Spline Interpolation

We've approached the interpolation problem by choosing (high-degree) polynomials for our basis functions $\phi_{i}: f(x)=\sum_{j=0}^{n} c_{j} \phi_{j}(x)$. This approach can be efficient (recall the barycentric form of the Lagrange interpolant), but using high degree polynomials can lead to large errors due to erratic oscillations, especially near the interval endpoints.

To mediate this, we'll try a different approach. We'll break up the interval over which the data is defined into small pieces, and we'll use a low-degree polynomial interpolant over each piece!

Piecewise polynomial interpolation To begin, we'll consider the simplest case: piecewise linear interpolants (used by MATLAB when plotting).

Figure 1: Piecewise linear interpolation
To find this interpolant we need only find the line between each pair of adjacent points on each interval,

$$
\begin{align*}
s_{0}(x) & =f\left(x_{0}\right)+m_{0}\left(x-x_{0}\right), & & x_{0} \leq x \leq x_{1} \tag{1}\\
s_{1}(x) & =f\left(x_{1}\right)+m_{1}\left(x-x_{1}\right), & & x_{1} \leq x \leq x_{2} \tag{2}\\
\vdots & & & \tag{3}\\
s_{n-1}(x) & =f\left(x_{n-1}\right)+m_{n-1}\left(x-x_{n-1}\right), & & x_{n-1} \leq x \leq x_{n}
\end{align*}
$$

and note that the slope in $\left[x_{i}, x_{i+1}\right]$ is given by $m_{i}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}$
In this linear case the formula for each piece follows simply from the point-slope form of a line. However, we can gain insight from its structure.
Remark 0.0.1. On each subinterval $\left[x_{i}, x_{i+1}\right]$, for $i=0,1, \ldots, n-1$, the piecewise polynomial interpolant s coincides with the linear polynomial

$$
s(x)=s_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)
$$

with

$$
a_{i}=f\left(x_{i}\right), \quad \quad b_{i}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{x_{i+1}-x_{i}}
$$

The values of a_{i} follow from the interpolation requirement $\left(s\left(x_{i}\right)=s_{i}\left(x_{i}\right)=\right.$ $f\left(x_{i}\right)$), and the values of b_{i} follow from the (so far implicit) requirement that s be continuous, which we can express as $s_{i}\left(x_{i+1}\right)=s_{i+1}\left(x_{i+1}\right), i=0,1, \ldots, n-2$

Let's use this insight and consider the popular cubic case (quadratic case is developed in HW5).

Cubic Spline Mimicking the form of the piecewise linear interpolant, in this case we require that on each subinterval $\left[x_{i}, x_{i+1}\right]$ the piecewise interpolant s satisfies

$$
s(x)=s_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3},
$$

where a_{i}, b_{i}, c_{i}, and d_{i} are coefficients to be determined. Since for $n+1$ given points there are n pieces, there are $4 n$ coefficients in total. Our best bet then is to impose $4 n$ constraints and hope the resulting system is linear (in this case it's possible that the solution to the system is unique, if it exists).

Conditions

1. Interpolation: $s\left(x_{i}\right)=s_{i}\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots, n-1$, AND $s_{n-1}\left(x_{n}\right)=$ $f\left(x_{n}\right)$.
($n+1$ conditions here)
2. Continuity: $s_{i}\left(x_{i+1}\right)=s_{i+1}\left(x_{i+1}\right), i=0,1, \ldots, n-2$ (holds at interior points, gives $n-1$ conditions).

These are the same as in the linear case. We need more conditions so we can ask for more! A drawback of piecewise linear interpolation is that it is not differentiable, so here we ask for smoothness:
3. Continuity of s^{\prime} at interior points:

$$
s_{i}^{\prime}\left(x_{i+1}\right)=s_{i+1}^{\prime}\left(x_{i+1}\right), i=0,1, \ldots, n-2
$$

($\mathrm{n}-1$) conditions
4. Continuity of $s^{\prime \prime}$ at interior points:

$$
s_{i}^{\prime \prime}\left(x_{i+1}\right)=s_{i+1}^{\prime \prime}\left(x_{i+1}\right), i=0,1, \ldots, n-2
$$

($\mathrm{n}-1$) condition
This gives $3(n-1)+(n+1)=4 n-2$ condition in total, so we need two more. These are boundary conditions, and there are different kinds (see below).

Before we specify the additional conditions, let's write out our system and manipulate it to obtain formulas for $a_{i}, b_{i}, c_{i}, d_{i}$:

1. (Interpolation)

$$
\begin{align*}
a_{i} & =a_{i}+b_{i}\left(x_{i}-x_{i}\right)+c_{i}\left(x_{i}-x_{i}\right)^{2}+d_{i}\left(x_{i}-x_{i}\right)^{3} \tag{5}\\
& =s_{i}\left(x_{i}\right) \tag{6}\\
& =f\left(x_{i}\right), i=0,1, \ldots, n \tag{7}
\end{align*}
$$

Remark 0.0.2. Here we extend our previous notation and use $a_{n}=f\left(x_{n}\right)$, to simplify our derivation below
2. (Continuity)

$$
\begin{equation*}
a_{i}+b_{i} h_{i}+c_{i} h_{i}^{2}+d_{i} h_{i}^{3}=s_{i}\left(x_{i+1}\right)=s_{i+1}\left(x_{i+1}\right)=a_{i+1}, \tag{8}
\end{equation*}
$$

for $i=0,1, \ldots, n-2$ with $h_{i}=x_{i+1}-x_{i}$.
3. (Continuity of $\left.s^{\prime}\right)$

$$
\begin{equation*}
b_{i} h_{i}+2 c_{i} h_{i}+3 d_{i} h_{i}^{2}=s_{i}^{\prime}\left(x_{i+1}\right)=s_{i+1}^{\prime}\left(x_{i+1}\right)=b_{i+1}, \tag{9}
\end{equation*}
$$

for $i=0,1, \ldots, n-2$.
4. (Continuity of $s^{\prime \prime}$)

$$
\begin{equation*}
2 c_{i} h_{i}+3 \cdot 2 d_{i} h_{i}=s_{i}^{\prime \prime}\left(x_{i+1}\right)=s_{i+1}^{\prime \prime}\left(x_{i+1}\right)=2 c_{i+1}, \tag{10}
\end{equation*}
$$

for $i=0,1, \ldots, n-2$.
Now we solve some of these. The interpolation conditions imply that

$$
a_{i}=f\left(x_{i}\right)
$$

From the continuity of $s^{\prime \prime}$ it follows that

$$
\begin{equation*}
d_{i}=\frac{c_{i+1}-c_{i}}{3 h_{i}} . \tag{11}
\end{equation*}
$$

Substituting (11) into (9) gives

$$
\begin{align*}
b_{i+1} & =b_{i}+2 c_{i} h_{i}+\left(c_{i+1}-c_{i}\right) h_{i} \tag{12}\\
& =b_{i}+\left(c_{i+1}+c_{i}\right) h_{i} .
\end{align*}
$$

Similarly, substituting (11) into (8) gives

$$
\begin{align*}
a_{i+1} & =a_{i}+b_{i} h_{i}+c_{i} h_{i}^{2}+\frac{c_{i+1}-c_{i}}{3} h_{i}^{2} \tag{13}\\
& =a_{i}+b_{i} h_{i}+\frac{c_{i+1}+2 c_{i}}{3} h_{i}^{2} .
\end{align*}
$$

Now we solve (13) for b_{i} to obtain

$$
\begin{equation*}
b_{i}=\frac{a_{i+1}-a_{i}}{h_{i}}-\frac{2 c_{i}+c_{i+1}}{3} h_{i} \tag{14}
\end{equation*}
$$

At this point, a_{i}, b_{i}, d_{i} are either known or given in terms of c_{i} !
Now we substitute (14) into (12) and simplify to obtain

$$
\begin{align*}
b_{i+1} & =\frac{a_{i+1}-a_{i}}{h_{i}}-\frac{2 c_{i}+c_{i+1}}{3} h_{i}+\left(c_{i+1}+c_{i}\right) h_{i} \tag{15}\\
& =\frac{a_{i+1}-a_{i}}{h_{i}}+\frac{c_{i}+2 c_{i+1}}{3} h_{i} .
\end{align*}
$$

To find a relation for the $c_{1}^{\prime} s$, we use (14) in place of the LHS:

$$
\frac{a_{i+1}-a_{i}}{h_{i+1}}-\frac{2 c_{i}+c_{i+2}}{3} h_{i+1}=b_{i+1}=\frac{a_{i+1}-a_{i}}{h_{i+1}}+\frac{c_{i}+2 c_{i+1}}{3}
$$

Now we move the known values $\left(a_{i}^{\prime} s\right)$ to one side:

$$
\begin{equation*}
\left(2 c_{i+1}+c_{i+2}\right) h_{i+1}+\left(c_{i}+2 c_{i+1}\right) h_{i}=\frac{3\left(a_{i+2}-a_{i+1}\right)}{h_{i+1}}-\frac{3\left(a_{i+1}-a_{i}\right)}{h_{i}} \tag{16}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
h_{i} c_{i}+2\left(h_{i}+h_{i+1}\right) c_{i+1} h_{i+1} c_{i+2}=\frac{3}{h_{i+1}}\left(a_{i+2}-a_{i+1}\right)-\frac{3}{h_{i+1}}\left(a_{i+1}-a_{i}\right) \tag{17}
\end{equation*}
$$

For convenience, we replace i by $i-1$ (shifting every index down by 1) to obtain

$$
\begin{equation*}
h_{i-1} c_{i-1}+2\left(h_{i-1}+h_{i}\right) c_{i}+h_{i} c_{i-+1}=\frac{3}{h_{i}}\left(a_{i+2}-a_{i}\right)-\frac{3}{h_{i-1}}\left(a_{i}-a_{i-1}\right) . \tag{18}
\end{equation*}
$$

This equation holds for $i=1,2, \ldots, n-1$, and in this form it is clear that the resulting system for the c_{i} 's is tridiagonal (hence it can be solved efficiently in $O(n)$). The equations for $i=0$ and $i=n$ depend on the type of boundary conditions used.

We remark that these formulae simplify when evenly spaced nodes, knots, or abscissas are given (so $h_{0}=h_{1}=\cdots=h_{n-1}=h$):

FIRST:

$$
\begin{equation*}
c_{i-1}+4 c_{i}+c_{i+1}=\frac{3}{h^{2}}\left(a_{i+1}-2 a_{i}+a_{i-1}\right) \tag{19}
\end{equation*}
$$

(along with boundary conditions)
THEN

$$
\begin{align*}
b_{i} & =\frac{a_{i+1}-a_{i}}{h}-\frac{2 c_{i}+c_{i+1}}{3} h \tag{20}\\
d_{i} & =\frac{c_{i+1}-c_{i}}{3 h} \tag{21}
\end{align*}
$$

Solving for coefficients is a two-step process! We first solve a linear system for the c_{i} 's, then evaluate formulae for b_{i}, d_{i}. Likewise, evaluating the resulting spline is a two-step process: given x , we first determine the index i for which $x \in\left[x_{i}, x_{i+1}\right]$ (to what piece does x belong?), then we evaluate $s(x)=s_{i}(x)$ using the calculated coefficients.

Figure 2: Piecewise linear interpolation

Before we introduce the different kinds of Boundary Conditions, we remark there is another approach for obtaining the coefficients, based on Lagrange interpolation!

Let g_{i} denote the interpolating cubic on $\left[x_{i}, x_{i+1}\right]$ and note $g_{i}^{\prime \prime}$ is linear.
Using Lagrange interpolation, continuity of the second derivative implies.

$$
\begin{equation*}
g_{i}^{\prime \prime}(x)=g^{\prime \prime}\left(x_{i}\right) \frac{x-x_{i+1}}{x_{i}-x_{x+1}}+g^{\prime \prime}\left(x_{i+1}\right) \frac{x-x_{i}}{x_{i+1}-x_{i}} \tag{22}
\end{equation*}
$$

This is Lagrange form of degree-1 interpolant.
Integrate the above expression twice to obtain

$$
\begin{equation*}
g_{i}(x)=g^{\prime \prime}\left(x_{i}\right) \frac{1}{6} \frac{\left(x-x_{i+1}\right)^{3}}{x_{i}-x_{x+1}}+g^{\prime \prime}\left(x_{i+1}\right) \cdot \frac{1}{6} \cdot \frac{\left(x-x_{i}\right)^{3}}{x_{i+1}-x_{i}}+k_{1} x+k_{2}, \tag{23}
\end{equation*}
$$

for some constants k_{1}, k_{2}. We find k_{1}, k_{2} by enforcing interpolation:(evaluate the above at $x=x_{i}, x-x_{i+1}$)

$$
\begin{align*}
f\left(x_{i}\right) & =g_{i}\left(x_{i}\right)=g^{\prime \prime}\left(x_{i}\right) \cdot \frac{1}{6} \cdot\left(x_{i}-x_{i+1}\right)^{2}+k_{i} x_{i}+k_{2}, \tag{24}\\
f\left(x_{i+1}\right) & =g_{i}\left(x_{i}\right)=g^{\prime \prime}\left(x_{i+1}\right) \cdot \frac{1}{6} \cdot\left(x_{i+1}-x_{i}\right)^{2}+k_{i} x_{i+1}+k_{2} \tag{25}
\end{align*}
$$

Here we are using g to denote the full piecewise interpolant.

Subtracting the first equation from the second implies

$$
\begin{equation*}
f\left(x_{i+1}\right)-f\left(x_{i}\right)=\frac{g^{\prime \prime}\left(x_{i+1}-g^{\prime \prime}\left(x_{i}\right)\right.}{6} h_{i}^{2}+k_{1} h_{i} \tag{26}
\end{equation*}
$$

so

$$
\begin{equation*}
K_{1}=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h_{i}}-\frac{g^{\prime \prime}\left(x_{i+1}\right)-g^{\prime \prime}\left(x_{i}\right)}{6} h_{i} \tag{27}
\end{equation*}
$$

Substitution then gives

$$
\begin{equation*}
K_{2}=f\left(x_{i}\right)-\frac{g^{\prime \prime}\left(x_{i}\right)}{6} h_{i}^{2}-k_{1} x_{i}^{2} \tag{28}
\end{equation*}
$$

so that

$$
\begin{align*}
g_{i}(x) & =\frac{g^{\prime \prime}\left(x_{i}\right)}{6}\left(\frac{\left(x_{i+1}-x\right)^{3}}{h_{i}}-h_{i}\left(x_{i+1}-x\right)\right)+\frac{g^{\prime \prime}\left(x_{i+1}\right)}{6}\left(\frac{\left.x-x_{i}\right)^{3}}{h_{i}}-h i\left(x-x_{i}\right)\right) \tag{29}\\
& +f\left(x_{i}\right) \frac{x_{i+1}-x}{h_{i}}+f\left(x-x_{i}\right) \frac{x-x_{i}}{h_{i}} \tag{30}
\end{align*}
$$

Here $g^{\prime \prime}$ is still unknown, but we can use the continuity of g^{\prime} :

$$
\begin{equation*}
g_{i}^{\prime}\left(x_{i+1}\right)=g_{i+1}^{\prime}\left(x_{i}\right) \tag{31}
\end{equation*}
$$

Using

$$
\begin{align*}
g_{i}^{\prime}(x) & =\frac{\left(g^{\prime \prime}\left(x_{i}\right)\right.}{6} \frac{\left(x_{i+1}-x\right)^{3}}{h_{i}}+\frac{g^{\prime \prime}\left(x_{i+1}\right)}{6} \frac{\left(x-x_{i}\right)^{3}}{h_{i}}+\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h_{i}} \tag{32}\\
& -\frac{g^{\prime \prime} x_{i+1}-g^{\prime \prime}\left(x_{i}\right)}{6} h_{i} \tag{33}
\end{align*}
$$

we obtain, after some algebraic manipulation, the same system as before!

$$
\begin{align*}
\frac{h_{i-1}}{6} g^{\prime \prime}\left(x_{i-1}\right)+ & \frac{h_{i-1}+h_{i}}{3} g^{\prime \prime}\left(x_{i}\right)+\frac{h_{i}}{6} g^{\prime \prime}\left(x_{i+1}\right) \tag{34}\\
& =\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h_{i}}-\frac{f\left(x_{1}\right)-f\left(x_{i}-1\right)}{h_{i-1}} \tag{35}
\end{align*}
$$

(the unknowns here are the (constants) $g^{\prime \prime}\left(x_{i}\right)$).
Now on to the Boundary Conditions.

Not-a-knot When no additional information is known about function f, this choice is recommended. We require continuity of $s^{\prime \prime \prime}$ at $x=x_{1}, x=x_{n-1}$, which means $d_{0}=d=1, d_{n-2}=d_{n-1}$. These give conditions for c_{j} using $d_{i}=\frac{c_{i+1}-c_{i}}{3 h_{i}}$:

$$
\begin{align*}
& h_{1} c_{0}-\left(h_{0}+h_{1}\right) c_{1}+h_{0} c_{2}=0, \tag{36}\\
& h_{n-1} c_{n-2}-\left(h_{n-2}+h_{n-1}\right) c_{n-1}+h_{n-2} c_{n}=0 \tag{37}
\end{align*}
$$

- Bad news: these ruin the tridiagonal structure of our system (why?)
- Good news: we can solve for c_{0} and c_{n} and recover the tridiagonal structure, by substituting into the equations for c_{j} when $j=1$ and $j=n-1$:

$$
\begin{align*}
& -j=1: \\
& \quad\left(3 h_{0}+2 h_{1}+\frac{h_{0}^{2}}{h_{1}}\right) c_{1}+\left(h_{1}-\frac{h_{0}^{2}}{h_{1}}\right) c_{2}=\frac{3}{h_{i}}\left(a_{2}-a_{1}\right)-\frac{3}{h_{0}}\left(a_{1}-a_{0}\right) \tag{38}\\
& -j=2, \ldots, n-2: \\
& \quad h_{i-1} c_{i-1}+2\left(h_{i-1}+h_{i}\right) c_{i}+h_{i} c_{i+1}=\frac{3}{h_{i}}\left(a_{i+1}-a_{i}\right)-\frac{3}{h_{i-1}}\left(a_{i}-a_{i-1}\right) \tag{39}
\end{align*}
$$

$$
\begin{gather*}
\left(h_{n-2}-\frac{h_{n-1}^{2}}{h_{n-2}}\right) c_{n-2}+\left(3 h_{n-1}+2 h_{n-2}+\frac{h_{n-1}^{2}}{h_{n-2}}\right) c_{n-1} \tag{40}\\
=\frac{3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)-\frac{3}{h_{n-2}}\left(a_{n-1}-a_{n-2}\right) \tag{41}
\end{gather*}
$$

$$
-j=n-1:
$$

$-j=n-1:$

When the nodes are equidistant, the boundary conditions are

$$
\begin{align*}
6 c_{1} & =\frac{3}{h^{2}}\left(a_{2}-2 a_{1}+a_{0}\right) \tag{42}\\
6 c_{n-1} & =\frac{3}{h^{2}}\left(a_{n}-2 a_{n-1}+a_{n-2}\right) \tag{43}
\end{align*}
$$

Clamped or Complete Spline If $f^{\prime}(a)$ and $f^{\prime}(b)$ are known, it is better to apply the clamped boundary conditions

$$
s^{\prime}(a)=f^{\prime}(a), \quad s^{\prime}(b)=f^{\prime}(b)
$$

We use the relation

$$
\begin{equation*}
b_{j}=\frac{a_{j+1}-a_{j}}{h_{j}}-\frac{2 c_{j}+c_{j+1}}{3} h_{j} \tag{44}
\end{equation*}
$$

with $j=0$ and $j=n-1$ to re-write the boundary conditions in terms of the c_{j}.
Note that $f^{\prime}(a)=s^{\prime}(a)=s_{0}^{\prime}(a)=b_{0}$ and $f^{\prime}(b)=s^{\prime}(b)=s_{n-1}^{\prime}(b)=b_{n}$, so

$$
\begin{equation*}
f^{\prime}(a)=b_{0}=\frac{a_{1}-a_{0}}{h_{0}}-\frac{2 c_{0}+c_{1}}{3} h_{0} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
2 h_{0} c_{0}+h_{0} c_{1}=\frac{3}{h_{0}}\left(a_{1}-a_{0}\right)-3 f^{\prime}(a) . \tag{46}
\end{equation*}
$$

For the right boundary, we first use $b_{n}=b_{n-1}+\left(c_{n}+c_{n-1}\right) h_{n-1}$ and then (44) at $j=n-1$ to obtain

$$
\begin{equation*}
f^{\prime}(b)=b_{n}=\frac{a_{n}-a_{n-1}}{h_{n-1}}-\frac{2 c_{n-1}+c_{n}}{3} h_{n-1}+\left(c_{n}+c_{n-1}\right) h_{n-1} \tag{47}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
h_{n-1} c_{n-1}+2 h_{n-1} c_{n}=\frac{-3}{h_{n-1}}\left(a_{n}-a_{n-1}\right)+3 f^{\prime}(b) . \tag{48}
\end{equation*}
$$

