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1. (14 points) Let Ω be an open bounded subset of Rn and let V be a bounded continuous
real-valued function on Ω. Consider the following Dirichlet eigenvalue problem.

{ −∆u + V (x)u = λu x ∈ Ω
u = 0 x ∈ ∂Ω

(a) Show that the eigenvalues are real.

(b) Show that eigenfunctions corresponding to distinct eigenvalues are orthogonal.
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(c) Show that if V is positive, then all the eigenvalues are positive.
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2. (8 points) Let f(x) = H(x− 1) sin x where

H(x) =

{
1 x ≥ 0
0 x < 0.

Define the distribution Ff associated with f such that

(Ff , φ) =

∫ ∞

−∞
f(x)φ(x) dx

for all φ ∈ D. Calculate the distributional derivative of Ff .
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3. (10 points) Let Ω = {(y1, y2) ∈ R2 : y2
1 + y2

2 < 1, y1, y2 > 0}. Find the Green’s function
for Ω.

5



4. (8 points) Consider

(∗)
{

∆u = 0 x ∈ Ω
∂u
∂ν

+ u = g x ∈ ∂Ω.

(a) State the definition of a single-layer potential with moment h.

(b) In order to write the solution of (*) as a single-layer potential, what equation
must h satisfy?
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5. (10 points) Solve 



ut − uxx = 0 0 < x < ∞, t > 0
u(x, 0) = φ(x)
u(0, t) = g(t)
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6. (10 points) Let Ω be the triangle with vertices at (1, 0), (−1, 0) and (0, 2). Let λ1 be
the first eigenvalue of { −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω.

Use the Comparison Principle to get an upper bound on the first eigenvalue for this
eigenvalue problem. In particular, find the best upper bound on λ1 among all rectangles
contained within Ω with sides parallel to the coordinate axes.
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7. (10 points) Prove Dirichlet’s principle for Neumann boundary conditions. Let

I(w) =
1

2

∫

Ω

|∇w|2 dx−
∫

∂Ω

gw dS(x).

Let
A = {w ∈ C2(Ω)}.

Consider

(∗)
{

∆u = 0 x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω

(a) Show that if u is a solution of (*), then

I(u) = min
w∈A

I(w).

(b) Show that if I(u) = minw∈A I(w), then u is a solution of (*).
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8. (12 points) Let Ω ≡ {(x, y) ∈ R2 : 0 < x < l, 0 < y < k}.
(a) Find all eigenvalues and eigenfunctions for




−∆X = λX (x, y) ∈ Ω
Xy(x, 0) = 0, X(x, k) = 0 0 < x < l
X(0, y) = 0, Xx(l, y) = 0 0 < y < k
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(b) Let Xnm(x, y) denote the eigenfunctions from part (a). Solve





ut −∆u = 0 (x, y) ∈ Ω, t > 0
u(x, y, 0) = φ(x, y) (x, y) ∈ Ω
uy(x, 0, t) = 0, u(x, k, t) = 0 0 < x < l, t > 0
u(0, y, t) = 0, ux(l, y, t) = 0 0 < y < k, t > 0

Express your answer in terms of Xnm(x, y).
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9. (10 points) Suppose u ∈ C2(Ω) is a solution of

∆u = f ≥ 0 x ∈ Ω.

Show that

u(x) ≤ −
∫

∂B(x,r)

u(y) dy

for all B(x, r) ⊂ Ω.
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10. (8 points) Find the smooth function f which yields the best lower bound for
∫ 1

0
(g′(x))2 dx

among functions satisfying g(0) = 3, g(1) = 4.
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Scratch Paper
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