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1. (12 points)

(a) (6 points) Find the Green’s function for the tilted half-plane

Ω = {(x1, x2) ∈ R2 : x1 + x2 > 0}.

For x = (x1, x2), y = (y1, y2) ∈ Ω, express your Green’s function G(x, y) in terms
of x1, x2, y1 and y2.

(b) (6 points) Use the Green’s function from part (a) to write the solution formula
for {

∆u = 0 x ∈ Ω
u = g x ∈ ∂Ω.

Simplify your answer as much as possible.
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2. (8 points) Find a Neumann function for the interval [a, b] ⊂ R. That is, find a function
N(x, y) such that for each x ∈ (a, b),

{ −∆yN(x, y) = δx a < y < b
∂N
∂ν

(x, y) = −1
2

y = a, b
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3. (10 points) Let Ω be the triangle bounded by x2 = 0, x2 = 1−x1 and x2 = 1+x1. Let
λi(Ω) be the ith eigenvalue of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω

(a) Prove that
5

4
π2 ≤ λ1(Ω).

(b) Prove that
5

2
π2 ≤ λ2(Ω).
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4. (12 points) Consider the eigenvalue problem with Neumann boundary conditions,

(∗)
{ −∆u = λu x ∈ Ω

∂u
∂ν

= 0 x ∈ ∂Ω.

(a) (8 points) Let Xn ≡ {w ∈ C2(Ω); w 6≡ 0, 〈w, vi〉 = 0 for i = 1, . . . , n − 1} where
the vi are the first n − 1 eigenfunctions. Prove that the nth eigenvalue of (*)
satisfies

λn = min
w∈Xn

||∇w||2L2

||w||2L2

.
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(b) (4 points) Use the results of part (a) to give an estimate on the second eigenvalue
for (*) (eigenvalue problem of the Laplacian with Neumann boundary conditions)
in the case when Ω is the triangle from the previous problem (the triangle bounded
by x2 = 0, x2 = 1− x1 and x2 = 1 + x1).
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5. (15 points) Determine whether the following statements are true or false. Briefly
explain your answer.

(a) Let Ω be an open, bounded, connected subset of Rn. Consider the exterior Neu-
mann problem, {

∆u = 0 x ∈ Ωc

∂u
∂ν

= g x ∈ ∂Ω.

A necessary condition for solvability is

∫

∂Ω

g(y) dS(y) = 0.

(b) Let Ω be an open, bounded subset of Rn. Let a(x) ≥ 0. All eigenvalues of

{ −∆u = λu x ∈ Ω
∂u
∂ν

+ a(x)u = 0 x ∈ ∂Ω

are non-negative.

(c) Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < π, 0 < x2 < π}. Suppose u and v are linearly
independent eigenfunctions of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω.

Then u and v are orthogonal.
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(d) Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < π}. Suppose u and v are linearly
independent eigenfunctions of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω.

Then u and v are orthogonal.

(e) Let Ω be an open, bounded set in Rn. Assume u ∈ C2(Ω) ∩ C(Ω) is a harmonic
function on Ω. If there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u(x),

then u(x) ≡ constant.
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6. (7 points) Answer the following short answer questions.

(a) (4 points) State the minimax principle for the nth eigenvalue of

{ −∆u = λu x ∈ Ω ⊂ Rn

u = 0 x ∈ ∂Ω

(b) (3 points) State Liouville’s Theorem.
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7. (10 points) Let Ω be an open, bounded subset of Rn. Let {vi, λi} be the eigenfunctions
and eigenvalues of { −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω

Solve the following initial/boundary value problem,





ut − k∆u = 0 x ∈ Ω
u(x, 0) = C1v1(x) + C2v2(x)
u(x, t) = 0 x ∈ ∂Ω.
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8. (16 points)

(a) (4 points) Let B3(0, 1) be the ball of radius 1 about the origin in R3. Use the
fundamental solution of Laplace’s equation to construct a solution of

(∗)
{

∆u = 0 x ∈ (B3(0, 1))c

u = 1 x ∈ ∂B3(0, 1)

which decays to zero as |x| → +∞.

(b) (4 points) Prove uniqueness of solutions of (*) which decay to zero as |x| → +∞.
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(c) (4 points) Give the definition of a double-layer potential with moment h. If we
can write the solution of (*) as a double-layer potential, what equation must h
satisfy?

(d) (4 points) Using parts (a)-(c), explain why we cannot write the solution of (*) as
a double-layer potential.
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9. (10 points) Let

fn(x) =

√
n

4π
e−nx2/4.

Prove that fn converges weakly to δ0 in the sense of distributions as n → +∞.
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Scratch Paper
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