Interpolation Examples

Willie A.

Lagrange Polynomials

1. (Lagrange Polynomials, Bradie 5.2.) Consider the following seven (n = 6) interpolating
points:

o = 00, 1 = 1.6, Lo = 38, T3 = 4.5, T4 = 63, Ty = 9.2, T = 10.0.

Based on these points, two of the Lagrange basis polynomials
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Le,i(P) = H <(P_I]))
gm0 T T
I B z(z — 3.8)(x — 4.5)(x — 6.3)(z — 9.2)(x — 10.0)
6.1(@) = (1.6)(1.6 — 3.8)(1.6 — 4.5)(1.6 — 6.3)(1.6 — 9.2)(1.6 — 10.0)’
Los(x) z(z —1.6)(x — 3.8)(x — 6.3)(z — 9.2)(x — 10.0)
6,3\T

T 45(45—1.6)(4.5 — 3.8)(4.5 — 6.3)(4.5 — 9.2)(4.5 — 10.0)°

These two polynomials are plotted in Figure 1. The positions of the interpolating points are
denoted by .

Note the large amplitude oscillations present in Figure 1. This behavior is characteristic of
high-degree polynomials and tends to get worse as the degree of the polynomial is increased.
This suggests that in many cases merely increasing the number of interpolating data points
may worsen the approximation error at certain points.

Moreover, the plot tells a cautionary tale. Whenever high-degree polynomials are used for
interpolation, some sort of consistency check is required. This could involve plotting the data
points on the same axes as the interpolating polynomial, for visual verification. Alternatively,
one could split the data set, use a portion for building the interpolating polynomial (“training”
the model) and then use the reserved data points to measure interpolation accuracy (“testing”
the model).

2. (Interpolation from thermodynamic tables, Bradie 5.1 and 5.53.) A thermodynamics student
needs to determine whether Freon-12 under a pressure of P = 400 kPa and with specific
volume (volume per unit mass) of v = 0.042 m?/kg is in a saturated or a superheated state.
The answer to this question depends upon how the specific volume of v = 0.042 m3/kg
compares with the specific volume of saturated Freon-12 vapor, vg, at a pressure of 400kPa.



Figure 1: Two Lagrange polynomials defined by the given sequence of interpolating points.
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If the given vapor pressure is below v, then the Freon-12 is in a saturated state; otherwise it
is in a superheated state.

The available thermodynamic tables (Table A.2.3 of Fundamentals of Classical Thermody-
namics by Van Wylen and Sonntag) provide the following values for the specific volume of
saturated Freon-12 vapor as a function of pressure:

Pressure (kPa) | 3086 | 3626 | 4233 | 4914 |
vy (m®/kg) [ 0.055389 | 0.047485 | 0.040914 | 0.035413 |

Using the four (n = 3) data points, we can form a third-degree Lagrange interpolating
3
P—x,
functions, as a linear combination of the appropriate basis Ls ;(P) = H ((J>), for
e T =Ty
J=0,j#i



¢=0,1,2,3 and z; taken from the table. By definition, and using the above data, we have:

(P—l’l)(P—lL'Q)(P—xg)

Lso(P) = (w0 — @1) (w0 — @2) (20 — 3)
(P — 362.6)(P — 423.3)(P — 491.4)
~(308.6 — 362.6)(308.6 — 423.3)(308.6 — 491.4)
(P —362.6)(P — 423.3)(P — 491.4)
B (—54)(—114.7)(—182.8)
(P — o) (P — @2)(P — x3)
Lsa(P) (21— xo)(x1 — w2) (21 — w3)
(P —308.6)(P — 423.3)(P — 491.4)
N (362.6 — 308.6)(362.6 — 423.3)(362.6 — 491.4)
_ (P —308.6)(P —423.3)(P — 491.4)
(54)(—60.7)(—128.8)
(P — o) (P — 21)(P — x3)
LoalP) = (w2 — @) (22 — @1) (22 — 73)
(P —308.6)(P — 362.6)(P — 491.4)
(423.3 — 308.6)(423.3 — 363.6)(423.3 — 491.4)
(P — 308.6)(P — 362.6)(P — 491.4)
(114.7)(60.7)(—68.1)
Lys(P) = (P — o) (P — 21)(P — x2)

(z3 — z0) (23 — 21)(23 — T2)
(P — 308.6)(P — 362.6)(P — 423.3)
T (491.4 — 308.4)(491.4 — 362.6)(491.4 — 423.3)
(P — 308.6)(P — 362.6)(P — 423.3)
(182.8)(128.8)(68.1)

Then, the interpolation polynomial is given by:

vg(P) = yiLsi(P)
=0

(P — 362.6)(P — 423.3)(P — 491.4) (P — 308.6)(P — 423.3)(P — 491.4)

T (en(ian(-1szy) O (54)(—60.7)(—128.8) +0-047485
(P — 308.6)(P — 362.6)(P — 491.4) (P — 308.6)(P — 362.6)(P — 423.3)
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The interpolating polynomial, plotted in Figure 2, clearly provides a plausible representation
of the data. Using this polynomial, we find the specific volume of saturated Freon-12 vapor at
a pressure of 400kPa by evaluating v,(400) = 0.043199 m?/kg, thereby solving the problem
at hand.



Figure 2: Third-degree interpolating polynomial for specific volume as a function of absolute pres-
sure. Data points used to construct the interpolation are denoted by .
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3. (Emittance of Tungsten as Function of Temperature.) The table below gives experimental
values for the emittance of tungsten as a function of temperature.

Temperature (10°K) | 3 | 4 | 5 | 6 | 7 | 8 | 9 [ 10 | 11 |
Emittance 0.024 [ 0.035 | 0.046 | 0.058 | 0.067 | 0.083 [ 0.097 | 0.111 | 0.125

The eighth-degree Lagrange interpolant is plotted in Figure 3. Note the oscillating behavior
of the polynomial, in the ranges 300 — 500K and 900 — 1100K. As mentioned in a previous
example, this behavior is typical of high-degree interpolations and does not seem to be very
consistent with the underlying given data. The use of a spline interpolant (piecewise low-
degree polynomial) would be advisable for this problem.

4. (Runge’s function) Consider the problem of interpolating Runge’s function

1

I =10

in the interval [—5,5]. We choose 11 equally spaced points in the interval and form the
Lagrange form of the interpolating polynomial using MATLAB. Refer to the code below for
a very naive O(n®) implementation. For a more efficient implementation, please refer to the
barycentric interpolation method discussed in lecture. Our results are plotted in Figure 4.

n = 50;
> N = 1001;



Figure 3: Eighth-degree interpolating polynomial for emittance of tungsten as a function tempera-
ture. Each data point used to construct the interpolating function is denoted by x.
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1+ %Plot true function:
5 x = linspace (—=5,5,N);
6 y-true = 1./(14x.72);
7 plot(x, y_true, '—r’)
s hold on

10 %a) Lagrange polynomial with equally spaced points:
u xi = linspace(—=5,5,n);

12 fiZl./(l—I—Xi.AZ);

13 y_equal = zeros(1,N);

1 for jzllN

15 for i=1:n

16 L = 1;

17 for k=1:n

18 if k“=i

o L = La(x(j)—xi (k) /(xi (i)=xi (k)
20 end

21 end

22 y-equal(j) = y-equal (j)+fi(i)=L;
23 end

24 end

»s plot (x,y-equal, '—b")



26 xlabel( ’XH)
ylabel ("f(x) ")
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Figure 4: Tenth-degree polynomial interpolating Runge’s function. Abscissas and corresponding

function values are marked by red circles.
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Note the wild oscillations of the interpolating polynomial at the edges of the interval. This is
characteristic of high-degree polynomial interpolants, and precisely the issue which piecewise

(spline) interpolants aim to resolve!



