
7 Wave Equation in Higher Dimensions

We now consider the initial-value problem for the wave equation in n dimensions,




utt − c2∆u = 0 x ∈ Rn

u(x, 0) = φ(x)
ut(x, 0) = ψ(x)

(7.1)

where ∆u ≡ ∑n
i=1 uxixi

.

7.1 Method of Spherical Means

Ref: Evans, Sec. 2.4.1; Strauss, Sec. 9.2
We begin by introducing a method to solve (7.1) in odd dimensions. First, we introduce

some notation. For x ∈ Rn, let

• B(x, r) = Ball of radius r about x

• ∂B(x, r) = Boundary of ball of radius r about x

• α(n) = Volume of unit ball in Rn

• nα(n) = Surface Area of unit ball in Rn.

With this notation, the volume of the ball of radius r about x ∈ Rn, written as Vol(B(x, r)),
is given by α(n)rn and the surface area of the ball of radius r about x ∈ Rn, written as
S.A.(B(x, r)), is given by nα(n)rn−1.

For f : Rn → R, we define the average of f over B(x, r) as

−
∫

B(x,r)

f(y) dy ≡ 1

Vol(B(x, r))

∫

B(x,r)

f(y) dy =
1

α(n)rn

∫

B(x,r)

f(y) dy.

We define the average of f over ∂B(x, r) as

−
∫

∂B(x,r)

f(y) dS(y) ≡ 1

S.A.(B(x, r))

∫

∂B(x,r)

f(y) dS(y) =
1

nα(n)rn−1

∫

∂B(x,r)

f(y) dS(y),

where dS(y) denotes the surface measure of B(x, r) in Rn.

Example 1. For n = 3, Vol(B(x, r)) = 4
3
πr3. Therefore, for f : R3 → R, the average of f

over B(0, r) is given by

−
∫

B(0,r)

f(y) dy =
3

4πr3

∫ π

0

∫ 2π

0

∫ r

0

f(ρ, θ, φ)ρ2 sin φ dρ dθ dφ.

For n = 3, S.A.(B(x, r)) = 4πr2. Therefore, for f : R3 → R, the average of f over ∂B(0, r)
is given by

−
∫

∂B(0,r)

f(y) dS(y) =
1

4πr2

∫ π

0

∫ 2π

0

f(r, θ, φ)r2 sin φ dθ dφ =
1

4π

∫ π

0

∫ 2π

0

f(r, θ, φ) sin φ dθ dφ.

¦
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Our plan to solve (7.1) is the following. Fix a point x ∈ Rn. For r > 0, we define

u(x; r, t) ≡ −
∫

∂B(x,r)

u(y, t) dS(y),

the average of u(·, t) over ∂B(x, r). For r = 0, we define u(x; 0, t) = u(x, t). For r < 0, we
define u(x; r, t) = u(x;−r, t). We claim that for u smooth, u is a continuous function of r,
and, therefore,

lim
r→0+

u(x; r, t) = u(x, t).

In order to solve (7.1), we will assume u is a solution of (7.1) and look for an equation u
solves. Note: We will assume c = 1. For c 6= 1, we can make a change of variables to derive
the solution from the solution in the case c = 1.

Lemma 2. If u solves 



utt −∆u = 0, x ∈ Rn, t ≥ 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x),

then u(x; r, t) solves





utt − urr − (n− 1)

r
ur = 0, 0 < r < ∞, t ≥ 0

u(x; r, 0) = φ(x; r) ≡ −
∫

∂B(x,r)

φ(y) dS(y)

ut(x; r, 0) = ψ(x; r) ≡ −
∫

∂B(x,r)

ψ(y) dS(y)

for every x ∈ Rn.

Proof.

u(x; r, t) = −
∫

∂B(x,r)

u(y, t) dS(y)

= −
∫

∂B(0,1)

u(x + rz, t) dS(z).
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Therefore,

ur(x; r, t) = −
∫

∂B(0,1)

∇u(x + rz, t) · z dS(z)

= −
∫

∂B(x,r)

∇u(y, t) · y − x

r
dS(y)

= −
∫

∂B(x,r)

∂u

∂ν
(y, t) dS(y)

=
1

nα(n)rn−1

∫

∂B(x,r)

∂u

∂ν
(y, t) dS(y)

=
1

nα(n)rn−1

∫

B(x,r)

∆u(y, t) dy

=
1

nα(n)rn−1

∫

B(x,r)

utt(y, t) dy

by the Divergence Theorem, and using the fact that u solves the wave equation, utt−∆u = 0.
Therefore,

ur(x; r, t) =
1

nα(n)rn−1

∫

B(x,r)

utt(y, t) dy

which implies

rn−1ur(x; r, t) =
1

nα(n)

∫

B(x,r)

utt(y, t) dy.

Therefore,

(rn−1ur(x; r, t))r =
1

nα(n)

∫

∂B(x,r)

utt(y, t) dS(y)

=
rn−1

nα(n)rn−1

∫

∂B(x,r)

utt(y, t) dS

= rn−1 −
∫

∂B(x,r)

utt(y, t) dS(y)

= rn−1utt(x; r, t).

Therefore,
(rn−1ur(x; r, t))r = rn−1utt(x; r, t),

which implies
(n− 1)rn−2ur + rn−1urr = rn−1utt.

Therefore,

utt − urr − (n− 1)

r
ur = 0
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and

u(x; r, 0) = −
∫

∂B(x,r)

u(y, 0) dS = −
∫

∂B(x,r)

φ(y) dS = φ(x; r).

Similarly,
ut(x; r, 0) = ψ(x; r)

as claimed. ¤
Solution for n = 3.

We now consider the case of the wave equation in three dimensions. Assume u is a
solution of (7.1) for n = 3. As before define the function u(x; r, t) such that

u(x; r, t) = −
∫

∂B(x,r)

u(y, t) dS(y).

Next introduce a function v(x; r, t) such that

v(x; r, t) = ru(x; r, t)

and new functions g(x; r) and h(x; r) such that

g(x; r) = rφ(x; r) = r −
∫

∂B(x,r)

φ(r) dS(y)

h(x; r) = rψ(x; r) = r −
∫

∂B(x,r)

ψ(r) dS(y).

Lemma 3. For each x ∈ Rn, the function v(x; r, t) solves the one-dimensional wave equation
on the half-line with Dirichlet boundary conditions,





vtt − vrr = 0 0 < r < ∞, t ≥ 0
v(x; r, 0) = g(x; r) 0 < r < ∞
vt(x; r, 0) = h(x; r) 0 < r < ∞
v(x; 0, t) = 0 t ≥ 0.

Proof.

vtt = rutt

= r

[
urr +

2

r
ur

]

= rurr + 2ur

= (rur + u)r

= (ru)rr

= vrr.
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Next,

v(x; r, 0) = ru(x; r, 0)

= r −
∫

∂B(x,r)

u(y, 0) dS(y)

= r −
∫

∂B(x,r)

φ(y) dS(y)

= rφ(x, r)

= g(x; r)

Similarly,
vt(x; r, 0) = h(x; r).

Now,
v(x; 0, t) = 0 · u(x; 0, t) = 0.

Therefore, v(x; r, t) solves the one-dimensional wave equation on a half-line with Dirichlet
boundary conditions, as claimed.

Now we use this fact to construct the solution of (7.1). By d’Alembert’s formula, we
know that for 0 ≤ r ≤ t, the solution v(x; r, t) is given by

v(x; r, t) =
1

2
[g(x; r + t)− g(x; t− r)] +

1

2

∫ r+t

−r+t

h(x; y) dy.

Now
u(x, t) = lim

r→0+
u(x; r, t)

and
v(x; r, t) = ru(x; r, t).

Therefore,

u(x, t) = lim
r→0+

v(x; r, t)

r

= lim
r→0+

{
1

2r
[g(x; t + r)− g(x; t− r)] +

1

2r

∫ r+t

−r+t

h(x; y) dy

}

=
d

dt
g(x; t) + h(x; t).

Now
g(x; r) = rφ(x; r)

implies

g(x; t) = tφ(x; t) = t−
∫

∂B(x,t)

φ(y) dS(y).

Similarly,

h(x; t) = tψ(x; t) = t−
∫

∂B(x,t)

ψ(y) dS(y).
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Therefore, the solution of the wave equation in R3 (with c = 1) is given by

u(x, t) =
∂

∂t

[
t−
∫

∂B(x,t)

φ(y) dS(y)

]
+ t−

∫

∂B(x,t)

ψ(y) dS(y).

If φ is smooth, the solution can be simplified further. In particular, for φ smooth, we
have

d

dt
g(x; t) =

d

dt

(
t−
∫

∂B(x,t)

φ(y) dS(y)

)

=
d

dt

(
t−
∫

∂B(0,1)

φ(x + tz) dS(z)

)

= −
∫

∂B(0,1)

φ(x + tz) dS(z) + t

∫

∂B(0,1)

∇φ(x + tz) · z dS(z)

= −
∫

∂B(x,t)

φ(y) dS(y) + t−
∫

∂B(x,t)

∇φ(y) ·
(

y − x

t

)
dS(y)

= −
∫

∂B(x,t)

φ(y) dS(y) +−
∫

∂B(x,t)

∇φ(y) · (y − x) dS(y).

And,

h(x; t) = tψ(x; t) = t−
∫

∂B(x,t)

ψ(y) dS(y).

Therefore, we have

u(x, t) = −
∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y).

We note that in R3,

−
∫

∂B(x,t)

=
1

nα(n)tn−1

∫

∂B(x,t)

=
1

4πt2

∫

∂B(x,t)

.

Therefore, the solution of the IVP for the wave equation in R3 (with c = 1 and φ smooth)
is given by

u(x, t) =
1

4πt2

∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y). (7.2)

This is known as Kirchoff’s formula for the solution of the initial value problem for the
wave equation in R3.

Remark. Above we found the solution for the wave equation in R3 in the case when c = 1.
If c 6= 1, we can simply use the above formula making a change of variables. In particular,
consider the initial-value problem





vtt − c2∆v = 0 x ∈ Rn

v(x, 0) = φ(x)

vt(x, 0) = ψ(x).

(7.3)
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Suppose v is a solution of (7.3). Then define u(x, t) ≡ v(x, 1
c
t). Then

utt −∆u =
1

c2
vtt −∆v = 0

implies u is a solution of 



utt − uxx = 0 x ∈ Rn

u(x, 0) = φ(x)

ut(x, 0) =
1

c
ψ(x).

Therefore, u is given by Kirchoff’s formula above. Now by making the change of variables
t̃ = 1

c
t, we see that

v(x, t̃) = u(x, ct̃),

and we arrive at the solution for (7.3),

v(x, t) =
1

4πc2t2

∫

∂B(x,ct)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y).

7.2 Method of Descent

In this section, we use Kirchoff’s formula for the solution of the wave equation in three
dimensions to derive the solution of the wave equation in two dimensions. This technique
is known as the method of descent. This technique can be used in general to find the
solution of the wave equation in even dimensions, using the solution of the wave equation in
odd dimensions.
Solution for n = 2.

Suppose u is a solution of the initial value problem for the wave equation in two dimen-
sions, 




utt −∆u = 0, x ∈ R2, t ≥ 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

We will find a solution in the 2-D case, by using the solution to the 3-D problem. Let
u(x1, x2, t) be the solution to the 2-D problem. Define

ũ(x1, x2, x3, t) ≡ u(x1, x2, t).

Therefore,

ũ(x1, x2, x3, 0) ≡ u(x1, x2, 0) = φ(x1, x2)

ũt(x1, x2, x3, 0) ≡ u(x1, x2, 0) = ψ(x1, x2).

Clearly, ũ(x1, x2, x3, t) is a solution of the 3D wave equation with initial data φ(x1, x2) and
ψ(x1, x2), 




ũtt − ũx1x1 − ũx2x2 − ũx3x3 = 0

ũ(x1, x2, x3, 0) = φ̃(x1, x2, x3) = φ(x1, x2)

ũt(x1, x2, x3, 0) = ψ̃(x1, x2, x3) = ψ(x1, x2).
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Now we can solve the 3D wave equation using Kirchoff’s formula. In particular, our
solution is given by

ũ(x1, x2, 0, t) = −
∫

∂B(x,t)

[φ̃(y) +∇φ̃(y) · (y − x) + tψ̃(y)] dS(y)

where B(x, t) is the ball of radius t in R3 about the point x = (x1, x2, 0). Now we note that

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

4πt2

∫

∂B(x,t)

φ̃(y) dS(y)

=
1

2πt2

∫

B(x,t)

φ(y)(1 + |∇γ(y)|2)1/2 dy

where B(x, t) is the ball in R2 of radius t about the point x = (x1, x2) and γ(y) = (t2− |y−
x|2)1/2. Therefore,

∇γ(y) = − y − x

(t2 − |y − x|2)1/2

which implies

(1 + |∇γ(y)|2)1/2 =

(
t2

t2 − |y − x|2
)1/2

.

Therefore,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

2πt2

∫

B(x,t)

tφ(y)

(t2 − |y − x|2)1/2
dy.

Similarly,

−
∫

∂B(x,t)

tψ̃(y) dS(y) =
1

2πt2

∫

B(x,t)

t2ψ(y)

(t2 − |y − x|2)1/2
dy

and

−
∫

∂B(x,t)

∇φ̃(y) · (y − x) dS(y) =
1

2πt2

∫

B(x,t)

t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy.

Therefore, the solution of the initial-value problem for the wave equation in R2 (with c = 1)
is given by

u(x, t) =
1

2πt2

∫

B(x,t)

tφ(y) + t2ψ(y) + t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy. (7.4)

Again, by making a change of variables, we see that the solution of the wave equation in
two dimensions is given by

u(x, t) =
1

2πc2t2

∫

B(x,ct)

ctφ(y) + ct2ψ(y) + ct∇φ(y) · (y − x)

(c2t2 − |y − x|2)1/2
dy.
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7.3 Huygen’s Principle

Note that for the initial-value problem for the wave equation in three dimensions, the value
of the solution at any point (x, t) ∈ R3×(0,∞) depends only on the values of the initial data
on the surface of the ball of radius ct about the point x ∈ R3; that is, on ∂B(x, ct). That is
to say, disturbances all travel at exactly speed c. This is known as Huygens’s principle.
In contrast, in two dimensions, the value of the solution u at the point (x, t) depends on the
initial data within the ball of radius ct about the point x ∈ R2. Signals don’t all travel at
speed c. In fact, as we will see, for n ≥ 3 and odd, Huygens’s principle holds. That is, all
signals travel at exactly speed c. In even dimensions, however, that is not the case.

7.4 Wave Equation in Rn, n > 3

Ref: Evans, Sec. 2.4.1
Note: In this section, we assume c = 1. For c 6= 1, we can make a change of variables to

find the solution.

Odd dimensions.
For the case of odd dimensions, we use the method of spherical means as we did for the

case of n = 3. Let n = 2k + 1. Let x ∈ Rn. Define

v(x; r, t) ≡
(

1

r

∂

∂r

)k−1

(r2k−1u(x; r, t))

g(x; r) ≡
(

1

r

∂

∂r

)k−1

(r2k−1φ(x; r))

h(x; r) ≡
(

1

r

∂

∂r

)k−1

(r2k−1ψ(x; r)).

Notice that for k = 1, these definitions reduce to those functions introduced in the case
n = 3.

First, we will show that v(x; r, t) solves the wave equation on the half-line with Dirichlet
boundary conditions.

Lemma 4. For each integer k ≥ 1, for each x ∈ Rn, the function v(x; r, t) defined above
solves 




vtt − vrr = 0 r > 0

v(x; r, 0) = g(x; r)

vt(x; r, 0) = h(x; r)

v(x; 0, t) = 0.

The proof relies on the following lemma.

Lemma 5. Let φ : R→ R be Ck+1. Then for k = 1, 2, . . .

1. (
d2

dr2

)(
1

r

d

dr

)k−1 (
r2k−1φ(r)

)
=

(
1

r

d

dr

)k (
r2k dφ

dr
(r)

)
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2. (
1

r

d

dr

)k−1 (
r2k−1φ(r)

)
=

k−1∑
j=0

βk
j rj+1djφ

drj
(r)

where each βk
j is independent of φ.

3.
βk

0 = 1 · 3 · 5 · · · (2k − 1).

Proof. Use induction.

Proof of Lemma 4.

vrr = ∂2
r

[(
1

r

d

dr

)k−1

(r2k−1u(x; r, t))

]

=

(
1

r

d

dr

)k

(r2kur(x; r, t)) by Lemma 5

=

(
1

r

d

dr

)k−1 (
1

r

d

dr

)
(r2kur(x; r, t))

=

(
1

r

d

dr

)k−1 (
1

r
[2kr2k−1ur + r2kurr]

)

=

(
1

r

d

dr

)k−1 (
r2k−1

[
2k

r
ur + urr

])

=

(
1

r

d

dr

)k−1 (
r2k−1

[
n− 1

r
ur + urr

])

=

(
1

r

d

dr

)k−1 (
r2k−1utt

)

= ∂2
t

(
1

r

d

dr

)k−1 (
r2k−1utt

)

= vtt

Clearly, v(x; r, 0) = g(x; r), vt(x; r, 0) = h(x; r) and v(x; 0, t) = 0. Therefore, the lemma is
proved. ¤

Now v(x; r, t) is a solution of the one-dimensional wave equation on the half-line with
Dirichlet boundary condition implies for 0 ≤ r ≤ t, the solution is given by

v(x; r, t) =
1

2
[g(x; r + t)− g(x; t− r)] +

1

2

∫ t+r

t−r

h(x; y) dy.

Recall:
u(x, t) = lim

r→0
u(x; r, t).
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Now

v(x; r, t) =

(
1

r

d

dr

)k−1 (
r2k−1u(x; r, t)

)

=
k−1∑
j=0

βk
j rj+1 ∂j

∂rj
u(x; r, t)

= βk
0ru(x; r, t) + βk

1r2ur(x; r, t) + . . . + βk
k−1r

k ∂k−1

∂rk−1
u(x; r, t).

Therefore,

βk
0ru(x; r, t) = v(x; r, t)− βk

1r2ur(x; r, t)− . . .− βk
k−1r

k ∂k−1

∂rk−1
u(x; r, t),

which implies

u(x; r, t) =
v(x; r, t)

βk
0r

− βk
1

βk
0

rur(x; r, t)− . . .− βk
k−1

βk
0

rk−1 ∂k−1

∂rk−1
u(x; r, t).

Therefore,

u(x, t) = lim
r→0

[
v(x; r, t)

βk
0r

− βk
1

βk
0

rur(x; r, t)− . . .− βk
k−1

βk
0

rk−1 ∂k−1

∂rk−1
u(x; r, t)

]

= lim
r→0

v(x; r, t)

βk
0r

= lim
r→0

1

βk
0

[
g(x; t + r)− g(x; t− r)

2r
+

1

2r

∫ t+r

t−r

h(x; y) dy

]

=
1

βk
0

[∂tg(x; t) + h(x; t)]

where βk
0 = 1 · 3 · 5 · · · (2k − 1). Recall

g(x; r) =

(
1

r

∂

∂r

)k−1

(r2k−1φ(x; r)).

Now n = 2k + 1 implies k = (n− 1)/2, and, therefore,

g(x; t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

φ(y) dS(y)

)
.

And,

h(x; r) =

(
1

r

∂

∂r

)k−1

(r2k−1ψ(x; r)).

Therefore,

h(x; t) =

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

ψ(y) dS(y)

)
.
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Therefore,

u(x, t) =
1

γn

[∂tg(x; t) + h(x; t)]

implies

u(x, t) =
1

γn

(
∂

∂t

)(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

φ(y) dS(y)

)

+
1

γn

(
1

t

∂

∂t

)n−3
2

(
tn−2 −

∫

∂B(x,t)

ψ(y) dS(y)

)

where γn = 1 · 3 · 5 · · · (n− 2).

Even dimensions.
As in the case of n = 2 dimensions, we use the method of descent. In particular, suppose

u(x1, . . . , xn, t) is a solution of the wave equation in Rn with initial data u(x1, . . . , xn, 0) =
φ(x1, . . . , xn) and ut(x1, . . . , xn, 0) = ψ(x1, . . . , xn). Then define

ũ(x1, . . . , xn+1, t) ≡ u(x1, . . . , xn, t)

φ̃(x1, . . . , xn+1) ≡ φ(x1, . . . , xn)

ψ̃(x1, . . . , xn+1) ≡ ψ(x1, . . . , xn).

Therefore, ũ is a solution of the wave equation in Rn+1, where now n + 1 is odd. Therefore,
from the formula above for the case when the dimension is odd, our solution at the point
(x, t) = (x1, . . . , xn, 0, t) is given by

ũ(x, t) =
1

γn+1

(
∂

∂t

) (
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

φ̃(y) dS(y)

)

+
1

γn+1

(
1

t

∂

∂t

)n−2
2

(
tn−1

∮

∂B(x,t)

ψ̃(y) dS(y)

)

where γn+1 = 1 · 3 · 5 · · · (n− 1), and where B(x, t) is the ball in Rn+1 of radius t about the
point x = (x1, . . . , xn, 0).

Now,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
1

(n + 1)α(n + 1)tn

∫

∂B(x,t)

φ̃(y) dS(y).

But, notice ∂B(x, t)∩{yn+1 ≥ 0} is the graph of the function γ(y) ≡ (t2−|y−x|2)1/2. And,
similarly, ∂B(x, t) ∩ {yn+1 ≤ 0} is the graph of −γ. Therefore,

1

(n + 1)α(n + 1)tn

∫

∂B(x,t)

φ̃(y) dS(y) =
2

(n + 1)α(n + 1)tn

∫

B(x,t)

φ(y)(1 + |∇γ(y)|2)1/2 dy

Now
(1 + |∇γ(y)|2)1/2 = t(t2 − |y − x|2)−1/2.
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Therefore,

−
∫

∂B(x,t)

φ̃(y) dS(y) =
2

(n + 1)α(n + 1)tn

∫

B(x,t)

tφ(y)

(t2 − |y − x|2)1/2
dy

=
2tα(n)

(n + 1)α(n + 1)α(n)tn

∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

=
2tα(n)

(n + 1)α(n + 1)
−
∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy.

Therefore, our solution formula is given by

u(x, t) =
1

γn+1

(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

φ̃(y) dS(y)

)

+
1

γn+1

(
1

t

∂

∂t

)n−2
2

(
tn−1 −

∫

∂B(x,t)

ψ̃(y) dS(y)

)

=
1

γn+1

· 2α(n)

(n + 1)α(n + 1)

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn −

∫

∂B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn −

∫

∂B(x,t)

ψ(y)

(t2 − |y − x|2)1/2
dy

)]
.

Now γn+1 = 1 · 3 · 5 · · · (n− 1) and

α(n) =
πn/2

Γ
(

n+2
2

) ,

where Γ(n) is the gamma function,

Γ(n) =

∫ ∞

0

e−xxn−1 dx.

Therefore,

1

γn+1

· 2α(n)

(n + 1)α(n + 1)
=

1

1 · 3 · 5 · · · (n− 1)
·

2 πn/2

Γ(n+2
2

)

(n + 1)π(n+1)/2

Γ(n+3
2

)

=
1

1 · 3 · 5 · · · (n + 1)
· 1

π1/2
· Γ(n+3

2
)

Γ(n+2
2

)
.

Using properties of the gamma function, namely that

Γ(m + 1) = mΓ(m)

and
Γ(1/2) = π1/2,
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we can conclude that

Γ

(
n + 3

2

)
=

(
n + 1

2

)
·
(

n− 1

2

)
· · ·

(
1

2

)
Γ

(
1

2

)

and

Γ

(
n + 2

2

)
=

(n

2

)
·
(

n− 2

2

)
· · ·

(
2

2

)
.

And, therefore,
1

γn+1

· 2α(n)

(n + 1)α(n + 1)
=

1

2 · 4 · · · (n− 2) · n
Therefore, the solution of the wave equation in even dimensions is given by

u(x, t) =
1

γn

[(
∂

∂t

)(
1

t

∂

∂t

)n−2
2

(
tn −

∫

B(x,t)

φ(y)

(t2 − |y − x|2)1/2
dy

)

+

(
1

t

∂

∂t

)n−2
2

(
tn −

∫

B(x,t)

ψ(y)

(t2 − |y − x|2)1/2
dy

)]

where γn ≡ 2 · 4 · · · (n− 2) · n.

7.5 Wave Equation in Rn with a source.

In this section, we consider the inhomogeneous wave equation in Rn. First, recall Duhamel’s
Principle. If S(t) is the solution operator for the first-order initial-value problem

{
Ut + AU = 0

U(0) = Φ,

then the solution of the inhomogeneous problem

{
Ut + AU = F

U(0) = Φ

“should” be given by

U(t) = S(t)Φ +

∫ t

0

S(t− s)F (s) ds.

Now consider the initial-value problem for the wave equation in Rn,





utt −∆u = f(x, t) x ∈ Rn

u(x, 0) = φ(x)

ut(x, 0) = ψ(x).

(7.5)
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Introducing a new function v = ut, we can rewrite this equation as




[
u
v

]

t

=

[
0 1
∆ 0

] [
u
v

]
+

[
0
f

]
x ∈ Rn

[
u(x, 0)
v(x, 0)

]
=

[
φ(x)
ψ(x)

]
.

(7.6)

or {
Ut + AU = F

U(x, 0) = Φ(x)

where

U =

[
u
v

]
A =

[
0 −1
−∆ 0

]

F =

[
0
f

]
Φ =

[
φ
ψ

]
.

Now in order to solve (7.5), we look for the solution operator S(t) associated with the
first-order system (7.6).

First, consider the case n = 3. In three dimensions, we can find the solution operator
S(t) by using Kirchoff’s formula. Recall that the solution of the initial-value problem for the
homogeneous wave equation in three dimensions (with c = 1) is given by

u(x, t) =
1

4πt2

∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y),

which implies the solution operator S(t) associated with (7.6) is given by

S(t)Φ = S(t)

[
φ
ψ

]
=

[ 1
4πt2

∫
∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y)

∂t

(
1

4πt2

∫
∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y)
)
]

.

Therefore,

S(t− s)F (s) = S(t− s)

[
0

f(s)

]
=

[ 1
4π(t−s)

∫
∂B(x,t−s)

f(y, s) dS(y)

∂t

(
1

4π(t−s)

∫
∂B(x,t−s)

f(y, s) dS(y)
)
]

.

Now using the fact that the solution of (7.6) is given by
[
u(x, t)
v(x, t)

]
= U(x, t) = S(t)Φ(x) +

∫ t

0

S(t− s)F (x, s) ds,

we see that the solution of (7.5) is given by the first component of U . Therefore, the solution
of the initial-value problem for the inhomogeneous wave equation in three dimensions (with
c = 1) (7.5) is given by

u(x, t) =
1

4πt2

∫

∂B(x,t)

[φ(y) +∇φ(y) · (y − x) + tψ(y)] dS(y)

+

∫ t

0

1

4π(t− s)

∫

∂B(x,t−s)

f(y, s) dS(y) ds.
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Similarly, in two dimensions, the first component of the solution operator is given by

S1(t)Φ = S1(t)

[
φ
ψ

]
=

1

2πt2

∫

B(x,t)

tφ(y) + t2ψ(y) + t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy.

Therefore, the solution of the initial-value problem for the inhomogeneous wave equation in
two dimensions (with c = 1) (7.5) is given by

u(x, t) =
1

2πt2

∫

B(x,t)

tφ(y) + t2ψ(y) + t∇φ(y) · (y − x)

(t2 − |y − x|2)1/2
dy

+

∫ t

0

1

2π(t− s)2

∫

B(x,t−s)

(t− s)2f(y, s)

((t− s)2 − |y − x|2)1/2
dy ds.

7.6 Wave Equation on a Bounded Domain in Rn.

In this section, we consider the initial-value problem for the wave equation on a bounded
domain Ω ⊂ Rn, 




utt − c2∆u = 0, x ∈ Ω

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

u satisfies certain boundary conditions on ∂Ω,

As before, we look for a solution using separation of variables. In particular, we look for a
solution of the form u(x, t) = X(x)T (t). Substituting a function of this form into our PDE,
we arrive at the equation

T ′′X − c2T∆X = 0.

This equation implies the functions T and X satisfy the following equation for some scalar
λ,

− T ′′

c2T
= −∆X

X
= λ.

Consequently, we are lead to the following eigenvalue problem

{
−∆X = λX, x ∈ Ω

X satisfies certain boundary conditions on ∂Ω.

Suppose we find eigenvalues λn with corresponding eigenfunctions Xn(x). Then for each
n, we just need to solve

T ′′
n (t) + c2λnTn(t) = 0.

If λn is positive, this means

Tn(t) = An cos(
√

λnct) + Bn sin(
√

λnct).

If λn = 0, this means
Tn(t) = An + Bnt.
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If λn is negative, this means

Tn(t) = An cosh(
√
−λnct) + Bn sinh(

√
−λnct).

Then defining the function

u(x, t) =
∑

n

Tn(t)Xn(x),

for Xn, Tn as defined above for any choice of constants An, Bn, we have found a solution of
the wave equation on the bounded domain Ω ⊂ Rn, which satisfies our boundary conditions.

Now in order for our initial conditions to be satisfied, that is, u(x, 0) = φ(x) and ut(x, 0) =
ψ(x), we need to choose constants An, Bn such that

u(x, 0) =
∑

n

AnXn(x) = φ(x)

and
ut(x, 0) =

∑

λn 6=0

c
√
|λn|BnXn(x) +

∑

λn=0

BnXn(x) = ψ(x).

If our eigenfunctions are orthogonal, then we can find coefficients An, Bn satisfying the above
equations, by multiplying these equations by Xm for a fixed m and integrating over Ω. Doing
so, we see that our coefficients An are given by

An =
〈Xn, φ〉
〈Xn, Xn〉 =

∫
Ω

Xn(x)φ(x) dx∫
Ω

X2
n(x) dx

,

and

c
√
|λn|Bn =

〈Xn, ψ〉
〈Xn, Xn〉 =

∫
Ω

Xn(x)ψ(x) dx∫
Ω

X2
n(x) dx

for λn 6= 0

Bn =
〈Xn, ψ〉
〈Xn, Xn〉 =

∫
Ω

Xn(x)ψ(x) dx∫
Ω

X2
n(x) dx

for λn = 0.
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