
7 Calculus of Variations

Ref: Evans, Sections 8.1, 8.2, 8.4

7.1 Motivation

The calculus of variations is a technique in which a partial differential equation can be
reformulated as a minimization problem. In the previous section, we saw an example of this
technique. Letting vi denote the eigenfunctions of

(∗)
{ −∆v = λv x ∈ Ω

v = 0 x ∈ ∂Ω,

and defining the class of functions

Yn = {w ∈ C2(Ω), w 6≡ 0, w = 0 for x ∈ ∂Ω, < w, vi >= 0, i = 1, . . . , n− 1},

we saw that if u ∈ Yn is a minimizer of the functional

I(w) =
||∇w||2L2(Ω)

||w||2L2(Ω)

over Yn, then u is an eigenfunction of (*) with corresponding eigenvalue

m ≡
||∇u||2L2(Ω)

||u||2L2(Ω)

.

Further, we showed that m is in fact the nth eigenvalue of (*).
In other words to find a solution of an eigenvalue problem, we reformulated the problem

in terms of minimizing a certain functional. Proving the existence of an eigenfunction is
now equivalent to proving the existence of a minimizer of I over the class Yn. Proving the
existence of a minimizer requires more sophisticated functional analysis. We will return to
this idea later.

The example above could be reformulated equivalently to say that we are trying to
minimize the functional

Ĩ(w) = ||∇w||2L2(Ω)

over all functions w ∈ Yn such that ||w||2L2(Ω) = 1. In particular, if v is in Yn, then the

normalized function ṽ ≡ v/||v||2L2(Ω) (which has the same Rayleigh quotient as v) is in Yn,

and, of course, ||ṽ||2L2(Ω) = 1. Therefore, minimizing I over functions w ∈ Yn is equivalent

to minimizing Ĩ over functions w ∈ Yn subject to the constraint ||w||2
L(Ω)

= 1. This type of

minimization problem is called a constrained minimization problem.
We begin by considering a simple example of how a partial differential equation can be

rewritten as a minimizer of a certain functional over a certain class of admissible functions.
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7.2 Dirichlet’s Principle

In this section, we show that the solution of Laplace’s equation can be rewritten as a mini-
mization problem. Let

A ≡ {w ∈ C2(Ω), w = g for x ∈ ∂Ω}.
Let

I(w) ≡ 1

2

∫

Ω

|∇w|2 dx.

Theorem 1. (Dirichlet’s Principle) Let Ω be an open, bounded subset of Rn. Consider
Laplace’s equation on Ω with Dirichlet boundary conditions,

(∗)
{

∆u = 0 x ∈ Ω
u = g x ∈ ∂Ω.

The function u ∈ A is a solution of (*) if and only if

I(u) = min
w∈A

I(w).

Proof. First, we suppose u is a solution of (*). We need to show that I(u) ≤ I(w) for all
w ∈ A. Let w ∈ A. Then

0 =

∫

Ω

∆u(u− w) dx

= −
∫

Ω

|∇u|2 dx +

∫

Ω

∇u · ∇w dx

≤ −
∫

Ω

|∇u|2 dx +
1

2

∫

Ω

[|∇u|2 + |∇w|2] dx

= −1

2

∫

Ω

|∇u|2 dx +
1

2

∫

Ω

|∇w|2 dx.

Therefore, ∫

Ω

|∇u|2 dx ≤
∫

Ω

|∇w|2 dx.

But w is an arbitrary function in A. Therefore,

I(u) = min
w∈A

I(w).

Next, suppose u minimizes I over all w ∈ A. We need to show that u is a solution of (*).
Let v be a C2 function such that v ≡ 0 for x ∈ ∂Ω. Therefore, for all ε, u + εv ∈ A. Now let

i(ε) ≡ I(u + εv).

By assumption, u is a minimizer of I. Therefore, i must have a minimum at ε = 0, and,
therefore, i′(0) = 0. Now

i(ε) = I(u + εv)

=

∫

Ω

|∇(u + εv)|2 dx

=

∫

Ω

[|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2] dx,
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implies

i′(ε) =

∫

Ω

[∇u · ∇v] + 2ε|∇v|2 dx.

Therefore,

i′(0) =

∫

Ω

∇u · ∇v dx

= −
∫

Ω

(∆u)v dx +

∫

∂Ω

∂u

∂ν
v dS(x)

= −
∫

Ω

(∆u)v dx.

Now i′(0) = 0 implies ∫

Ω

(∆u)v dx = 0.

Since this is true for all v ∈ C2(Ω) such that v = 0 for x ∈ ∂Ω, we can conclude that ∆u = 0,
as claimed.

7.3 Euler-Lagrange Equations

Laplace’s equation is an example of a class of partial differential equations known as Euler-
Lagrange equations. These equations are defined as follows. Let Ω be an open, bounded
subset of Rn. Let L be a smooth function such that

L : Rn × R× Ω → R.

We will write L = L(p, z, x) where p ∈ Rn, z ∈ R and x ∈ Ω. Associated with a function L,
we define the Euler-Lagrange equation

−
n∑

i=1

(Lpi
(∇u, u, x))xi

+ Lz(∇u, u, x) = 0.

The function L is known as the Lagrangian.

Example 2. Let

L(p, z, x) =
1

2
|p|2.

The associated Euler-Lagrange equation is just Laplace’s equation

∆u = 0.

¦
Example 3. Let

L(p, z, x) =
1

2

n∑
i,j=1

aij(x)pipj − zf(x)
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where aij = aji. The associated Euler-Lagrange equation is

−
n∑

i,j=1

(aijuxj
)xi

= f,

a generalization of Poisson’s equation. ¦
Recall that Dirichlet’s principle stated that a solution of

{
∆u = 0 x ∈ Ω ⊂ Rn

u = g x ∈ ∂Ω

is a minimizer of

I(w) =
1

2

∫

Ω

|∇w|2 dx

over C2 functions which satisfy the boundary condition. In other words, a harmonic function
on Ω is a minimizer of

I(w) =

∫

Ω

L(∇w, w, x) dx

where L is the associated Lagrangian given by L(p, z, x) = 1
2
|p|2.

For a given Lagrangian L define

IL(w) =

∫

Ω

L(∇w, w, x) dx.

We will now show that if u is a minimizer of IL(w) over an admissible class of functions A,
then u is a solution of the associated Euler-Lagrange equation

−
n∑

i=1

(Lpi
(∇u, u, x))xi

+ Lz(∇u, u, x) = 0.

As in the proof of Dirichlet’s principle, suppose u is a minimizer of

IL(w) =

∫

Ω

L(∇w, w, x) dx

over an admissible class of functions A. Let v ∈ C∞(Ω) such that v has compact support
within Ω. We denote this space of functions by C∞

c (Ω). Define

i(ε) = I(u + εv).

If u is a minimizer of I, then i′(0) = 0.

i(ε) = I(u + εv)

=

∫

Ω

L(∇u + ε∇v, u + εv, x) dx.

4



Therefore,

i′(ε) =

∫

Ω

n∑
i=1

Lpi
(∇u + ε∇v, u + εv, x)vxi

+ Lz(∇u + ε∇v, u + εv, x)v dx.

Now i′(0) = 0 implies

0 = i′(0) =

∫

Ω

n∑
i=1

Lpi
(∇u, u, x)vxi

+ Lz(∇u, u, x)v dx.

Integrating by parts and using the fact that v = 0 for x ∈ ∂Ω, we conclude that
∫

Ω

[
−

n∑
i=1

(Lpi
(∇u, u, x))xi

+ Lz(∇u, u, x)

]
v dx = 0.

Since this is true for all v ∈ C∞
c (Ω), we conclude that u is a solution of the Euler-Lagrange

equation associated with the Lagrangian L. Consequently, to solve Euler-Lagrange equa-
tions, we can reformulate these partial differential equations as minimization problems of
the functionals

IL(w) =

∫

Ω

L(∇w, w, x) dx.

Above we showed how solving certain partial differential equations could be rewritten
as minimization problems. Sometimes, however, the minimization problem is the physical
problem which we are interested in solving.

Example 4. (Minimal Surfaces) Let w : Ω → R. The surface area of the graph of w is given
by

I(w) =

∫

Ω

(1 + |∇w|2)1/2 dx.

The problem is to look for the minimal surface, the surface with the least surface area, which
satisfies the boundary condition w = g for x ∈ ∂Ω. Alternatively, this minimization problem
can be written as a partial differential equation. In particular, the Lagrangian associated
with I is

L(p, z, x) = (1 + |p|2)1/2.

The associated Euler-Lagrange equation is
n∑

i=1

(
uxi

(1 + |∇u|2)1/2

)

xi

= 0.

This equation is known as the minimal surface equation. ¦

7.4 Existence of Minimizers

We now discuss the existence of a minimizer of

I(w) =

∫

Ω

L(∇w, w, x) dx

over some admissible class of functions A. We will discuss existence under two assumptions
on the Lagrangian L: convexity and coercivity. We discuss these issues now.
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7.4.1 Convexity

Assume u is a minimizer of

I(w) =

∫

Ω

L(∇w,w, x) dx.

We discussed earlier that if u is a minimizer of I, then for any v ∈ C∞
c (Ω), the function

i(ε) = I(u + εv)

has a local minimum at ε = 0, and, therefore, i′(0) = 0. In addition, if i has a minimum at
ε = 0, then i′′(0) ≥ 0. We now calculate i′′(0) explicitly to see what this implies about I and
L.

By a straightforward calculation, we see that

i′′(ε) =

∫

Ω

[
n∑

i,j=1

Lpipj
(∇u + ε∇v, u + εv, x)vxi

vxj

+2
n∑

i=1

Lpiz(∇u + ε∇v, u + εv, x)vxi
v + Lzz(∇u + ε∇v, u + εv, x)v2

]
dx.

Therefore, we conclude that

0 ≤ i′′(0) =

∫

Ω

[
n∑

i,j=1

Lpipj
(∇u, u, x)vxi

vxj
+ 2

n∑
i=1

Lpiz(∇u, u, x)vxi
v

+Lzz(∇u, u, x)v2
]

dx

(7.1)

for all v ∈ C∞
c (Ω). By an approximation argument, we can show that (7.1) is also valid for

the function

v(x) = δρ

(
x · ξ
δ

)
ζ(x)

where δ > 0, ξ ∈ Rn, ζ ∈ C∞
c (Ω) and ρ : R→ R is the periodic ”zig-zag” function

ρ(x) =





x 0 ≤ x ≤ 1

2

1− x
1

2
≤ x ≤ 1

and ρ(x + 1) = ρ(x) elsewhere. Notice that the function ρ satisfies |ρ′| = 1 ”almost every-
where” (except on a set of measure zero). Calculating the partial derivative of v with respect
to xi, we see that

vxi
(x) = ρ′

(
x · ξ
δ

)
ξiζ(x) + O(δ)

as δ → 0. Combining this fact with (7.1), using the fact that |ρ′| = 1 almost everywhere,
and taking the limit as δ → 0, we conclude that

0 ≤
∫

Ω

n∑
i,j=1

Lpipj
(∇u, u, x)ξiξjζ dx.
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Since this estimate holds for all ζ ∈ C∞
c (Ω), we conclude that

0 ≤
n∑

i,j=1

Lpipj
(∇u, u, x)ξiξj.

This is a necessary condition for a minimizer. Therefore, to guarantee the possibility of
a minimizer, we will assume the following convexity condition on the Lagrangian L,

n∑
i,j=1

Lpipj
(p, z, x)ξiξj ≥ 0. (7.2)

That is, we will assume L is convex in the variable p.

7.4.2 Coercivity

In order to prove that the functional I has a minimum, we would need to know that I is
bounded below. Of course, this is not enough to guarantee the existence of a minimizer. For
example, the function f(x) = e−x2

is bounded below by zero. In addition, infx∈R f(x) = 0.
However, the infimum is never achieved. One way of guaranteeing that a continuous function
f : R→ R achieves its infimum is to assume that f(x) → +∞ as |x| → +∞.

Using this same idea for our functional I, we will assume that I(w) → +∞ as |w| → +∞.
In particular, we will assume the following coercivity condition. Let 1 < q < ∞ be fixed.

∃ α > 0, β ≥ 0 s.t. L(p, z, x) ≥ α|p|q − β ∀ (p, z, x) ∈ Rn × R× Ω. (7.3)

If the Lagrangian L satisfies this coercivity condition, then the functional I satisfies

I(w) =

∫

Ω

L(∇w,w, x) dx

≥
∫

Ω

α|∇w|q dx− β|Ω|.

Therefore, I(w) → +∞ as
∫

Ω
|∇w|q dx → +∞.

7.4.3 Theorem on Existence of Minimizers

In this section, we state an existence result for minimizers. We will be considering the
functional

I(w) =

∫

Ω

L(∇w, w, x) dx

where the Lagrangian L satisfies the convexity and coercivity conditions described in the
previous sections. We will prove the existence of a minimizer u of I over a certain class of
admissible functions A. We describe this class of functions now. First, for 1 ≤ q < ∞, let

Lq(Ω) ≡ {u :

∫

Ω

|u|q dx < ∞}.
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We define the norm of a function u ∈ Lq(Ω) as

||u||Lq(Ω) =

(∫

Ω

|u|q dx

)1/q

.

Now we let
W 1,q(Ω) ≡ {u : u ∈ Lq(Ω),∇u ∈ Lq(Ω)}.

Remark. The space W 1,q is an example of a Sobolev space. For a more thorough
introduction to Sobolev spaces, see Evans, Chapter 5.

Now we let
A ≡ {w ∈ W 1,q(Ω)|w = g on ∂Ω}.

Theorem 5. Assume L satisfies the coercivity condition (7.3) and the convexity condition
(7.2). Assume the set A is nonempty. Then there exists at least one function u ∈ A such
that

I(u) = min
w∈A

I(w).

Below, we give an outline of the proof. The complete details rely on functional analysis
facts which are beyond the scope of this course.
Outline of Proof.

1. By the coercivity assumption (7.3), we know that I is bounded below. Therefore, I
has an infimum. Let

m ≡
∫

w∈A
I(w).

If m = ∞, then we’re done. Therefore, we assume that m is finite. Let uk be a
minimizing sequence. That is, assume I(uk) → m as k → +∞. We now want to show
that there exists a u ∈ A such that I(u) = m. First, we will show that uk is a bounded
sequence in W 1,q. This will imply there exists a u ∈ W 1,q such that uk ⇀ u (converges
weakly). Then we need to show that u ∈ A and I(u) = m.

2. Assume β = 0 in the coercivity assumption (7.3). (Otherwise, we could consider

L̃ = L + β.) Therefore,
L(p, z, x) ≥ α|p|q.

which implies

I(w) ≥ α

∫

Ω

|∇w|q dx.

Therefore, for the minimizing sequence uk,

I(uk) ≥ α

∫

Ω

|∇uk|q dx.

Now I(uk) → m which is finite implies that

sup
k

∫

Ω

|∇uk|q dx < ∞.
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3. Fix any w ∈ A. Since uk = g = w on ∂Ω, uk − w = 0 for x ∈ ∂Ω. Therefore, we can
use Poincare’s inequality. Therefore, we have

||uk||Lq(Ω) ≤ ||uk − w||Lq(Ω) + ||w||Lq(Ω)

≤ C||∇uk −∇w||Lq(Ω) + C ≤ C.

Therefore,
sup

k
||uk||Lq(Ω) < +∞.

That is, uk is a bounded sequence in W 1,q(Ω). Fact: This implies there exists a function
u ∈ W 1,q(Ω) and a subsequence {ukj

} such that ukj
converges to u weakly, meaning

∫

Ω

(ukj
− u)v dx → 0

as k → +∞ for all v in the dual space of W 1,q(Ω). We write this as ukj
⇀ u.

4. Now we need to show that u ∈ A. From the previous step, one can show that u ∈
W 1,q(Ω). Therefore, it just remains to show that u satisfies the necessary boundary
conditions. See Evans, Sec. 8.2.

5. Using the fact that ukj
⇀ u, and the fact that L is convex and bounded below, we are

able to conclude that
I(u) ≤ lim inf I(ukj

) = m.

See Evans, Sec. 8.2. But, since u ∈ A, I(u) ≥ m. Therefore, I(u) = m.

¤

7.5 Constrained Minimization Problems

In this section, we discuss constrained minimization problems: minimizing a functional I(w)
subject to the constraint J(w) = 0.

Example 6. Earlier we mentioned that the Minimum Principle for the nth Eigenvalue could
be written as a constrained minimization problem. Let

J(w) ≡ ||w||2L2(Ω).

Let
A ≡ {w ∈ Yn|J(w) = 0}.

Let
I(w) = ||∇w||2L2(Ω).

We showed that if u ∈ A satisfies

I(u) = min
w∈A

I(w),
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then u satisfies { −∆u = λnu x ∈ Ω
u = 0 x ∈ ∂Ω,

where
λn = ||∇u||2L2(Ω).

We will now state and prove a generalization of the result in the above example. Let

I(w) ≡ 1

2

∫

Ω

|∇w|2 dx.

Let G : R→ R be a smooth function. Let g = G′. Let

J(w) ≡
∫

Ω

G(w(x)) dx.

Let
A ≡ {w ∈ C2(Ω), w = 0 for x ∈ ∂Ω| J(w) = 0}.

Theorem 7. Suppose there exists a u ∈ A such that

I(u) = min
w∈A

I(w).

Then there exists a real number λ such that
{ −∆u = λg(u) x ∈ Ω

u = 0 x ∈ ∂Ω.

The number λ is called the Lagrange multiplier corresponding to the integral constraint
J(u) = 0.

Proof. We would like to use a similar argument as used in the unconstrained minimization
problem. In particular, we would like to find w such that u + εw ∈ A, and then look at
i(ε) = I(u + εw). Unlike in the previous case, however, we cannot just choose w ∈ C∞

c (Ω).
Because, this does not necessarily imply that u + εw is in A. We construct such a w as
follows.

Let v ∈ C∞
c (Ω). As mentioned above u + εv is not necessarily in A, because it does

not necessarily satisfy the constraint J(w) = 0. But, maybe we could find some function
w ∈ C2(Ω) which would ”correct” this problem. Maybe we could find some w and some
function φ(ε) such that u + εv + φ(ε)w ∈ A. Choose w such that

∫

Ω

g(u)w dx 6= 0. (7.4)

Define

j(ε, σ) ≡ J(u + εv + σw) =

∫

Ω

G(u + εv + σw) dx.

We see that

j(0, 0) =

∫

Ω

G(u) dx = 0,
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by the assumption that u ∈ A. We see that

∂j

∂σ
(ε, σ) =

∫

Ω

g(u + εv + σw)w dx.

Now by the assumption (7.4), we see that

∂j

∂σ
(0, 0) 6= 0.

Therefore, by the implicit function, there exists a C1 function φ : R→ R such that

φ(0) = 0

and
j(ε, φ(ε)) = 0.

In particular, this implies that

j(ε, φ(ε)) = J(u + εv + φ(ε)w) = 0,

which means that u + εv + φ(ε)w ∈ A.
Now we can use a similar argument as to the one we used earlier. Let

i(ε) = I(u + εv + φ(ε)w) =
1

2

∫

Ω

|∇u + ε∇v + φ(ε)∇w|2 dx.

By the assumption that u is a minimizer of I over all functions in A, we know that i′(0) = 0.
Now

i′(ε) =

∫

Ω

(∇u + ε∇v + φ(ε)∇w) · (∇v + φ′(ε)∇w) dx

implies

i′(0) =

∫

Ω

(∇u · ∇v + φ′(0)∇u · ∇w) dx = 0. (7.5)

Using the fact that j(ε, φ(ε)) = 0, we can calculate φ′(0) as follows.

∂j

∂ε
(ε, φ(ε)) +

∂j

∂σ
(ε, φ(ε))φ′(ε) = 0

implies

φ′(0) = − jε(0, 0)

jσ(0, 0)
= −

∫
Ω

g(u)v dx∫
Ω

g(u)w dx
. (7.6)

Combining (7.5) with (7.6), we conclude that

∫

Ω

∇u · ∇v dx =

∫
Ω

g(u)v dx∫
Ω

g(u)w dx

∫

Ω

∇u · ∇w dx

=

∫
Ω
∇u · ∇w dx∫
Ω

g(u)w dx

∫

Ω

g(u)v dx.
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Defining

λ ≡
∫
Ω
∇u · ∇w dx∫
Ω

g(u)w dx
,

we conclude that ∫

Ω

∇u · ∇v dx = λ

∫

Ω

g(u)v dx.

Using the integration by parts formula on the left-hand side, and the fact that v vanishes
for x ∈ ∂Ω, we conclude that

−
∫

Ω

∆u v dx = λ

∫

Ω

g(u)v dx.

Since this is true for all v ∈ C2(Ω) which vanish for x ∈ ∂Ω, we conclude that

{ −∆u = λg(u) x ∈ Ω
u = 0 x ∈ ∂Ω.
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