Math 220B Final Exam Solutions Summer 2002

1. (14 points) Let €2 be an open bounded subset of R" and let V' be a bounded continuous
real-valued function on 2. Consider the following Dirichlet eigenvalue problem.

—Au+V(x)u=I  x€Q
u=20 x € 0}

(a) Show that the eigenvalues are real.

Answer: Let \ be an eigenvalue. We will show that A = ), and, therefore, the
eigenvalue A is real. First, note that if u is an eigenfunction and with eigenvalue
A of the problem above, then @, A is a solution of

—AT+ VT = \u.

Now

= (—Vﬂ—i—z\ﬂ)udl‘—k/‘h@dm
Q

Therefore,

which implies A = X or

/ |u|? dz = 0.
Q

But, [, |u*dz # 0, because that would imply u is the zero function, which is not
an eigenfunction. Therefore, A = ).

(b) Show that eigenfunctions corresponding to distinct eigenvalues are orthogonal.
Answer: Let X, and X,, denote eigenfunctions corresponding to A\, # \,.
Therefore,

A / X, X, d = / (—AX, + V(2)X,) X, da
Q
/ - X, AX,, d:v—i—/V(x)Xndex
Q
/X 2) X+ A X )dx+/V(3c)Xndew

Q

:)\m/XnXm dzx.
Q



Therefore, we conclude that
O — ) / X, X d = 0,
Q

By assumption, A\, # \,,. Therefore, we conclude that fQ X, X,,dx = 0, which
means X,, and X, are orthogonal.

(c) Show that if V' is positive, then all the eigenvalues are positive.
Answer: Let A be an eigenvalue with eigenfunction u.

)\/Qu2 d:z::/ﬂ(—Au—i-V(az)u)uda:

:/ |Vu|2dm+/V(x)u2dx20.
Q Q

Therefore, A > 0. It just remains to show that A > 0. But, if A = 0, then we have

/|Vu|2da: =0= / V(z)u® dr.
0 0

But, this implies that « = 0 on 2. However, the zero function is not an eigen-
function. Therefore, we conclude that A\ > 0.

2. (8 points) Let f(z) = H(z — 1) sinz where

1 x>0
H(x):{o z <0,

Define the distribution F associated with f such that

(Fp.6) = / " f@)ola) da

for all ¢ € D. Calculate the distributional derivative of F.
Answer: By definition, the derivative of F, denoted FY is the distribution such that

(Ff.¢)=—(Fr,¢') Vo eD.

Therefore,

(Ff,0) = —(Fy, ¢/
/ e

= —/_ H(z —1)sin(x)¢'(z) dz



where suppg C {x € R,x < K}. Now integrating by parts, we have
K K
- [ sin(@)¢ @) do = [ cos(aole) da ~ sin(apola) 28
1 1
K
= / cos(x)p(x) dx — [0 — sin(1)p(1)]
1

_ /1 cos(z)d(x) dz + sin(1)é(1).

Therefore,

(Fp0) = /100 cos(z)p(x) dx + sin(1)g(1).

3. (10 points) Let Q© = {(y1,92) € R? : y? +y2 < 1,91,92 > 0}. Find the Green’s function
for €.

Answer: Fix z = (z1,22) € Q. Let

T

ER

the dual point of x. Now we need to reflect these points about the y; axis. Let z be
the reflection of x about the y; axis, and, let z3 be the reflection of z; about the
axis. That is,

29 = (xla —xz)
22

23 = ——.

’ |2|?

Now we need to reflect all four points (x, 21, 22, 23) about the y, axis. Let

2y = (—x1, 2) (reflection of z about the ys axis)
25 = | Z4| 5 (reflection of z; about the y, axis)

Z4
26 = (—r1, —T2) (reflection of zy about the ys axis)
27 = |ZZGG| 5 (reflection of z3 about the y, axis)

Then

G(z,y) = Oy — ) = 2(|2|(y — 21)) = By — 22) + D(|2[(y — 25)) = Py — 24)
+ O(|z](y — 25)) + Py — 26) — D(|2|(y — 27))-

4. (8 points) Consider



(a) State the definition of a single-layer potential with moment h.
Answer:

a(z) = / h(y)B(y — 7) dS(y).

(b) In order to write the solution of (*) as a single-layer potential, what equation
must A satisfy?

Answer: Fix xy € 0. Let v(zg) be the outer unit normal to 02 at z,. For all
t < 0 such that zg + tv(zg) € Q, let

i"(t) = Vu(xg + tv(zo)) - v(z0).
We will say the boundary condition is satisfied if

lim ™ (t) + u(x) = g(x).

t—0~

for all z € Q, zg € 9). Now

i 79(8) = ~ghlan) = [ )5 00— ) dS(o)

t—0—

In addition, we recall that a single-layer potential is continuous for all z € R".
Therefore, in order to find a solution as a single-layer potential, we need h to

satisfy
1 0P
~ghan) = [ h)g (e =) dS@) — [ )@y - 20) dS(y) = 9o
2 o9 Oy 09
for all xg € 0€).
5. (10 points) Solve
Ut — Ugye = 0 O<x<oo,t>0
u(z,0) = ¢(v)
u(0,t) = g(t)

Answer: Suppose u is the solution. Let v = u — g(t) for z > 0. Then v is a solution

of
UV — Vg = — (1) 0<zr<oo
v(z,0) =¢(x) —g(0) 0<z<o0.

Now extend v to the negative axis, by introducing a new function v such that

3(z) = { v() x>0

—v(—x) x<O0.
Therefore, v is a solution of

{5—@36:]”(3:,15) —00 < < 00
0(z,0) = h(x)
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where 0 0
=t x>
ﬂ%ﬂ_{g%) v <0

_J o(x) —g(0) r>0
h“”‘{—a—@+gm) v <0

Now by Duhamel’s principle, the solution of the IVP for v is given by

and

_(3:_

= fy,s)dyds

—(w y>2

v(z,t) y) dy +

v/ NI

Now v is the restriction of v to the positive z-axis. Then v = u — g implies u = v + g.
Therefore,

—(z—y

e 1= o f(y,s)dyds

u(z,t) = g(t) +

1 & —(z—vy)
[ s [
4t J_ Y 4m(t — s

for f and h defined above.

. (10 points) Let © be the triangle with vertices at (1,0), (—1,0) and (0,2). Let A; be
the first eigenvalue of

—Au = \u z €
u=0 x € 0.

Use the Comparison Principle to get an upper bound on the first eigenvalue for this
eigenvalue problem. In particular, find the best upper bound on \; among all rectangles
contained within €2 with sides parallel to the coordinate axes.

Answer: For any rectangle R contained within €2 with sides parallel to the axes, and
vertices (z,0), (—x,0), (z,y), (—z,y), the eigenvalues of R are given by

2
nm 2 mm
A R::Q—)+ U
nm(F) 2z Y
For any rectangle contained within €2, we can get a better estimate if we extend the
rectangle so that its vertices intersect the boundary. Therefore, we want to minimize

the first eigenvalue for all rectangles contained within 2 such that y = 2 — 2z. That
is, we want to minimize the function

1 1 1 1 11 1
0=t oy~ 2 Tmm | T

For simplicity, we neglect the coefficient 1/4. We just need to minimize

1 1

g(z) = ;er-



We look for critical points.

-2 2
! [ —
g(w) = x3 +(1—$)3
Now ¢'(z) = 0 implies
1
(1—xz)3 a3
or .
?=01-2)P = r=1-12 = z= 5.

We see that x = 1/2 minimizes g. Therefore, the best upper bound on the first
eigenvalue of € given by rectangles with sides parallel to the coordinate axes is the
rectangle with vertices (1/2,0), (—=1/2,0), (1/2,1), (—1/2,1). Denote this rectangle by
R*. Therefore,

M(RY) =212 > M\ ().

7. (10 points) Prove Dirichlet’s principle for Neumann boundary conditions. Let

I(w):%/Q|Vw|2dx—/mgwd5(x).

A= {we ¥}

Let

Consider
Au=10 z € Q)
(*) ou

=9 x € 0N
(a) Show that if u is a solution of (*), then

I(u) = min I(w).

weA

Answer: Suppose u is a solution of (*). Let w € A.

O:/QAu(u—w)dx

:-/Vu-V(u—w)dm—l— O~ w) dS ()
Q o0

:—/]Vu\de—l—/Vwdex—i—/ gudS(x)—/ gw dS(r)
0 0 o0 20
1 1
S—/|Vu|2dx—|——/|Vu|2dx+—/\Vw|2dx—|—/ gudS(x)
Q 2 Ja 2 Ja 20

- /anwdS(:v).



Therefore, we conclude that

1 1
—/|Vu\2dx—/ gudS(x) g—/ ]Vw\de—/ gwdS(x).
2 Ja ) 2 Jo o0

But, w is arbitrary in A. Therefore, we conclude that

I(u) = min.
=

Show that if /(u) = min,e4 I(w), then u is a solution of (*).
Answer: Let w be an arbitrary function in A. Let

i(e) = I(u+ ev).
If u is a minimizer of I, then ¢ must have a local minimum at ¢ = 0. Therefore,

i'(0) = 0. Now

/() = I(ut )

:i(l/wu—%evm?dm‘—/ g(u—l—ev)dS(x))
de 2 Q a0
:/VU-VU+6\VU|20Z:1:—/ gvdS(z).

0 B

Therefore, 7'(0) = 0 implies

i’(O):/Vu-Vvdx—/ gvdS(z) = 0.
0 20

This implies
ou
— | Auvdzr + —uvdS(x)— [ gvdS(z)=0
Q a0 OV aQ

or

(xx) / Auv dz = @v dS(z) — / gvdS(z).
Q aq OV 09
Now this is true for all v € A. Let A be the subset of A such that
A={weC*Q):w=0 for z € 9O}

Now (**) is true for v € A as well. But, for v EN.,Z the right-hand side of (**)
vanishes. Therefore, we conclude that for all v € A,

/ Auvdr = 0.
Q

But, this is enough to conclude that Au = 0. We just need to show that du/dv = g
for x € 9. Now the left-hand side of (**) vanishes. Therefore, for all v € A, we

have 5
n

but, since this is true for all v € A, we can conclude that du/0v = g for x € 9.
Therefore, u is a solution of the Neumann problem (*).
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8. (12 points) Let Q = {(x,y) e R*: 0 <z < 1,0 <y < k}.
(a) Find all eigenvalues and eigenfunctions for

—AX =X (z,y) € Q
Xy(2,0) =0, X(z,k) =0 O<z<l
X(0,9) =0, X.(Ly) =0 0<y<k

Answer: Using separation of variables, we look for eigenfunctions of the form
X (2)Y (y). Plugging this into the eigenvalue problem, we have

—X"Y - XY" = \XY.

Dividing by XY, we have
This implies

Therefore, we need to solve the eigenvalue problem

—X"=uX 0<zx<l
X(0)=0,X'(l) = 0.

If = 32> 0, we have
X(x) = Acos(fBz) + Bsin(fx).
The boundary condition
X(0)=0 = A=0.
The boundary condition

X'(1)=0 = cos(fl) =0 = pl= (n—l—%) .

Therefore, p1, = 32 = ((n+ 3) 711)2 and X, (z) = sin(5,x).
Then, we need to solve our equation for Y. In particular, we need to solve

" Y//

% + M y —H g
This leads us to the eigenvalue problem
—Y" =~Y O<y<k
Y'(0) =0 =Y (k).

If vy =a? > 0, then
Y (y) = Acos(ay) + Bsin(ay).

8



The boundary condition
Y'(0)=0 = B=0.

The boundary condition

1
Y(k) =0 = cos(ak) =0 = ok = (m+§) .

Therefore, v, = o2, = ((m + 3) %)2 and Y, (y) = cos(amy).

Therefore, to conclude our eigenfunctions and corresponding eigenvalues are given
by

Xom(x,y) = sin(B,x) cos(amy)

I\ 7 I\ 7
where (3, = (n+§>7andozm— (m+§>%

)‘nm:,un‘i"yn:ﬁi"i_a?n

Let X,m(z,y) denote the eigenfunctions from part (a). Solve

u—Au=0 (x,y) € Qt>0
u(z,y,0) = o(z,y) (z,y) € Q

uy(2,0,t) =0, u(z, k,t) =0 O<zx<lt>0
uw(0,y,t) =0, u(l,y,t) =0 O<y<kt>0

Express your answer in terms of X, (z,y).

Answer: We look for a solution of the form 7'(¢) X (z,y). Plugging this into the
PDE, we have
T'X —TAX = 0.

Dividing by T'X, we have

r_ax_,
T X ’
which implies
_Ax _
T X

Let X,m(x,v), Anm denote the eigenfunctions and corresponding eigenvalues of

—AX =2X (x,y) € Q
X(0,y) =0=X,(l,y) O<y<k
Xy(2,0)=0=X(z,k) O<z<l

Our solution for our equation for T, is
Ty (t) = Cre

Therefore, our solution is given by

u(z,y,t) = Z Crim Xy (T, )€~ mmt

n,m=0
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where

<¢7 Xnm) o fok fol qbXnm dz dy

Com = = :
(Xrmy Xom) fok fol X2, dxdy

9. (10 points) Suppose u € C2() is a solution of
Au=f>0 z€Q.

Show that
u(@) < ][ u(y) dy
OB(z,r)

for all B(z,r) C Q.

Answer: Define the function
o) = uly)ds
OB(z,r)
for r > 0 and ¢(0) = u(x). Using the assumption that u is continuous, we conclude

that ¢ is continuous. We now look at ¢'(r).

oy d
0=, s

d

Cdr 9B(0,1)

= ][ Vu(x +rz)-2dS(z)
8B(0,1)

u(x +rz)dS(z)

— X
— ][ Valy) - L ds(y)
0B (z,r)

r

Therefore, ¢’ is an increasing function of r. Therefore, we conclude that ¢(0) < ¢(r).
Therefore, we have

u(x) < JéB( ) S(w),

as claimed.
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10. (8 points) Find the smooth function f which yields the best lower bound for f01 (¢'(x))*dx
among functions satisfying ¢(0) = 3, ¢g(1) = 4.

Answer: By Dirichlet’s principle, we know that the function which minimizes I(w) =
Jo, [IVw|? dz subject to certain boundary conditions is the harmonic function on £ which
satisfies those boundary conditions. Therefore, we look for the solution to

{g”:O 0<z<l
9(0) =3,9(1) = 4.

Clearly, the harmonic functions on an interval are linear functions. That is,
g(x) = A+ Buz.

The boundary condition
g(0)=3 = A=3.

The boundary condition

Therefore, the solution is
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