
CME 108/MATH 114
Introduction to Scientific Computing
Summer 2020

Spline Interpolation

We’ve approached the interpolation problem by choosing (high-degree) polyno-
mials for our basis functions φi : f(x) =

!n
j=0 cjφj(x). This approach can be efficient

(recall the barycentric form of the Lagrange interpolant), but using high degree poly-
nomials can lead to large errors due to erratic oscillations, especially near the interval
endpoints.

To mediate this, we’ll try a different approach. We’ll break up the interval over
which the data is defined into small pieces, and we’ll use a low-degree polynomial
interpolant over each piece!

Piecewise polynomial interpolation To begin, we’ll consider the simplest case:
piecewise linear interpolants (used by MATLAB when plotting).

y

x

m0 m1 m2

slopes in each
interval

Figure 1: Piecewise linear interpolation

To find this interpolant we need only find the line between each pair of adjacent
points on each interval,

1

s0(x) = f(x0) +m0(x− x0), x0 ≤ x ≤ x1 (1)
s1(x) = f(x1) +m1(x− x1), x1 ≤ x ≤ x2 (2)

... (3)
sn−1(x) = f(xn−1) +mn−1(x− xn−1), xn−1 ≤ x ≤ xn (4)

and note that the slope in [xi, xi+1] is given by mi =
f(xi+1)−f(xi)

xi+1−xi

In this linear case the formula for each piece follows simply from the point-slope
form of a line. However, we can gain insight from its structure.

Remark 0.0.1. On each subinterval [xi, xi+1], for i = 0, 1, . . . , n − 1, the piecewise
polynomial interpolant s coincides with the linear polynomial

s(x) = si(x) = ai + bi(x− xi),

with

ai = f(xi), bi =
f(xi+1)− f(xi)

xi+1 − xi

The values of ai follow from the interpolation requirement (s(xi) = si(xi) =
f(xi)), and the values of bi follow from the (so far implicit) requirement that s be
continuous, which we can express as si(xi+1) = si+1(xi+1), i = 0, 1, . . . , n− 2

Let’s use this insight and consider the popular cubic case (quadratic case is de-
veloped in HW5).

Cubic Spline Mimicking the form of the piecewise linear interpolant, in this case
we require that on each subinterval [xi, xi+1] the piecewise interpolant s satisfies

s(x) = si(x) = ai + bi(x− xi) + ci(x− xi)
2 + di(x− xi)

3,

where ai, bi, ci, and di are coefficients to be determined. Since for n + 1 given
points there are n pieces, there are 4n coefficients in total. Our best bet then is
to impose 4n constraints and hope the resulting system is linear (in this case it’s
possible that the solution to the system is unique, if it exists).

2

Conditions

1. Interpolation: s(xi) = si(xi) = f(xi), i = 0, 1, . . . , n − 1, AND sn−1(xn) =
f(xn).

(n+ 1 conditions here)

2. Continuity: si(xi+1) = si+1(xi+1), i = 0, 1, . . . , n − 2 (holds at interior points,
gives n− 1 conditions).

These are the same as in the linear case. We need more conditions so we can
ask for more! A drawback of piecewise linear interpolation is that it is not
differentiable, so here we ask for smoothness:

3. Continuity of s′ at interior points:

s′i(xi+1) = s′i+1(xi+1), i = 0, 1, . . . , n− 2

(n-1) conditions

4. Continuity of s′′ at interior points:

s′′i (xi+1) = s′′i+1(xi+1), i = 0, 1, . . . , n− 2

(n-1) condition

This gives 3(n− 1) + (n + 1) = 4n− 2 condition in total, so we need two more.
These are boundary conditions, and there are different kinds (see below).

Before we specify the additional conditions, let’s write out our system and ma-
nipulate it to obtain formulas for ai, bi, ci, di:

1. (Interpolation)

ai = ai + bi(xi − xi) + ci(xi − xi)
2 + di(xi − xi)

3 (5)
= si(xi) (6)
= f(xi), i = 0, 1, . . . , n (7)

Remark 0.0.2. Here we extend our previous notation and use an = f(xn), to
simplify our derivation below

2. (Continuity)

ai + bihi + cih
2
i + dih

3
i = si(xi+1) = si+1(xi+1) = ai+1, (8)

for i = 0, 1, . . . , n− 2 with hi = xi+1 − xi.

3

3. (Continuity of s′)

bihi + 2cihi + 3dih
2
i = s′i(xi+1) = s′i+1(xi+1) = bi+1, (9)

for i = 0, 1, . . . , n− 2.

4. (Continuity of s′′)

2cihi + 3 · 2dihi = s′′i (xi+1) = s′′i+1(xi+1) = 2ci+1, (10)

for i = 0, 1, . . . , n− 2.

Now we solve some of these. The interpolation conditions imply that

ai = f(xi).

From the continuity of s′′ it follows that

di =
ci+1 − ci

3hi

. (11)

Substituting (11) into (9) gives

bi+1 = bi + 2cihi + (ci+1 − ci)hi

= bi + (ci+1 + ci)hi.
(12)

Similarly, substituting (11) into (8) gives

ai+1 = ai + bihi + cih
2
i +

ci+1 − ci
3

h2
i

= ai + bihi +
ci+1 + 2ci

3
h2
i .

(13)

Now we solve (13) for bi to obtain

bi =
ai+1 − ai

hi

− 2ci + ci+1

3
hi (14)

At this point, ai, bi, di are either known or given in terms of ci!
Now we substitute (14) into (12) and simplify to obtain

bi+1 =
ai+1 − ai

hi

− 2ci + ci+1

3
hi + (ci+1 + ci)hi

=
ai+1 − ai

hi

+
ci + 2ci+1

3
hi.

(15)

4

To find a relation for the c′1s, we use (14) in place of the LHS:

ai+1 − ai
hi+1

− 2ci + ci+2

3
hi+1 = bi+1 =

ai+1 − ai
hi+1

+
ci + 2ci+1

3

Now we move the known values (a′is) to one side:

(2ci+1 + ci+2)hi+1 + (ci + 2ci+1)hi =
3(ai+2 − ai+1)

hi+1

− 3(ai+1 − ai)

hi

(16)

or equivalently,

hici + 2(hi + hi+1)ci+1hi+1ci+2 =
3

hi+1

(ai+2 − ai+1)−
3

hi+1

(ai+1 − ai) (17)

For convenience, we replace i by i− 1 (shifting every index down by 1) to obtain

hi−1ci−1 + 2(hi−1 + hi)ci + hici−+1 =
3

hi

(ai+2 − ai)−
3

hi−1

(ai − ai−1). (18)

This equation holds for i = 1, 2, . . . , n − 1, and in this form it is clear that the
resulting system for the ci’s is tridiagonal (hence it can be solved efficiently in O(n)).
The equations for i = 0 and i = n depend on the type of boundary conditions used.

We remark that these formulae simplify when evenly spaced nodes, knots, or
abscissas are given (so h0 = h1 = · · · = hn−1 = h):

FIRST:
ci−1 + 4ci + ci+1 =

3

h2
(ai+1 − 2ai + ai−1) (19)

(along with boundary conditions)
THEN

bi =
ai+1 − ai

h
− 2ci + ci+1

3
h (20)

di =
ci+1 − ci

3h
(21)

Solving for coefficients is a two-step process! We first solve a linear system for
the ci’s, then evaluate formulae for bi, di. Likewise, evaluating the resulting spline is
a two-step process: given x, we first determine the index i for which x ∈ [xi, xi+1](to
what piece does x belong?), then we evaluate s(x) = si(x) using the calculated
coefficients.

5

x

gi-1

xi xi+1

gi gi+1
'' '' ''

Figure 2: Piecewise linear interpolation

Before we introduce the different kinds of Boundary Conditions, we remark there
is another approach for obtaining the coefficients, based on Lagrange interpolation!

Let gi denote the interpolating cubic on [xi, xi+1] and note g′′i is linear.
Using Lagrange interpolation, continuity of the second derivative implies.

g′′i (x) = g′′(xi)
x− xi+1

xi − xx+1

+ g′′(xi+1)
x− xi

xi+1 − xi

(22)

This is Lagrange form of degree-1 interpolant.
Integrate the above expression twice to obtain

gi(x) = g′′(xi)
1

6

(x− xi+1)
3

xi − xx+1

+ g′′(xi+1) ·
1

6
· (x− xi)

3

xi+1 − xi

+ k1x+ k2, (23)

for some constants k1, k2. We find k1, k2 by enforcing interpolation:(evaluate the
above at x = xi, x− xi+1)

f(xi) = gi(xi) = g′′(xi) ·
1

6
· (xi − xi+1)

2 + kixi + k2, (24)

f(xi+1) = gi(xi) = g′′(xi+1) ·
1

6
· (xi+1 − xi)

2 + kixi+1 + k2 (25)

Here we are using g to denote the full piecewise interpolant.

6

Subtracting the first equation from the second implies

f(xi+1)− f(xi) =
g′′(xi+1 − g′′(xi)

6
h2
i + k1hi, (26)

so
K1 =

f(xi+1)− f(xi)

hi

− g′′(xi+1)− g′′(xi)

6
hi (27)

Substitution then gives

K2 = f(xi)−
g′′(xi)

6
h2
i − k1x

2
i (28)

so that

gi(x) =
g′′(xi)

6

"
(xi+1 − x)3

hi

− hi(xi+1 − x)

#
+

g′′(xi+1)

6

"
x− xi)

3

hi

− hi(x− xi)

#

(29)

+ f(xi)
xi+1 − x

hi

+ f(x− xi)
x− xi

hi

(30)

Here g′′ is still unknown, but we can use the continuity of g′:

g′i(xi+1) = g′i+1(xi) (31)

Using

g′i(x) =
(g′′(xi)

6

(xi+1 − x)3

hi

+
g′′(xi+1)

6

(x− xi)
3

hi

+
f(xi+1)− f(xi)

hi

(32)

− g′′xi+1 − g′′(xi)

6
hi (33)

we obtain, after some algebraic manipulation, the same system as before!

hi−1

6
g′′(xi−1)+

hi−1 + hi

3
g′′(xi) +

hi

6
g′′(xi+1) (34)

=
f(xi+1)− f(xi)

hi

− f(x1)− f(xi−1)

hi−1

(35)

(the unknowns here are the (constants) g′′(xi)).
Now on to the Boundary Conditions.

7

Not-a-knot When no additional information is known about function f , this
choice is recommended. We require continuity of s′′′ at x = x1, x = xn−1, which
means d0 = d = 1, dn−2 = dn−1. These give conditions for cj using di =

ci+1−ci
3hi

:

h1c0 − (h0 + h1)c1 + h0c2 = 0, (36)
hn−1cn−2 − (hn−2 + hn−1)cn−1 + hn−2cn = 0 (37)

• Bad news: these ruin the tridiagonal structure of our system (why?)

• Good news: we can solve for c0 and cn and recover the tridiagonal structure,
by substituting into the equations for cj when j = 1 and j = n− 1:

– j = 1 :

"
3h0 + 2h1 +

h2
0

h1

#
c1 +

"
h1 −

h2
0

h1

#
c2 =

3

hi

(a2 − a1)−
3

h0

(a1 − a0) (38)

– j = 2, . . . , n− 2 :

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi

(ai+1 − ai)−
3

hi−1

(ai − ai−1) (39)

– j = n− 1 :

"
hn−2 −

h2
n−1

hn−2

#
cn−2 + (3hn−1 + 2hn−2 +

h2
n−1

hn−2

#
cn−1 (40)

=
3

hn−1

(an − an−1)−
3

hn−2

(an−1 − an−2) (41)

When the nodes are equidistant, the boundary conditions are

6c1 =
3

h2
(a2 − 2a1 + a0) (42)

6cn−1 =
3

h2
(an − 2an−1 + an−2) (43)

Clamped or Complete Spline If f ′(a) and f ′(b) are known, it is better to apply
the clamped boundary conditions

s′(a) = f ′(a), s′(b) = f ′(b).

8

We use the relation

bj =
aj+1 − aj

hj

− 2cj + cj+1

3
hj (44)

with j = 0 and j = n− 1 to re-write the boundary conditions in terms of the cj.
Note that f ′(a) = s′(a) = s′0(a) = b0 and f ′(b) = s′(b) = s′n−1(b) = bn, so

f ′(a) = b0 =
a1 − a0

h0

− 2c0 + c1
3

h0 (45)

and
2h0c0 + h0c1 =

3

h0

(a1 − a0)− 3f ′(a). (46)

For the right boundary, we first use bn = bn−1 + (cn + cn−1)hn−1 and then (44) at
j = n− 1 to obtain

f ′(b) = bn =
an − an−1

hn−1

− 2cn−1 + cn
3

hn−1 + (cn + cn−1)hn−1 (47)

or equivalently

hn−1cn−1 + 2hn−1cn =
−3

hn−1

(an − an−1) + 3f ′(b). (48)

9

