1. Classify the following equations in terms of degree of nonlinearity: linear, semilinear, quasilinear, fully nonlinear.

 (a) \(u_t + u_x + \sin(u) = 0 \)

 (b) \(u_t + u_x + \sin(x^2) = 0 \)

 (c) \(u_t + u_x + \sin(u_x) = 0 \)

 (d) \(u_t + e^u = x^2u^2 \)

 (e) \(u_t + e^uu_x = \sin(x^2) \)

2. Solve

 \[
 \begin{cases}
 u_t + xu_x = t^3 \\
 u(x, 0) = \phi(x).
 \end{cases}
 \]

3. Solve

 \[
 \begin{cases}
 u_t + xu_x = u^3 \\
 u(x, 0) = \sin(x).
 \end{cases}
 \]

 At some time \(T > 0 \), the solution \(u \) blow up. That is, there exist points \(x_0 \) such that \(|u(x_0, T)| \to +\infty \). Find the smallest time \(T \), and the points \(x_0 \) such that \(|u(x_0, t)| \to +\infty \) as \(t \to T^- \).

4. (a) Show there are no solutions to

 \[
 \begin{cases}
 xu_t + u_x = 0 \\
 u(x, 0) = \sin(x).
 \end{cases}
 \]

 (b) Explain why there are an infinite number of solutions of

 \[
 \begin{cases}
 xu_t + u_x = 0 \\
 u(x, 0) = \cos(x)
 \end{cases}
 \]

5. Solve

 \[
 \begin{cases}
 u_t + uu_x = 0 \\
 u(x, 0) = \sin(x).
 \end{cases}
 \]

 Find the time \(T > 0 \) such that \(u(x, t) \) is smooth for \(0 \leq t < T \) and \(u_x(x, t) \) becomes infinite at time \(T \) for some \(x = x_0 \). Find \(x_0 \).