generates a sequence of iterates pn which converges to a
root p ∈ (a, b) with the property that

|pn − p| ≤ b− a

2n
. (3)
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Figure 2: Bracketing f(x) = x2 − 2 on [0, 2]

Remark 3.

1. Note conclusion: pn converges to a root of f . If there are multiple roots in
(a, b), we can’t a priori know to which one pn will converge.

2. We get a theoretical error bound, |pn − p|, which can be helpful to eradicate
bugs when coding.

3. Method cannot be used for locating roots of even multiplicity.

Definition 7. A root p of the equation f(x) = 0 is said to be of multiplicity m if f
can be written as f(x) = (x− p)mq(x), with limx→p q(x) ∕= 0.

Equivalently, p is of multiplicity m if f(p) = f ′(p) = · · · = f (m−1)(p) = 0 and
f (m)(p) ∕= 0 (assuming f is a smooth function).

We’ll say more about multiplicity in the coming lectures.
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Proof. We need only establish the error bound to prove convergence, since b−a
2n

→ 0
as n → ∞.

By construction of the method, at each step we are guaranteed p ∈ (an, bn), and
pn is the midpoint of (an, bn). This implies

|pn − p| ≤ bn − an
2

. (4)

However,

bn − an =
1

2
(bn−1 − an−1)

=
1

2
· 1
2
(bn−2 − an−2)

· · ·

=
1

2n−1
(b1, a1).

The convergence theorem suggests the stopping criterion (bn − an)/2 < !. Since
the absolute error |pn−p| is guaranteed to be no larger than (bn−an)/2, this stopping
criterion guarantees the root approximation p is no further than ! from p. That is,
if we stop iterating when

bn − an
2

< !,

we are guaranteed that |pn − p| < !.
Thus we obtain the following procedure.

Pseudocode
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Algorithm 1 Bisection Method
Given f, [a, b], !, Nmax

sfa ← sign(f(a))
for i ← 1 to Nmax do
p ← (a+ b)/2
if (b− a)/2 < ! then

return p
end if
sfp ← sign(f(p))
if sfa · sfp < 0 then
b ← p

else
a ← p
sfa ← sfp

end if
end for
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