
Math 220B Final Exam Solutions Summer 2002

1. (14 points) Let Ω be an open bounded subset of Rn and let V be a bounded continuous
real-valued function on Ω. Consider the following Dirichlet eigenvalue problem.

{ −∆u + V (x)u = λu x ∈ Ω
u = 0 x ∈ ∂Ω

(a) Show that the eigenvalues are real.

Answer: Let λ be an eigenvalue. We will show that λ = λ, and, therefore, the
eigenvalue λ is real. First, note that if u is an eigenfunction and with eigenvalue
λ of the problem above, then u, λ is a solution of

−∆u + V u = λu.

Now

λ

∫

Ω

uu dx =

∫

Ω

(−∆u + V u)u dx

= −
∫

Ω

∆uu dx +

∫

Ω

V uu dx

= −
∫

Ω

u∆u dx +

∫

Ω

V uu dx

=

∫

Ω

(−V u + λu)u dx +

∫

Ω

V uu dx

= λ

∫

Ω

uu dx.

Therefore,

(λ− λ)

∫

Ω

|u|2 dx = 0,

which implies λ = λ or ∫

Ω

|u|2 dx = 0.

But,
∫

Ω
|u|2 dx 6= 0, because that would imply u is the zero function, which is not

an eigenfunction. Therefore, λ = λ.

(b) Show that eigenfunctions corresponding to distinct eigenvalues are orthogonal.

Answer: Let Xn and Xm denote eigenfunctions corresponding to λn 6= λm.
Therefore,

λn

∫

Ω

XnXm dx =

∫

Ω

(−∆Xn + V (x)Xn)Xm dx

=

∫

Ω

−Xn∆Xm dx +

∫

Ω

V (x)XnXm dx

=

∫

Ω

Xn(−V (x)Xm + λmXm) dx +

∫

Ω

V (x)XnXm dx

= λm

∫

Ω

XnXm dx.
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Therefore, we conclude that

(λn − λm)

∫

Ω

XnXm dx = 0.

By assumption, λn 6= λm. Therefore, we conclude that
∫

Ω
XnXm dx = 0, which

means Xn and Xm are orthogonal.

(c) Show that if V is positive, then all the eigenvalues are positive.

Answer: Let λ be an eigenvalue with eigenfunction u.

λ

∫

Ω

u2 dx =

∫

Ω

(−∆u + V (x)u)u dx

=

∫

Ω

|∇u|2 dx +

∫

Ω

V (x)u2 dx ≥ 0.

Therefore, λ ≥ 0. It just remains to show that λ > 0. But, if λ = 0, then we have
∫

Ω

|∇u|2 dx = 0 =

∫

Ω

V (x)u2 dx.

But, this implies that u ≡ 0 on Ω. However, the zero function is not an eigen-
function. Therefore, we conclude that λ > 0.

2. (8 points) Let f(x) = H(x− 1) sin x where

H(x) =

{
1 x ≥ 0
0 x < 0.

Define the distribution Ff associated with f such that

(Ff , φ) =

∫ ∞

−∞
f(x)φ(x) dx

for all φ ∈ D. Calculate the distributional derivative of Ff .

Answer: By definition, the derivative of Ff , denoted F ′
f is the distribution such that

(F ′
f , φ) = −(Ff , φ

′) ∀φ ∈ D.

Therefore,

(F ′
f , φ) = −(Ff , φ

′)

= −
∫ ∞

−∞
f(x)φ′(x) dx

= −
∫ ∞

−∞
H(x− 1) sin(x)φ′(x) dx

= −
∫ K

1

sin(x)φ′(x) dx
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where suppφ ⊂ {x ∈ R, x < K}. Now integrating by parts, we have

−
∫ K

1

sin(x)φ′(x) dx =

∫ K

1

cos(x)φ(x) dx− sin(x)φ(x)|x=K
x=1

=

∫ K

1

cos(x)φ(x) dx− [0− sin(1)φ(1)]

=

∫ K

1

cos(x)φ(x) dx + sin(1)φ(1).

Therefore,

(F ′
f , φ) =

∫ ∞

1

cos(x)φ(x) dx + sin(1)φ(1).

3. (10 points) Let Ω = {(y1, y2) ∈ R2 : y2
1 + y2

2 < 1, y1, y2 > 0}. Find the Green’s function
for Ω.

Answer: Fix x = (x1, x2) ∈ Ω. Let

z1 =
x

|x|2 ,

the dual point of x. Now we need to reflect these points about the y1 axis. Let z2 be
the reflection of x about the y1 axis, and, let z3 be the reflection of z1 about the y1

axis. That is,

z2 = (x1,−x2)

z3 =
z2

|z2|2 .

Now we need to reflect all four points (x, z1, z2, z3) about the y2 axis. Let

z4 = (−x1, x2) (reflection of x about the y2 axis)

z5 =
z4

|z4|2 (reflection of z1 about the y2 axis)

z6 = (−x1,−x2) (reflection of z2 about the y2 axis)

z7 =
z6

|z6|2 (reflection of z3 about the y2 axis)

Then

G(x, y) = Φ(y − x)− Φ(|x|(y − z1))− Φ(y − z2) + Φ(|x|(y − z3))− Φ(y − z4)

+ Φ(|x|(y − z5)) + Φ(y − z6)− Φ(|x|(y − z7)).

4. (8 points) Consider

(∗)
{

∆u = 0 x ∈ Ω
∂u
∂ν

+ u = g x ∈ ∂Ω.
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(a) State the definition of a single-layer potential with moment h.

Answer:

u(x) = −
∫

Ω

h(y)Φ(y − x) dS(y).

(b) In order to write the solution of (*) as a single-layer potential, what equation
must h satisfy?

Answer: Fix x0 ∈ ∂Ω. Let ν(x0) be the outer unit normal to ∂Ω at x0. For all
t < 0 such that x0 + tν(x0) ∈ Ω, let

ix0(t) = ∇u(x0 + tν(x0)) · ν(x0).

We will say the boundary condition is satisfied if

lim
t→0−

ix0(t) + u(x) = g(x0).

for all x ∈ Ω, x0 ∈ ∂Ω. Now

lim
t→0−

ix0(t) = −1

2
h(x0)−

∫

∂Ω

h(y)
∂Φ

∂νx

(x0 − y) dS(y).

In addition, we recall that a single-layer potential is continuous for all x ∈ Rn.
Therefore, in order to find a solution as a single-layer potential, we need h to
satisfy

−1

2
h(x0)−

∫

∂Ω

h(y)
∂Φ

∂νx

(x0 − y) dS(y)−
∫

∂Ω

h(y)Φ(y − x0) dS(y) = g(x0)

for all x0 ∈ ∂Ω.

5. (10 points) Solve 



ut − uxx = 0 0 < x < ∞, t > 0
u(x, 0) = φ(x)
u(0, t) = g(t)

Answer: Suppose u is the solution. Let v = u− g(t) for x > 0. Then v is a solution
of {

vt − vxx = −g′(t) 0 < x < ∞
v(x, 0) = φ(x)− g(0) 0 < x < ∞.

Now extend v to the negative axis, by introducing a new function ṽ such that

ṽ(x) =

{
v(x) x > 0
−v(−x) x < 0.

Therefore, ṽ is a solution of

{
ṽ − ṽxx = f(x, t) −∞ < x < ∞
ṽ(x, 0) = h(x)

4



where

f(x, t) =

{ −g′(t) x > 0
g′(t) x < 0

and

h(x) =

{
φ(x)− g(0) x > 0
−φ(−x) + g(0) x < 0

Now by Duhamel’s principle, the solution of the IVP for ṽ is given by

ṽ(x, t) =
1√
4πt

∫ ∞

−∞
e
−(x−y)2

4t h(y) dy +

∫ t

0

1√
4π(t− s)

∫ ∞

−∞
e
−(x−y)2

4(t−s) f(y, s) dy ds

Now v is the restriction of ṽ to the positive x-axis. Then v = u− g implies u = v + g.
Therefore,

u(x, t) = g(t) +
1√
4πt

∫ ∞

−∞
e
−(x−y)2

4t h(y) dy +

∫ t

0

1√
4π(t− s)

∫ ∞

−∞
e
−(x−y)2

4(t−s) f(y, s) dy ds

for f and h defined above.

6. (10 points) Let Ω be the triangle with vertices at (1, 0), (−1, 0) and (0, 2). Let λ1 be
the first eigenvalue of { −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω.

Use the Comparison Principle to get an upper bound on the first eigenvalue for this
eigenvalue problem. In particular, find the best upper bound on λ1 among all rectangles
contained within Ω with sides parallel to the coordinate axes.

Answer: For any rectangle R contained within Ω with sides parallel to the axes, and
vertices (x, 0), (−x, 0), (x, y), (−x, y), the eigenvalues of R are given by

λnm(R) =
(nπ

2x

)2

+

(
mπ

y

)2

.

For any rectangle contained within Ω, we can get a better estimate if we extend the
rectangle so that its vertices intersect the boundary. Therefore, we want to minimize
the first eigenvalue for all rectangles contained within Ω such that y = 2 − 2x. That
is, we want to minimize the function

f(x) =
1

(2x)2
+

1

y(x)2
=

1

4x2
+

1

(2− 2x)2
=

1

4

[
1

x2
+

1

(1− x)2

]
.

For simplicity, we neglect the coefficient 1/4. We just need to minimize

g(x) =
1

x2
+

1

(1− x)2
.
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We look for critical points.

g′(x) =
−2

x3
+

2

(1− x)3
.

Now g′(x) = 0 implies
1

(1− x)3
=

1

x3

or

x3 = (1− x)3 =⇒ x = 1− x =⇒ x =
1

2
.

We see that x = 1/2 minimizes g. Therefore, the best upper bound on the first
eigenvalue of Ω given by rectangles with sides parallel to the coordinate axes is the
rectangle with vertices (1/2, 0), (−1/2, 0), (1/2, 1), (−1/2, 1). Denote this rectangle by
R∗. Therefore,

λ1(R
∗) = 2π2 ≥ λ1(Ω).

7. (10 points) Prove Dirichlet’s principle for Neumann boundary conditions. Let

I(w) =
1

2

∫

Ω

|∇w|2 dx−
∫

∂Ω

gw dS(x).

Let
A = {w ∈ C2(Ω)}.

Consider

(∗)
{

∆u = 0 x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω

(a) Show that if u is a solution of (*), then

I(u) = min
w∈A

I(w).

Answer: Suppose u is a solution of (*). Let w ∈ A.

0 =

∫

Ω

∆u(u− w) dx

= −
∫

Ω

∇u · ∇(u− w) dx +

∫

∂Ω

∂u

∂ν
(u− w) dS(x)

= −
∫

Ω

|∇u|2 dx +

∫

Ω

∇u · ∇w dx +

∫

∂Ω

gu dS(x)−
∫

∂Ω

gw dS(x)

≤ −
∫

Ω

|∇u|2 dx +
1

2

∫

Ω

|∇u|2 dx +
1

2

∫

Ω

|∇w|2 dx +

∫

∂Ω

gu dS(x)

−
∫

∂Ω

gw dS(x).
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Therefore, we conclude that

1

2

∫

Ω

|∇u|2 dx−
∫

∂Ω

gu dS(x) ≤ 1

2

∫

Ω

|∇w|2 dx−
∫

∂Ω

gw dS(x).

But, w is arbitrary in A. Therefore, we conclude that

I(u) = min
w∈A

.

(b) Show that if I(u) = minw∈A I(w), then u is a solution of (*).

Answer: Let w be an arbitrary function in A. Let

i(ε) = I(u + εv).

If u is a minimizer of I, then i must have a local minimum at ε = 0. Therefore,
i′(0) = 0. Now

i′(ε) =
d

dε
I(u + εv)

=
d

dε

(
1

2

∫

Ω

|∇u + ε∇v|2 dx−
∫

∂Ω

g(u + εv) dS(x)

)

=

∫

Ω

∇u · ∇v + ε|∇v|2 dx−
∫

∂Ω

gv dS(x).

Therefore, i′(0) = 0 implies

i′(0) =

∫

Ω

∇u · ∇v dx−
∫

∂Ω

gv dS(x) = 0.

This implies

−
∫

Ω

∆uv dx +

∫

∂Ω

∂u

∂ν
v dS(x)−

∫

∂Ω

gv dS(x) = 0

or

(∗∗)
∫

Ω

∆uv dx =

∫

∂Ω

∂u

∂ν
v dS(x)−

∫

∂Ω

gv dS(x).

Now this is true for all v ∈ A. Let Ã be the subset of A such that

Ã = {w ∈ C2(Ω) : w = 0 for x ∈ ∂Ω}.
Now (**) is true for v ∈ Ã as well. But, for v ∈ Ã the right-hand side of (**)

vanishes. Therefore, we conclude that for all v ∈ Ã,∫

Ω

∆uv dx = 0.

But, this is enough to conclude that ∆u = 0. We just need to show that ∂u/∂ν = g
for x ∈ ∂Ω. Now the left-hand side of (**) vanishes. Therefore, for all v ∈ A, we
have ∫

∂Ω

(
∂u

∂ν
− g

)
v dS(x) = 0.

but, since this is true for all v ∈ A, we can conclude that ∂u/∂ν = g for x ∈ ∂Ω.
Therefore, u is a solution of the Neumann problem (*).
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8. (12 points) Let Ω ≡ {(x, y) ∈ R2 : 0 < x < l, 0 < y < k}.
(a) Find all eigenvalues and eigenfunctions for




−∆X = λX (x, y) ∈ Ω
Xy(x, 0) = 0, X(x, k) = 0 0 < x < l
X(0, y) = 0, Xx(l, y) = 0 0 < y < k

Answer: Using separation of variables, we look for eigenfunctions of the form
X(x)Y (y). Plugging this into the eigenvalue problem, we have

−X ′′Y −XY ′′ = λXY.

Dividing by XY , we have

−X ′′

X
− Y ′′

Y
= λ.

This implies

−X ′′

X
=

Y ′′

Y
+ λ = µ.

Therefore, we need to solve the eigenvalue problem

{ −X ′′ = µX 0 < x < l
X(0) = 0, X ′(l) = 0.

If µ = β2 > 0, we have

X(x) = A cos(βx) + B sin(βx).

The boundary condition
X(0) = 0 =⇒ A = 0.

The boundary condition

X ′(l) = 0 =⇒ cos(βl) = 0 =⇒ βl =

(
n +

1

2

)
π.

Therefore, µn = β2
n =

((
n + 1

2

)
π
l

)2
and Xn(x) = sin(βnx).

Then, we need to solve our equation for Y . In particular, we need to solve

Y ′′

Y
+ λ = µ =⇒ Y ′′

Y
= µ− λ = −γ.

This leads us to the eigenvalue problem

{ −Y ′′ = γY 0 < y < k
Y ′(0) = 0 = Y (k).

If γ = α2 > 0, then
Y (y) = A cos(αy) + B sin(αy).
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The boundary condition
Y ′(0) = 0 =⇒ B = 0.

The boundary condition

Y (k) = 0 =⇒ cos(αk) = 0 =⇒ αk =

(
m +

1

2

)
π.

Therefore, γm = α2
m =

((
m + 1

2

)
π
k

)2
and Ym(y) = cos(αmy).

Therefore, to conclude our eigenfunctions and corresponding eigenvalues are given
by

Xnm(x, y) = sin(βnx) cos(αmy)

where βn =

(
n +

1

2

)
π

l
and αm =

(
m +

1

2

)
π

k

λnm = µn + γn = β2
n + α2

m

(b) Let Xnm(x, y) denote the eigenfunctions from part (a). Solve




ut −∆u = 0 (x, y) ∈ Ω, t > 0
u(x, y, 0) = φ(x, y) (x, y) ∈ Ω
uy(x, 0, t) = 0, u(x, k, t) = 0 0 < x < l, t > 0
u(0, y, t) = 0, ux(l, y, t) = 0 0 < y < k, t > 0

Express your answer in terms of Xnm(x, y).

Answer: We look for a solution of the form T (t)X(x, y). Plugging this into the
PDE, we have

T ′X − T∆X = 0.

Dividing by TX, we have
T ′

T
− ∆X

X
= 0,

which implies
T ′

T
=

∆X

X
= −λ.

Let Xnm(x, y), λnm denote the eigenfunctions and corresponding eigenvalues of



−∆X = λX (x, y) ∈ Ω
X(0, y) = 0 = Xx(l, y) 0 < y < k
Xy(x, 0) = 0 = X(x, k) 0 < x < l.

Our solution for our equation for Tnm is

Tnm(t) = Cnme−λnmt.

Therefore, our solution is given by

u(x, y, t) =
∞∑

n,m=0

CnmXnm(x, y)e−λnmt
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where

Cnm =
〈φ,Xnm〉
〈Xnm, Xnm〉 =

∫ k

0

∫ l

0
φXnm dx dy∫ k

0

∫ l

0
X2

nm dx dy
.

9. (10 points) Suppose u ∈ C2(Ω) is a solution of

∆u = f ≥ 0 x ∈ Ω.

Show that

u(x) ≤ −
∫

∂B(x,r)

u(y) dy

for all B(x, r) ⊂ Ω.

Answer: Define the function

φ(r) = −
∫

∂B(x,r)

u(y) dS(y)

for r > 0 and φ(0) = u(x). Using the assumption that u is continuous, we conclude
that φ is continuous. We now look at φ′(r).

φ′(r) =
d

dr
−
∫

∂B(x,r)

u(y) dS(y)

=
d

dr
−
∫

∂B(0,1)

u(x + rz) dS(z)

= −
∫

∂B(0,1)

∇u(x + rz) · z dS(z)

= −
∫

∂B(x,r)

∇u(y) · y − x

r
dS(y)

= −
∫

∂B(x,r)

∂u

∂ν
dS(y)

=
1

nα(n)rn−1

∫

∂B(x,r)

∂u

∂ν
dS(y)

=
1

nα(n)rn−1

∫

B(x,r)

∆u dy

≥ 0.

Therefore, φ′ is an increasing function of r. Therefore, we conclude that φ(0) ≤ φ(r).
Therefore, we have

u(x) ≤ −
∫

∂B(x,r)

u(y) dS(y),

as claimed.
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10. (8 points) Find the smooth function f which yields the best lower bound for
∫ 1

0
(g′(x))2 dx

among functions satisfying g(0) = 3, g(1) = 4.

Answer: By Dirichlet’s principle, we know that the function which minimizes I(w) =∫
Ω
|∇w|2 dx subject to certain boundary conditions is the harmonic function on Ω which

satisfies those boundary conditions. Therefore, we look for the solution to

{
g′′ = 0 0 < x < 1
g(0) = 3, g(1) = 4.

Clearly, the harmonic functions on an interval are linear functions. That is,

g(x) = A + Bx.

The boundary condition
g(0) = 3 =⇒ A = 3.

The boundary condition
g(1) = 4 =⇒ B = 1.

Therefore, the solution is

g(x) = 3 + x.
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