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Notes on Newton-Cotes quadrature

We begin by noting that a quadrature rule is an approximation of the form

! b

a

f(x)dx ≈
"

j

wjfj,

where fj = f(xj) and the sum is taken over a finite index. Therefore, to specify a
quadrature, we must provide a list of points (formally termed abscissas) xi ∈ [a, b]
and a set of weights wj.

Remark. This problem is analogous to the numerical differentiation problem we just
discussed. In that case, we sought coefficients αj such that

f ′(xi) ≈
"

j

αjfj.

Since the problems are so similar, we will in fact approach them the same way (at
first).

First we discuss the general non-composite Newton-Cotes (NC) quadrature rule.
This rule is based on polynomial interpolation. To define it, we choose n+ 1 points
in [a, b] as our nodes xj, and then integrate the corresponding Lagrange basis poly-
nomials Ln,j(x) to produce the weights wj.

Remark. This is exactly analogous to what we did when studying finite differences!
In that case we used

f ′(x) ≈ p′(x)

In this case we’ll use ! b

a

f(x)dx ≈
! b

a

p(x)dx.



For simplicity, we typically choose evenly-spaced points, so that xi+1−xi = h, for
all i and some h > 0. There are two classes of NC rules, corresponding to different
placements of x0 in [a, b]. The closed NC formulas use the endpoints a, and b as the
first and last points. Thus, for these rules we take h = (b − a)/n and choose our
points to be xi = a+ ih, for i = 0, 1, . . . , n.

The open NC rules do not include the endpoints of the interval but they place
the first and last point so that they are also at a distance h from the endpoints.
Therefore, in this case we take h = (b− a)/(n+ 2) and choose xi = a+ (i+ 1)h, for
i = 0, 1, . . . , n.

In any case, as mentioned above, we derive the weights for the NC rules via
polynomial interpolation:
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=
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where the second equality follows by linearity of the integral, with wj =
% b

a
Ln,j(x)dx.

Remark. This conclusion is exactly analogous to that in the finite difference case.
In that case we obtained

f ′(xi) ≈ p′(xi) =
n"

j=0

dijfj,

with dij = L′
n,j(xi).

In this case we conclude
! b

a

f(x)dx ≈
! b

a

p(x)dx =
n"

j=0

wjfj,

with wj =
% b

a
Ln,j(x)dx.

So in both cases we approximate the desired quantity by a weighted sum of
function values, and performing the appropriate operation on the Lagrange basis
polynomials gives us the right weight.



Given this, in order to specify an NC quadrature we must:

• Decide whether it is open or closed

• Determine n+ 1, the number of points (abscissas)

• Compute wj =
% b

a
Ln,j(x)dx, where Ln,j denotes the jth Lagrange basis poly-

nomial.

In practical settings, the substitution x = a + th greatly simplifies the weights
computation. For example, consider the closed NC rule with n = 2. In this case
h = (b − a)/2 and the three nodes are x0 = a, x1 = a + h = (a + b)/2, and
x2 = a+ 2h = b. Therefore, the weights are given by
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In this case the NC rule simplifies to the familiar Simpson’s rule from calculus (see
below): ! b

a

f(x)dx ≈ h

3

'
f(a) + f

#
a+ b

2

$
+ f(b)

(
.

Remark. You may perhaps remember that Simpson’s rule is derived by finding the
area under the quadratic passing through the points (a, f(a)), ((a + b)/2, f((a +
b)/2)), (b, f(b)). This is the quadratic which interpolates f at the mid- and endpoints
of the interval, and by our uniqueness result this is exactly

)
j fjLn,j(x)! (The

Lagrange basis simply gives us another way of looking at the same quadratic.)
Analogous comments apply to the trapezoidal rule, and we see that the NC rules

generalize the integration rules we’ve seen before.

For completeness, we provide below formulas for some commonly used NC quadra-
ture rules.

We begin with four closed rules.

• The case n+ 1 = 1 yields the left endpoint rule. The corresponding quadra-
ture is simply

% b

a
f(x)dx ≈ (b− a)f(a).

• The case n+1 = 2 yields the trapezoidal rule. The corresponding quadrature

is
% b

a
f(x)dx = b−a

2
(f(a) + f(b))− (b−a)3

12
f ′′(ξ), for some ξ ∈ [a, b].

• The case n + 1 = 3 yields Simpson’s rule. The corresponding quadrature is% b

a
f(x)dx = b−a

6
(f(a) + 4f(a+b

2
) + f(b))− (b−a)5

2880
f (4)(ξ), for some ξ ∈ [a, b].

• Finally, the case n + 1 = 4 yields the three-eights rule. The corresponding
quadrature is

% b

a
f(x)dx ≈ b−a

8
(f(a) + 3f(a+ h) + 3f(a+ 2h) + f(b)).

Next, we provide formulas for three open rules.

• The case n + 1 = 1 yields the midpoint rule. The corresponding quadrature

is simply
% b

a
f(x)dx = (b− a)f(a+b

2
) + (b−a)3

24
f ′′(ξ), for some ξ ∈ [a, b].

• In the case n + 1 = 2 the corresponding quadrature is
% b

a
f(x)dx = b−a

2
(f(a +

h) + f(a+ 2h)) + (b−a)3

36
f ′′(ξ), for some ξ ∈ [a, b].

• In the case n+1 = 3 the corresponding quadrature is
% b

a
f(x)dx ≈ b−a

3
(2f(a+

h)− f(a+ 2h) + 2f(a+ 3h)).

https://en.wikipedia.org/wiki/Simpson%27s_rule
https://en.wikipedia.org/wiki/Trapezoidal_rule


To conclude, we comment on the degree of precision of the NC quadratures. The
degree of precision (DOP) of a quadrature rule is the largest integer k such that

! b

a

p(x)dx =
n"

i=0

wip(xi)

for every polynomial p(x) of degree at most k. That is, the DOP of a quadrature
is the largest integer k such that the quadrature can integrate all polynomials of
degree at most k exactly: for these p, the quadrature rule gives the exact value of
the integral.

As stated precisely in the theorem on page 464 of the textbook, the DOP of the
NC quadrature (open or closed) with n + 1 abscissas is n + 1 if n is even and n
otherwise.

Lastly, when n is even, there exists a ξ ∈ [a, b] such that the absolute error is
proportional to (b− a)n+3f (n+2)(ξ) and when n is odd, there exists a ξ′ ∈ [a, b] such
that the error is proportional to (b− a)n+2f (n+1)(ξ′).

Finally, we move to composite NC quadratures. Composite NC rules are derived
from non-composite rules simply by partitioning the interval of interest [a, b] into
a number of subintervals applying the non-composite rule on each subinterval and
then summing the results.

For completeness, we provide a couple formulas for composite NC quadrature
rules.

• The composite trapezoidal rule is given by
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f(x)dx =
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f(xj) + f(b)

$
− (b− a)h2

12
f ′′(ξ),

for some ξ ∈ [a, b], with h = (b− a)/n and xj = a+ jh.

• The composite Simpson’s rule is given by
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f(x)dx =
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f(x2j) + f(b)
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f (4)(ξ),

for some ξ ∈ [a, b], with n = 2m, h = (b− a)/n and xj = a+ jh.

Note that whereas the composite trapezoidal rule has rate of convergence O(h2),
the composite Simpson’s rule has rate O(h4).


