Solution to Problem Set 8

(1) \(A = \{ x \in \mathbb{R}^n : f_1(x) \neq f_2(x) \} \subseteq \mathbb{R}^n \) is a nullset and open. If \(x \in A \), then \(B(x, r) \subseteq A \) for some \(r > 0 \).

\[\Rightarrow 0 = \lambda(A) = \lambda(B(x, r)) > 0 \]

So \(A = \emptyset \)

(2) Obviously, \(f \) is \(B \)-meas. since \(f \) is continuous.

So \(f(\cdot, y) \) and \(f(x, \cdot) \) are \(B \)-meas. For any \(x \in (0,1) \)

\[\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \leq \int_0^1 \frac{1}{x^2 + y^2} \, dy \leq \int_0^1 \frac{1}{x^4} \, dx = \frac{1}{x^4} < \infty \]

For \(x \neq \frac{1}{2} \) so \(f(x, \cdot) \) is integrable.

Same for \(f(\cdot, x) = -f(x, \cdot) \). Now for \(x \in (0,1) \)

\[\int_0^1 f(x, y) \, dy = \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy = \frac{y}{x^2 + y^2} \bigg|_0^1 = \frac{1}{x^2 + 1} \]

\[\int_0^1 (\int_0^1 f(x, y) \, dy) \, dx = \int_0^1 \frac{dx}{x^2 + 1} = \arctan(x) \bigg|_0^1 = \frac{\pi}{4} \]

\[\int_0^1 (\int_0^1 f(x, y) \, dx) \, dy = -\int_0^1 (\int_0^1 f(y, x) \, dy) \, dx = -\frac{\pi}{4} \]

Fubini doesn't work here, because \(f \) is not integrable on \((0,1) \times (0,1)\). In fact

\[\int_{(0,1) \times (0,1)} |f(x, y)| \, dx \, dy = \int_{(0,1) \times (0,1)} \frac{|x^2 - y^2|}{(x^2 + y^2)^2} \, dx \, dy \]

\[\geq \int_D \frac{3}{4} \cdot \frac{x^2}{(\frac{3}{4} \cdot x^2)^2} \, dx \, dy = \frac{12}{25} \int_D \frac{1}{x^2} \, dx \, dy \]

\[D = \{(x, y) \in (0,1) \times (0,1) : x < y \} \]

\[= \frac{12}{25} \int_0^1 \left(\int_0^x \frac{1}{x^2} \, dy \right) \, dx = \frac{12}{25} \int_0^1 \frac{dx}{2x} = \infty \].
(3) Claim \[\begin{align*} & A \in \mathbb{B}^n, A \subseteq \mathbb{R}^n, [a,b] \subseteq \mathbb{R}^n \Rightarrow \quad A \times [a,b] \in \mathbb{B}^{n+1} \\ & \text{Proof:} \quad \mathcal{M} = \{ A \in \mathbb{B}^n : A \times [a,b] \in \mathbb{B}^{n+1} \} \text{ is a C-algebra and } \mathcal{G}^n \subseteq \mathcal{M} \quad (\text{since } A \in \mathcal{G}^n \Rightarrow A \times (a-\varepsilon, b+\varepsilon) \in \mathcal{G}^{n+1} \text{ for all } \varepsilon > 0 \Rightarrow A \times [a,b] = \bigcap_{k=1}^{\infty} A \times [a-1/k, b+1/k] \in \mathbb{B}^{n+1}). \\ & \text{So } \mathcal{M} = \mathbb{B}^{n+1}. \quad \square
\]

Claim 2 \[\quad \begin{align*} & A \subseteq \mathbb{R}^n, A \in \mathbb{B}_0 \Rightarrow \quad \mathcal{G} \chi_A \in \mathbb{B}^{n+1} \\ & \text{Proof:} \quad \mathcal{G} \chi_A = A \times [a, b] \in \mathbb{B}^{n+1} \\ & \square
\]

Claim 3 \[\quad \begin{align*} & s : \mathbb{R}^n \to \mathbb{R} \text{ simple, } \mathcal{G}^n \text{-meas.}, \quad s > 0 \Rightarrow \quad \mathcal{G}_s \subseteq \mathbb{B}^{n+1} \\ & \text{Proof:} \quad s = a_1 \chi_{A_1} + \cdots + a_m \chi_{A_m} \\ & \text{Then} \quad \mathcal{G}_s = \bigcup \chi_{A_1} \times [0, a_1] \cup \cdots \cup \chi_{A_m} \times [0, a_m] \in \mathbb{B}^n \\ & = \mathcal{G}_{a_1} \chi_{A_1} \cup \cdots \cup \mathcal{G}_{a_m} \chi_{A_m} \quad \square
\]

Claim 4 \[\quad \begin{align*} & \mathcal{G}_f \subseteq \mathbb{B}^{n+1} \\ & \text{Proof:} \quad \text{Choose } s_1, s_2, \ldots, \lim_{k \to \infty} s_k = f \quad \text{simple} \\ & \text{Then} \quad \mathcal{G}_f = \mathcal{G}_{s_1} \cup \mathcal{G}_{s_2} \cup \cdots \subseteq \mathbb{B}^{n+1} \quad \square
\]

Now consider the splitting \[\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}. \text{ By Fubini} \]
\[\int_{\mathbb{R}^{n+1}} \chi_{G_f} \, d\lambda = \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}} \chi_{G_f}(x,y) \, dy \right) \, dx = \int_{\mathbb{R}^n} f(x) \, dx = f(x) \]

(see on next page)

(4) Consider the splitting \[\mathbb{R}^{n+1} = \mathbb{R}^n \times \mathbb{R}. \text{ For } y > 0 \]
\[\lambda(G_f(y)) = \lambda(f^{-1}((y, \infty))). \text{ By Fubini} \]
\[\int_{\mathbb{R}^n} f \, dx = \int_{\mathbb{R}^{n+1}} \chi_{G_f} \, d\lambda = \int_{\mathbb{R}} \left(\int_{\mathbb{R}^n} \chi_{G_f}(x,y) \, dx \right) \, dy \]
\[= \int_{\mathbb{R}} \lambda(G_f(y)) \, dy = \int_0^\infty \lambda(f^{-1}((y, \infty))) \, dy \]

If \(\lambda(f''((y,\infty])) = \infty \) for some \(y > 0 \), then
\[
\int_{\mathbb{R}^n} f \, d\lambda = \int_0^\infty g(t) \, dt = \infty
\]
and we're done.

So assume \(\lambda(f''((y,\infty])) < \infty \) for all \(y > 0 \).

Then \(g(t) = \lim_{y \to t^-} \lambda(f''((y,\infty])) \).

Since \(g \) is monotone, this value only differs from \(\lambda(f''((t,\infty]])) \)
at countably many points. So \(\lambda(f''((y,\infty])) = g(y) \)
for a.e. \(y \in [0,\infty) \). Hence
\[
\int f \, d\lambda = \int_0^\infty g(t) \, dt.
\]

(c) First check, that the claim is true for simple functions. For general \(f \), find \(s_1, s_2, \ldots \)
s.t. \(f = \lim_{k \to \infty} s_k \). Let \(g_k(t) = \frac{1}{\lambda(s_k([t,\infty]))} \).

Then \(f''((t,\infty]) = \bigcup_{k=1}^{\infty} s_k''((t,\infty]) \), so
\[
\lambda(f''((t,\infty])) = \lim_{k \to \infty} g_k(t).
\]
Since \(g_1 \leq g_2 \leq \ldots \),
\[
\int f \, d\lambda = \int_0^\infty g(t) \, dt \leq \int_0^\infty \lambda(f''((t,\infty])) \, dt
\]

Alternative method to show that \(G_f \in B^{n+1} \).

(due to Sam Pimentel)

1° We show as in Claim 1 that
\[
A \in B^n \Rightarrow A \times \mathbb{R} \in B^{n+1}.
\]
So \(\tilde{f}(x_1, \ldots, x_n, x_{n+1}) = f(x_1, \ldots, x_n) \), \(\tilde{f} : R^{n+1} \to \overline{\mathbb{R}} \)
is \(B^{n+1} \)-measurable (observe that \(\tilde{f}''(B) = f''(B) \times \mathbb{R} \)
for all \(B \in B(\overline{\mathbb{R}}) \).

2° Hence \(\hat{g} : R^{n+1} \to \overline{\mathbb{R}}, \hat{g}(x_1, \ldots, x_{n+1}) = \tilde{f}(x_1, \ldots, x_{n+1}) - x_{n+1} \)
is \(B^{n+1} \)-measurable.

3° Now \(G_f = \hat{g}((0,\infty]) \cap \overline{\mathbb{R} \times [0,\infty)} \in B^{n+1} \)
closed.
Method 1 Consider the smooth diffeo
\[F : (0, \infty) \times \mathbb{R}^{n-1} \longrightarrow (0, \infty) \times \mathbb{R}^{n-1} \]
\[x = (x_1, x_2, \ldots, x_n) \mapsto \frac{x_1}{|x^1|} \]

We can compute the Jacobian of \(F \) using the one indicated on the left:
\[\det dF_x = \left(\frac{x_1}{|x^1|} \right)^{n-1} \frac{x_1}{|x^1|} = \left(\frac{x_1}{|x^1|} \right)^n \]

So by the Transformation law
\[
\int_{(0, \infty) \times \mathbb{R}^{n-1}} (\text{for } \lambda) \, d\lambda = \int_{(0, \infty) \times \mathbb{R}^{n-1}} (\text{for } F) \left(\frac{x_1}{|x^1|} \right)^n \, d\lambda
\]
\[= \int_{(0, \infty) \times \mathbb{R}^{n-1}} f(x_1) \left(\frac{x_1}{|x^1|} \right)^n \, d\lambda = \int_0^\infty f(x_1) \left(\int_{\mathbb{R}^{n-1}} \left(\frac{x_1}{|x^1|} \right)^n \, dy_2 \ldots dy_n \right) \, dx_1
\]
\[= \int_0^\infty f(x_1) \, x_1^{n-1} \, dx_1
\]

Analogously,
\[\int_{(-\infty, 0) \times \mathbb{R}^{n-1}} (\text{for } \lambda) \, d\lambda = \frac{\omega_{n-1}}{2} \int_0^\infty f(x_1) x_1^{n-1} \, dx_1
\]
So since \(\{0\} \times \mathbb{R}^{n-1} \) is a nullset
\[
\int_{\mathbb{R}^{n-1}} (\text{for } \lambda) \, d\lambda = \int_{(-\infty, 0) \times \mathbb{R}^{n-1}} (\text{for } \lambda) \, d\lambda + \int_{(0, \infty) \times \mathbb{R}^{n-1}} (\text{for } \lambda) \, d\lambda = \omega_n \int_0^\infty f(y) y^{n-1} \, dy
\]
Method 2 Consider the smooth diffeo $F : D = (B(0,1) \setminus \{0\}) \times (0, \infty) \longrightarrow (\mathbb{R}^n \setminus \{0\}) \times (0, 1)$

$(\bar{x}, \ y) \longmapsto (y^{\frac{\bar{x}}{|\bar{x}|}}, |\bar{x}|)$

The Jacobian is $|\det dF(\bar{x}, \ y)| = (\frac{y}{|\bar{x}|})^{n-1}$

By Fubini and the Transformation law

$$\int_{\mathbb{R}^n} (f \circ o \bar{F}) \ d\lambda = \int_{\mathbb{R}^n \setminus \{0\}} (f \circ o \bar{F}) \ d\lambda \overset{\text{Fubini}}{=} \int (f \circ o \bar{F})(\bar{x}) \ d\bar{x} \ dy$$

$$\overset{\text{Transformation Law}}{=} \int_D (f \circ o \bar{F})(\frac{y}{|\bar{x}|})^{n-1} \ d\lambda$$

... since $(f \circ o \bar{F})(\bar{x}, \ y) = y$

$$\overset{\text{Transformation Law}}{=} \int_D f(y) (\frac{y}{|\bar{x}|})^{n-1} \ d\bar{x} \ dy$$

$$\overset{\text{Fubini}}{=} \int_0^\infty f(y) y^{n-1} \left(\int_{B(0,1) \setminus \{0\}} \frac{1}{|\bar{x}|^{n-1}} \ d\bar{x} \right) \ dy$$

$$= \omega_n \int_0^\infty f(y) y^{n-1}.$$

In particular if $f = \chi_{[0,1]}$

$$\int_0^\infty \chi_{B(0,1)} \ d\lambda = \int (f \circ o \bar{F}) \ d\lambda = \int_0^\infty y^{n-1} \left(\int_{B(0,1) \setminus \{0\}} \frac{1}{|\bar{x}|^{n-1}} \ d\bar{x} \right) \ dy$$

$$= \frac{1}{n} \left(\int_{B(0,1) \setminus \{0\}} \frac{1}{|\bar{x}|^{n-1}} \ d\lambda \right) = \frac{\omega_n}{n}.$$

We know that $\int_{\mathbb{R}^n} \chi_{B(0,1)} = \pi \Rightarrow \omega_2 = 2\pi$

$\int_{\mathbb{R}^1} \chi_{B(0,1)} = 2 \Rightarrow \omega_1 = 2$
(b) Fubini's Theorem for non-negative functions yields
\[
\int_{\mathbb{R}^n} \exp(-|x|^2) \, dx = \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}^{n-2}} \exp\left(-\left(\sum_{i=1}^{n-2} x_i^2\right)\right) dx_{n-2} \right) \, dx_2
\]
\[
= \int_{\mathbb{R}^2} \left(\int_{\mathbb{R}^{n-2}} \exp\left(-\sum_{i=1}^{n-2} x_i^2\right) dx_{n-2} \right) \exp(-x_1^2) \, dx_2
\]
\[
= \left(\int_{\mathbb{R}^{n-2}} \exp(-|x|^2) \, dx \right) \left(\int_{\mathbb{R}^2} \exp(-|x|^2) \, dx \right)
\]

Same for \(\int_{\mathbb{R}^2} \exp(-|x|^2) \, dx \)

(c) \[
\int_{\mathbb{R}^2} \exp(-|x|^2) \, dx = \int_{\mathbb{R}^2} \exp(-r^2) \, d\lambda = 2\pi \int_0^\infty y \exp(y^2) \, dy
\]

Substitution \(t = y^2 \)
\[\pi \int_0^\infty \exp(-t) \, dt = \pi \]
\[\pi = \int_{\mathbb{R}^2} \exp(-|x|^2) \, d\lambda = \left(\int_{-\infty}^\infty \exp(-x^2) \, dx \right)^2
\]
So \(\int_{-\infty}^\infty \exp(-x^2) \, dx = \sqrt{\pi} \).

(d) By part (b)
\[
\int_{\mathbb{R}^n} \exp(-|x|^2) \, d\lambda = \pi \int_{\mathbb{R}^{n-2}} \exp(-|x|^2) \, d\lambda
\]
\[
\omega_n \int_0^\infty y^{n-1} \exp(-y^2) \, dy \quad \pi \omega_{n-2} \int_0^\infty y^{n-3} \exp(-y^2) \, d\lambda
\]
\[
\frac{2\pi \omega_{n-2}}{n-2} \int_0^\infty y^{n-1} \exp(-y^2) \, d\lambda
\]
Since \(\int_0^\infty y^{n-1} \exp(-y^2) \, dy < \infty \). We conclude

\[
\omega_n = \frac{2\pi}{n-2} \omega_{n-2}
\]

The formulas follow using \(\omega_1 = 2, \omega_2 = 2\pi \).

(e) The integral exists since \(\text{Re}(-x^2 + tbx) \leq C - \frac{x^2}{2} \).

For small \(h \in \mathbb{R} \) (i.e. \(|h| < 1 \))

\[
\frac{g(t+h) - g(t)}{h} = \int_0^\infty \exp(-x^2 + tbx) \frac{e^{hbx} - 1}{h} \, dx
\]

The absolute value of the integrand is bounded by

\[|\exp(-x^2 + tbx)| |b|x| (|\exp(bx)| + |\exp(-bx)|)\]

which is integrable. To deduce this inequality you can argue

\[
e^{hbx} - 1 = \int_0^1 \frac{d}{dt} (e^{tbx}) \, dt = hbx \int_0^1 e^{tbx} \, dt
\]

\[
\Rightarrow \left| \frac{e^{hbx} - 1}{h} \right| \leq |bx| \int_0^1 |e^{tbx}| \, dt
\]

By LDGCT

\[
g'(t) = \int_{-\infty}^{\infty} bx \exp(-x^2 + tbx) \, dx
\]

\[
= \left[\frac{bx \exp(-x^2) (-\frac{b^2}{2} \exp(tbx))}{-2x \exp(-x^2)) (-\frac{b^2}{2} \exp(tbx))} \right]_{-\infty}^{\infty}
\]

So since \(g(0) = \sqrt{\pi} \), we have \(g(t) = \sqrt{\pi} \exp\left(-\frac{b^2}{4}t\right) \).

Hence \(\int_{-\infty}^{\infty} \exp(-x^2 + tbx) \, dx = g(1) = \sqrt{\pi} \exp\left(-\frac{b^2}{4}
ight) \).

By substitution \(x = \sqrt{a} x \)

\[
\int_{-\infty}^{\infty} \exp(ax^2 + bx^2) \, dx = \sqrt{\frac{\pi}{a}} \exp(-\frac{b^2}{4a})
\]

The rest is Fubini.
If \(\phi \in C^1_c(\mathbb{R}^n) \), then \(\phi \) is Lipschitz and we can assume that \(\phi(x) = 0 \) if \(x \in \mathbb{R}^n \setminus B(0,r) \). Let \(L \) be the Lipschitz constant. Then

\[
\int_{\mathbb{R}^n} |\phi(x+y) - \phi(x)| \, dx \leq \int_{B(0,r+y)} L |y| \lambda(B(0,r+|y|)) \, dy \xrightarrow{|y| \to 0} 0
\]

Now assume that \(\phi \) is general. For every \(\varepsilon > 0 \) find \(\phi^* \in C^1_c(\mathbb{R}^n) \) s.t. \(\|\phi - \phi^*\|_1 < \varepsilon \) and choose \(\delta > 0 \) s.t. for all \(|y| < \delta \)

\[
\int_{\mathbb{R}^n} |\phi^*(x+y) - \phi^*(x)| \, dx < \varepsilon
\]

Then

\[
\begin{align*}
\int_{\mathbb{R}^n} |\phi(x+y) - \phi(x)| \, dx & \leq \int_{\mathbb{R}^n} |\phi(x+y) - \phi^*(x+y)| \, dx \\
& \quad + \int_{\mathbb{R}^n} |\phi^*(x+y) - \phi^*(x)| \, dx \\
& \quad + \int_{\mathbb{R}^n} |\phi^*(x) - \phi(x)| \, dx \\
& \leq 3\varepsilon
\end{align*}
\]

By symmetry, we can assume that \(|f| \leq M \). Then using (a) for any \(y \in \mathbb{R}^n \) we have

\[
| (f \ast \phi_a)(x+y) - (f \ast \phi_a)(x) | \\
\leq \left| \int_{\mathbb{R}^n} f(x-z) (\phi_a(z+y) - \phi_a(z)) \, dz \right| \\
\leq \int_{\mathbb{R}^n} |f(x-z)| |\phi_a(z+y) - \phi_a(z)| \, dz \\
\leq M \int |\phi_a(z+y) - \phi_a(z)| \, dz \xrightarrow{y \to 0} 0
\]
For the second part assume that $\phi \in C_c^1(\mathbb{R}^n)$, i.e. $\phi_a \in C_c^1(\mathbb{R}^n)$ too. Then for any $k = 1, \ldots, n$

\[
(f \ast \phi_a)(x + he_k) - (f \ast \phi_a)(x) = \int_{\mathbb{R}^n} f(x - y) \frac{\phi_a(y + he_k) - \phi_a(y)}{h} dy
\]

Since ϕ_a is Lipschitz, the integrand is dominated by $\|f(x - y)\| \cdot L$ which is integrable. So by LDCT

\[
\frac{\partial}{\partial x_k} (f \ast \phi_a)(x) = \int_{\mathbb{R}^n} \lim_{h \to 0} f(x - y) \frac{\phi_a(y + he_k) - \phi_a(y)}{h} dy
\]

\[
= \int_{\mathbb{R}^n} f(x - y) \frac{\partial \phi_a}{\partial x_k} (y) dy = f \ast \frac{\partial \phi_a}{\partial x_k}
\]

Hence $f \ast \phi_a \in C^1(\mathbb{R}^n)$. Now if $\phi_a \in C^m_c$, then $\frac{\partial \phi_a}{\partial x_k} \in C^{m-1}(\mathbb{R}^n)$ for all k.

\[
\text{induction } \frac{\partial}{\partial x_k} (f \ast \phi_a) \in C^{m-1}(\mathbb{R}^n) \text{ for all } k
\]

(c) $\|f \ast \phi_a\|_1 \leq \|f\|_1 \|\phi_a\|_1 = \|f\|_1 \|\phi\|_1 \leq C \|f\|_1$

(d) $(f \ast \phi_a)(x) = \int f(x - y) \phi_a(\frac{y}{a}) dy = \int f(x - ay) \phi(y) dy$

Since $f \in C_c^0(\mathbb{R}^n)$, we know that $|f| \leq M$. Hence the integrand is dominated by $M |\phi|$. By continuity

\[
\lim_{a \to 0} f(x - ay) = f(x).
\]

By LDCT

\[
\lim_{a \to 0} (f \ast \phi_a)(x) = \int f(x) \phi(y) dy = f(x) \cdot 1
\]

We now show the L^1-convergence. Assume first that ϕ has compact support, i.e. $\phi(x) = 0$ if $x \in \mathbb{R}^n \setminus B(0)$.

Recall also that $f(x) = 0$ for all $x \in \mathbb{R}^n \setminus B(0, R)$ for some $R > 0$. Then $(f \ast \phi_a)(x) = 0$ for all $x \in B(0, R)$. Hence $\|f \ast \phi_a\|_1 \leq M \chi_{B(0, R)}$.

By LDCT

\[
\lim_{a \to 0} \|f \ast \phi_a - f\|_1 = 0
\]
If \(\phi \) is general, we argue as follows. For every \(\varepsilon > 0 \), there is an \(r > 0 \) s.t. \(\int_{\mathbb{R}^n \setminus B(0, r)} |\phi(x)| \, dx < \varepsilon \). Set \(\phi' = \phi \chi_{B(0, r)} \) and \(\phi'_a = a^{-n} \phi'(ax) \). Then applying the previous conclusion to the family \((\int \phi'(x) \, dx)\) \(\phi'_a \) yields \(\| f \ast (\int \phi'(x) \, dx) \phi'_a - f \|_1 \xrightarrow{a \to 0} 0 \). So \(\| f \ast \phi'_a - (\int \phi'(x) \, dx) \|_1 \xrightarrow{a \to 0} 0 \). So for a suff small \(\| f \ast \phi'_a - (\int \phi'(x) \, dx) \|_1 < \varepsilon \) and thus \(\| f \ast \phi'_a - f \|_1 < \varepsilon + \varepsilon < \varepsilon + 2\varepsilon \). The claim follows by letting \(\varepsilon \to 0 \).

(e) Given \(\varepsilon > 0 \) find \(f^* \in C_c^0(\mathbb{R}^n) \) s.t. \(\| f - f^* \|_1 < \varepsilon \). Then for suff. small \(a \) \(\| f^* \ast \phi_a - f \|_1 < \varepsilon \) and thus \(\| f \ast \phi_a - f \|_1 < \varepsilon + \varepsilon \). Again, assume first that \(f \in C_c^0(\mathbb{R}^n) \). Let \(\varepsilon > 0 \). By uniform continuity, there is a \(\delta > 0 \) s.t. \(|x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon \). Choose \(k_0 \) s.t. for all \(k \geq k_0 \), \(\int_{\mathbb{R}^n \setminus B(0, \delta)} |\phi_k| \, dx < \varepsilon \). Then

\[
\left| (f \ast (\phi_k \chi_{B(0, \delta)}))(x) - \left(\int_{B(0, \delta)} \phi_k \, dy \right) f(x) \right|
\]
\[
\int \int (f(x-y) - f(y)) \chi_k(y) \chi_B(0, \delta)(y) \, dy \\
\leq \int_{B(0, \delta)} |f(x-y)-f(y)| \chi_k(y) \, dy \\
\leq C \int_{B(0, \delta)} |\chi_k| \, dy \\
= C \delta
\]

Assume that \(f(x) = 0 \) for all \(x \in \mathbb{R}^n \setminus B(0, R) \) and \(\delta < 1 \).
Then for all \(x \in \mathbb{R}^n \setminus B(0, R+1) \) we have \((f \ast (\chi_k \chi_B(0, \delta))) (x) = 0 \).
Combining the previous two results yields
\[
\| f \ast (\chi_k \chi_B(0, \delta)) - (\int_{B(0, \delta)} \chi_k \, dy) \|_1 \\
\leq C \lambda \left(B(0, R+1) \right)
\]
Also
\[
\| f \ast (\chi_k \chi_{\mathbb{R}^n \setminus B(0, \delta)}) \|_1 \\
\leq \| f \|_1 \| \chi_k \chi_{\mathbb{R}^n \setminus B(0, \delta)} \|_1 \\
= \int_{\mathbb{R}^n \setminus B(0, \delta)} |\chi_k| \, dx < \epsilon
\]
So
\[
\| f \ast \chi_k - f \|_1 \\
\leq \| f \ast \chi_k - f \ast (\chi_k \chi_B(0, \delta)) \|_1 + \| f \ast (\chi_k \chi_B(0, \delta)) \\
- (\int_{B(0, \delta)} \chi_k \, dx) \|_1
\]
\[
\leq C \lambda \left(B(0, R+1) \right) + 2 \epsilon \| f \|_1 + \epsilon
\]
Letting \(\epsilon \to 0 \) yields the claim.

For general \(f \) and given \(\epsilon > 0 \) find \(f^* \in C_0^\infty (\mathbb{R}^n) \) s.t. \(\| f - f^* \|_1 < \epsilon \). Then there is a \(k_0 \) s.t. for all \(K > k_0 \)
\[
\| f - f^* \|_1 < \epsilon \\
\Rightarrow \| f \ast \chi_k - f \|_1 < \| f \ast \chi_k - f^* \ast \chi_k \|
\]
\[
+ \| f^* \ast \chi_k - f^* \|_1 + \| f^* - f \|_1
\]
\[
< 2 \epsilon + \| f - f^* \|_1 \| \chi_k \|_1 < 2 \epsilon + C \epsilon
\]
(g) Choose some function $\varphi \in C_c^\infty(\mathbb{R}^n)$ of integral 1, e.g. $(\int \varphi''(x)dx)^{-1} \varphi'$ for some $\varphi' \in C_c^\infty(\mathbb{R}^n)$ of nonzero integral. Then $f \ast \varphi_a = 0$ for all a.
Hence $\|f\|_4 = \|f-f \ast \varphi_a\|_4 \xrightarrow{a \to 0} 0 \Rightarrow \|f\|_4 = 0$.

Proof of the inequality $|\frac{e^{hb^x} - 1}{h} | \leq 1 + |e^{bx}|$ if $|h| \ll 1$.

$e^{hb^x} - 1 = e^{hb^x} - e^{hb^x} = \int_0^1 \frac{d}{dt} e^{hb^xt} dt$

$= hxb \int_0^1 e^{hb^x t} dt$

Since $|e^{hb^x t}| \leq e^{b|x|} \leq 1 + |e^{bx}|$.
(6) (a) Let $x \in U$. By the implicit function theorem (or inverse function theorem), there is an open neighborhood $U_x \subset U$ around x and an open neighborhood $V_x \subset \mathbb{R}^n$ around $\phi(x)$ s.t.

$$\phi|_{U_x} : U_x \rightarrow V_x \quad \text{(i.e. } \phi(U_x) = V_x)$$

is a diffeomorphism.

We have $U = \bigcup_{x \in U} U_x$. The claim follows by passing to a countable subcover.

(Recall: we can find a sequence of compact sets $K_1 \subset K_2 \subset \ldots$ s.t. $U = \bigcup_{i=1}^{\infty} K_i$. For each K_i we can find a finite subcover)

(b) Define $A_1 = U_1 \setminus A_2 = U_2 \setminus U_1 \setminus \cdots$, $A_k = U_k \setminus \bigcup_{i=1}^{k-1} U_i$. Then $U = A_1 \cup A_2 \cup \cdots$. $A_k \in \mathcal{B}$. Set $B_k = \phi^{-1}(A_k) = (\phi^{-1})^{-1}(A_k) \in \mathcal{B}$.

Observe that $B_k \subset V_k$. Then for $x \in \mathbb{R}^n$

$$\# \phi^{-1}(x) = \sum_{k=1}^{\infty} \#(\phi^{-1}(x) \cap A_k) = \sum_{k=1}^{\infty} \#(x \cap B_k)$$

So

$$\# \phi^{-1} = \chi_{B_1} + \chi_{B_2} + \cdots$$

Hence $\# \phi^{-1}$ is \mathcal{B}-measurable. Moreover,

$$\int_U (f \circ \phi) |\det d\phi| \, d\lambda = \sum_{k=1}^{\infty} \int_{U_k} (f \circ \phi) \chi_{A_k} |\det d\phi| \, d\lambda$$

$$= \sum_{k=1}^{\infty} \int_{U_k} ((f \chi_{B_k}) \circ \phi_k) |\det d\phi_k| \, d\lambda$$

$$= \sum_{k=1}^{\infty} \int_{V_k} f \chi_{B_k} \, d\lambda = \int_{\mathbb{R}^n} f \left(\sum_{k=1}^{\infty} \chi_{B_k} \right) \, d\lambda$$

$$= \int_{\mathbb{R}^n} f (\# \phi^{-1}) \, d\lambda$$
(c) We carry out a modified version of the proof of the Lemma that was used for the Transformation Law:

If \(\det d\phi \neq 0 \) everywhere on \(Q \), then \(d\phi \) is invertible on \(Q \). This is then also true on an open neighborhood of \(Q \) and hence we can use part (b) to show the claim.

Assume now that \(\det d\phi_y = 0 \) for some \(y \in Q \).

First consider the case in which \(\text{diam } Q < \varepsilon \) where \(\varepsilon > 0 \) is chosen s.t. \(\| d\phi_{x_1} - d\phi_{x_2} \| < \varepsilon \) for all \(x_1, x_2 \in K \) (this is possible by uniform continuity).

Let \(S = d\phi_y \).

Then for any \(x \in Q \) and \(\sigma(t) = tx + (1-t)y \)

\[
\phi(x) - \phi(y) = \int_0^1 \frac{d}{dt} \phi(\sigma(t)) \, dt = \int_0^1 d\phi(\sigma(t))(x-y) \, dt
\]

Let \(L : \mathbb{R}^n \rightarrow \mathbb{R}^n \)

\(L(x) = S(x-y) + \phi(y) \)

\[
| \phi(x) - L(x) | = | \phi(x) - \phi(y) | - | L(x) - L(y) |
\]

\[
= \left| \int_0^1 \left(d\phi_{\sigma(t)} - d\phi_y \right)(x-y) \, dt \right|
\]

\[
\leq \int_0^1 \| d\phi_{\sigma(t)} - d\phi_y \| \| x-y \| \, dt \leq d \| x-y \| \ (\star)
\]

We can assume that \(\| d\phi \| \leq C' \) on \(K \).

Then since \(L \) is not invertible, \(L(Q) \) is contained in a hyperplane and has diameter \(\leq C' \text{diam } Q \).

By \((\star)\), \(\phi(Q) \) is contained in a \(d \text{diam } Q \) neighborhood of \(L(Q) \).
So \(\phi(Q) \) is contained in a (non-axes-parallel) rectangle of side lengths \((C^t + d) \text{diam}(Q), \ldots, (C^t + d) \text{diam}(Q)\), \(2d \text{ diam } Q \). So

\[
\lambda^*(\phi(Q)) \leq 2d (C^t + d)^{-\frac{n-1}{n}} \text{diam } Q
\]

which is reasonable assuming \(d < 1 \).

Now, for \(Q \) of general diameter, the claim follows by subdivision.

(d) The claim follows by expressing \(G \) as a countable disjoint union of special rectangles.

(e) Observe that \(A = \{ x \in U : \det d\phi_x = 0 \} \).

Let \(K_1 \subset K_2 \subset \cdots \) be a sequence of compact sets such that \(U = \bigcup_{i=1}^{\infty} K_i \) (interior of \(K_i \)).

Consider \(B_k = \{ x \in U : |\det d\phi_x| < \frac{1}{k} \} \). So \(A \subset B_k \).

Then by (d) we have for any fixed \(i \)

\[
\lambda^*(\phi(B_k \cap K_i)) \leq C_i \frac{1}{k} \lambda(B_k \cap K_i) \leq C_i \frac{1}{k} \lambda(K_i)
\]

\[
\Rightarrow \lambda^*(\phi(A \cap K_i)) \leq C_i \frac{1}{k} \lambda(K_i)
\]

\[
\Rightarrow \lambda^*(\phi(A \cap K_i)) = 0
\]

So \(\lambda(\phi(A)) = \lambda(\bigcup_{i=1}^{\infty} \phi(A \cap K_i)) = 0 \).

(f) Set \(A \subset U \) as before and consider \(U' = U \setminus A \).

Then \(U' \) is open and we can apply (b)

\[
\int_{U'} (f \circ \phi) |\det d\phi| = \int_{U} (f \circ \phi) |\det d\phi| \quad \text{(b)} \int_{\mathbb{R}^n} f(\#(\phi|_U)^{-1}) d\lambda
\]

since \(\#(\phi|_U)^{-1} \) and \(\#\phi^{-1} \) only differ on \(\phi(A) \) which is a nullset.

\[
= \int_{\mathbb{R}^n} f(\#\phi^{-1}) d\lambda
\]