
Math 220a - Fall 2002 Homework 6 Solutions

1. Use the method of reflection to solve the initial-boundary value problem on the interval
0 < x < l, 




utt − c2uxx = 0 0 < x < l
u(x, 0) = 0 0 < x < l
ut(x, 0) = x 0 < x < l
u(0, t) = 0 = u(l, t).

In particular, calculate the explicit solution of u in regions R1, R2, R3 shown below.

Solution:

u(x, t) =





xt, (x, t) ∈ R1
1
c
l2 − 1

c
l(x + ct) + xt, (x, t) ∈ R2

xt− 1
c
l(x + ct) + 1

c
l2, (x, t) ∈ R3

2. Do the same thing as in problem 1, except now for the Neumann boundary conditions.
That is, use the method of refelection to solve the inital-boundary value problem on
the interval 0 < x < l with Neumann boundary conditions,





utt − c2uxx = 0, 0 < x < l
u(x, 0) = 0 0 < x < l
ut(x, 0) = x 0 < x < l
ux(0, t) = 0 = ux(l, t).

Write the explicit solution in the same three regions as shown in problem 1.

Solution:

a. For x ∈ R1

u(x, t) =
1

2c

(∫ x+ct

x−ct

φevendx

)

=
1

2c

(∫ 0

x−ct

φevendx +

∫ x+ct

0

φevendx

)

=
1

2c

(∫ ct−x

0

xdx +

∫ x+ct

0

xdx

)

=
(ct)2 + x2

2c

1



b. For x ∈ R2

u(x, t) =
1

2c

(∫ x+ct

x−ct

φevendx

)

=
1

2c

(∫ 0

x−ct

φevendx +

∫ l

0

φevendx +

∫ x+ct

l

φevendx

)

=
1

2c

(∫ ct−x

0

xdx +

∫ l

0

xdx +

∫ l

2l−x−ct

xdx

)

=
−l2 − 2ctx + 2l(ct + x)

2c

c. For x ∈ R3

u(x, t) =
1

2c

(∫ x+ct

x−ct

φevendx

)

=
1

2c

(∫ 0

x−ct

φevendx +

∫ l

0

φevendx +

∫ 2l

l

φevendx +

∫ x+ct

2l

φevendx

)

=
1

2c

(∫ ct−x

0

xdx + 2

∫ l

0

xdx +

∫ x+ct−2l

0

xdx

)

=
2l2 + (x− ct)2 + (x + ct− 2l)2

4c

3. Use Duhamel’s principle to find the solution of the inhomogeneous wave equation on
the half-line with Neumann boundary conditions





utt − c2uxx = f(x, t), 0 < x < ∞
u(x, 0) = φ(x) 0 < x < ∞
ut(x, 0) = ψ(x) 0 < x < ∞
ux(0, t) = 0.

In particular, introducing a new function v = ut, rewrite the equation as the system




Ut + AU = F 0 < x < ∞
U(x, 0) = Φ(x) 0 < x < ∞
Ux(0, t) =

[
ux(0, t)
vx(0, t)

]
=

[
0
0

]

where

U =

[
u
v

]
A =

[
0 −1

−c2∂2
x 0

]

F =

[
0
f

]
Φ =

[
φ
ψ

]
.
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(a) Find the solution operator S(t) associated with the homogeneous system





Ut + AU = 0 0 < x < ∞
U(x, 0) = Φ(x) 0 < x < ∞
Ux(0, t) =

[
0
0

]
.

Solution: Extending the initial data φ and ψ to be even, we know that the
solution of the wave equation on the half-line with Neumann boundary conditions
is given as follows:

u(x, t) =
1

2
[φeven(x + ct) + φeven(x− ct)] +

1

2c

∫ x+ct

x−ct

ψeven(y) dy.

In particular, for x > ct, we have

u(x, t) =
1

2
[φ(x + ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ(y) dy.

While for x < ct, we have

u(x, t) =
1

2
[φ(x + ct) + φ(ct− x)] +

1

2c

∫ x+ct

0

ψ(y) dy +
1

2c

∫ ct−x

0

ψ(y) dy.

Therefore, the solution operator associated with the system above is given by

S(t)Φ =

[
1
2
[φeven(x + ct) + φeven(x− ct)] + 1

2c

∫ x+ct

x−ct
ψeven(y) dy

∂
∂t

(
1
2
[φeven(x + ct) + φeven(x− ct)] + 1

2c

∫ x+ct

x−ct
ψeven(y) dy

)
]

.

(b) Use S(t) to construct a solution of the inhomogeneous system.

Solution:

By Duhamel’s principle the solution of the inhomogeneous system will be given
by

S(t)Φ +

∫ t

0

S(t− s)F (s) ds.

Therefore, the solution of the inhomogeneous system is given by

[
1
2
[φeven(x + ct) + φeven(x− ct)] + 1

2c

∫ x+ct

x−ct
ψeven(y) dy

∂
∂t

(
1
2
[φeven(x + ct) + φeven(x− ct)] + 1

2c

∫ x+ct

x−ct
ψeven(y) dy

)
]

+

∫ t

0




1
2c

∫ x+c(t−s)

x−c(t−s)
feven(y, s) dy

∂
∂t

(
1
2c

∫ x+c(t−s)

x−c(t−s)
feven(y, s) dy

)

 ds.
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(c) Use the solution of the inhomogeneous system to solve the inhomogeneous wave
equation on the half-line with Neumann boundary conditions.

Solution: Therefore, the solution of the inhomogeneous wave equation on the
half-line with Neumann boundary conditions is given by the first component of
the vector-valued function found in part (b),

u(x, t) =
1

2
[φeven(x + ct) + φeven(x− ct)] +

1

2c

∫ x+ct

x−ct

ψeven(y) dy

+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

feven(y, s)dyds

In particular, for x > ct,

u(x, t) =
1

2
[φ(x + ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ(y) dy

+
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

f(y, s)dyds.

while for x < ct, defining t0 such that x− c(t− t0) = 0,

u(x, t) =
1

2
[φ(x + ct) + φ(ct− x)] +

1

2c

∫ x+ct

0

ψ(y) dy +
1

2c

∫ ct−x

0

ψ(y) dy

+
1

2c

∫ t0

0

∫ x+c(t−s)

0

f(y, s) dy ds +
1

2c

∫ t0

0

∫ c(t−s)−x

0

f(y, s) dy ds

+
1

2c

∫ t

t0

∫ x+c(t−s)

x−c(t−s)

f(y, s) dy ds.

4. Use separation of variables to solve

utt − c2uxx = 0 0 < x < l, t > 0

u(x, 0) = x(x− l)2 0 < x < l

ut(x, 0) = 0 0 < x < l

u(0, t) = ux(l, t) = 0

Solution:

letting u(x, t) = X(x)T (x) we have,

T ′′

c2T
=

X ′′

X
= λ

Therefore X(x) is of the form,
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X(x) = C cos(βx) + D sin(βx)

boundary conditions imply X(0) = 0 and X ′(l) = 0 which yields that

C = 0

and

β =
(2n + 1)π

2l

Therefore

X(x) = sin

(
(2n + 1)π

2l
x

)

Now T (t) satisfies

T ′′ = c2λT

Therefore for each λn, T takes the form,

T (t) = An cos

(
(2n + 1)πc

2l
t

)
+ Bn sin

(
(2n + 1)πc

2l
t

)

Using the boundary condition T ′(0) = 0 we have Bn = 0 So we have for u(x, t)

u(x, t) =
∞∑

n=1

[
An cos

(
(2n + 1)πc

2l
t

)
sin

(
(2n + 1)π

2l
x

)]

using the boundary conditions for u(x, 0) and orthogonality arguments, we have for An

An =
2

l

∫
sin

(
(2n + 1)π

2l
x

)
x(x− l)2dx

5. Consider the eigenvalue problem,

−X ′′ = λX 0 < x < 1

X ′(0) + aX(0) = 0

X(1) = 0

Solution: When we are looking for positive eigenvalues, we can take λ = β2. We are
then looking for solutions to

X ′′ + β2X = 0
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Solutions to the above are of the form

X = C cos(βx) + D sin(βx)

Now using the boundary conditions X ′(0) + aX(0) = 0,

Dβ + aC = 0

and
C cos(β) + D sin(β) = 0

Simplyfing yields,

tan(β) =
β

a

Graphically, we can show that the above has infinite number of solutions by plot-
ting both, tan(β) and β

a
for all values of β. One would see that the graphs of both

the functions intersect infinite number of times, thereby indicating infinite number of
solutions.

Next, when we are looking for negative eigne values, we use λ = −β2 and follow similar
arguments as above and arrive at the final equation for β as,

tanh(β) =
β

a

One can see by plotting the graphs of tanh(β) and β
a
, that when a ≤ 1 there is no

intersection and when a > 1 there is exactly 1 intersection.

6. Use seperation of variables to solve

utt − c2uxx + γ2u = 0 0 < x < l, t > 0

u(x, 0) = φ(x)

ut(x, 0) = ψ(x)

u(0, t) = u(l, t) = 0

where γ > 0

Solution:

letting u(x, t) = X(x)T (x) we have,

T ′′

c2T
=

X ′′

X
− γ2

c2
= λ

Therefore X(x) solves X ′′ = (λ + γ2

c2
)X is of the form,
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X(x) = C cos(βx) + D sin(βx)

boundary conditions imply X(0) = 0 and X(l) = 0 which yields that

C = 0

and
β =

nπ

l

with

λn =
n2π2

l2
− γ2

c2

Now T (t) satisfies

T ′′ = c2λT

Therefore for each λn, T takes the form,

T (t) = An cos

(√
n2π2

l2
− γ2

c2
ct

)
+ Bn sin

(√
n2π2

l2
− γ2

c2
ct

)

So we have for u(x, t)

u(x, t) =
∞∑

n=1

[
An cos

(√
n2π2

l2
− γ2

c2
ct

)
+ Bn sin

(√
n2π2

l2
− γ2

c2
ct

)]
sin

(nπ

l
x
)

using the boundary conditions for u(x, 0) and orthogonality arguments, we have for
An and Bn

An =
2

l

∫ l

0

sin
(nπ

l
x
)

φ(x)dx

and

Bn =
2

lc

(
n2π2

l2
− γ2

c2

)−1/2 ∫ l

0

sin
(nπ

l
x
)

ψ(x)dx
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