
Math 220B Final Exam Solutions March 18, 2002

1. (12 points)

(a) (6 points) Find the Green’s function for the tilted half-plane

Ω = {(x1, x2) ∈ R2 : x1 + x2 > 0}.
For x = (x1, x2), y = (y1, y2) ∈ Ω, express your Green’s function G(x, y) in terms
of x1, x2, y1 and y2

Answer:

G(x, y) = − 1

2π
ln |(y1, y2)− (x1, x2)|+ 1

2π
ln |(y1, y2) + (x2, x1)|

(b) (6 points) Use the Green’s function from part (a) to write the solution formula
for {

∆u = 0 x ∈ Ω
u = g x ∈ ∂Ω.

Simplify your answer as much as possible.

Answer:

u(x) =
x1 + x2

π
√

2

∫

∂Ω

g(y)

|y − x|2 dS(y).

2. (8 points) Find a Neumann function for the interval [a, b] ⊂ R. That is, find a function
N(x, y) such that for each x ∈ (a, b),

{ −∆yN(x, y) = δx a < y < b
∂N
∂ν

(x, y) = −1
2

y = a, b

Answer:

N(x, y) = −1

2
|y − x|.

3. (10 points) Let Ω be the triangle bounded by x2 = 0, x2 = 1−x1 and x2 = 1+x1. Let
λi(Ω) be the ith eigenvalue of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω

(a) Prove that
5

4
π2 ≤ λ1(Ω).

Answer: Let Ω1 = {(x1, x2) : −1 < x1 < 1, 0 < x2 < 1}. We know Ω ⊂ Ω1 =⇒
λi(Ω) ≥ λi(Ω1). Now

λi(Ω1) =
(nπ

2

)2

+ (mπ)2.

Therefore,

λ1(Ω1) =
5

4
π2 ≤ λ1(Ω).
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(b) Prove that
5

2
π2 ≤ λ2(Ω).

Answer: Let Ω2 be the square with vertices at (1, 0), (0, 1), (−1, 0) and (0,−1).
This square has side lengths

√
2, and contains Ω. The eigenvalues of Ω2 are given

by

λi(Ω2) =

(
nπ√

2

)2

+

(
mπ√

2

)2

.

Therefore,

λ2(Ω2) =
π2

2
+ 2π2 =

5

2
π2 ≤ λ2(Ω).

4. (12 points) Consider the eigenvalue problem with Neumann boundary conditions,

(∗)
{ −∆u = λu x ∈ Ω

∂u
∂ν

= 0 x ∈ ∂Ω.

(a) (8 points) Let Xn ≡ {w ∈ C2(Ω); w 6≡ 0, 〈w, vi〉 = 0 for i = 1, . . . , n − 1} where
the vi are the first n − 1 eigenfunctions. Prove that the nth eigenvalue of (*)
satisfies

λn = min
w∈Xn

||∇w||2L2

||w||2L2

.

Answer: Suppose u ∈ Xn is the minimizer of this quotient over all w ∈ Xn.
Pick any v ∈ Xn and let

i(t) =
||∇(u + tv)||2L2(Ω)

||u + tv||2L2

.

If u is a minimizer, then i has a local minimum at t = 0, and, therefore, i′(0) = 0.
By a straightforward calculation, we see that

i′(0) =
(
∫

u2)(
∫

2∇u · ∇v)− (
∫ |∇u|2)(∫ 2uv)

(
∫

u2)2
.

We see that i′(0) = 0 =⇒

−
∫

Ω

∆uv dx +

∫

∂Ω

∂u

∂ν
v dS(x) = m

∫

Ω

uv dx.

Therefore, ∫

Ω

[∆u + mu]v dx =

∫

∂Ω

∂u

∂ν
v dS(x)

for all v ∈ Xn.
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Now let vj be one of the first n−1 eigenfunctions for this problem. By assumption,
u ∈ Xn implies that u is orthogonal to vj. Therefore, we see that

∫

Ω

[∆u + mu]vj dx =

∫

Ω

∆uvj dx

=

∫

Ω

u∆vj dx +

∫

∂Ω

∂u

∂ν
vj dS(x)−

∫

∂Ω

u
∂vj

∂ν
dS(x)

= −λj

∫

Ω

uvj dx +

∫

∂Ω

∂u

∂ν
vj dS(x).

=

∫

∂Ω

∂u

∂ν
vj dS(x).

Now let h be an arbitrary trial function (C2 function which vanishes on the
boundary of Ω). Define

v = h−
n−1∑
i=1

civi

where

ci ≡ 〈h, vi〉
〈vi, vi〉 .

First, we note that

〈v, vj〉 = 〈h−
n−1∑
i=1

civi〉 = 0.

Therefore, we conclude that v ∈ Xn.

Therefore,

∫

Ω

[∆u + mu]h dx =

∫

Ω

[∆u + mu]

{
v +

n−1∑
i=1

civi

}
dx

=

∫

Ω

[∆u + mu]v dx +
n−1∑
i=1

ci

∫

Ω

vi dx

=

∫

∂Ω

∂u

∂ν
v dS(x) +

n−1∑
i=1

ci

∫

∂Ω

∂u

∂ν
vi dS(x)

=

∫

∂Ω

∂u

∂ν
h dS(x) = 0,

using the assumption that h vanishes on ∂Ω. Therefore, we conclude that

∆u + mu = 0,

and, thus, u is an eigenfunction with corresponding eigenvalue m. Next, we will
show that m is the nth eigenvalue. First, we note that Xn ⊂ Xn−1 ⊂ Xn−2 ⊂
. . .. Therefore, m ≥ λn−1 ≥ λn−2 ≥ . . .. To show that m ≤ λn, let vj be
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an eigenfunction with corresponding eigenvalue λj for j ≥ n. Now vj ∈ Xn.
Therefore,

m = min
w∈Xn

||∇w||2L2(Ω)

||w||2L2(Ω)

≤
||∇vj||2L2(Ω)

||vj||L2(Ω)2
=

∫
Ω
|∇vj|2∫
Ω

v2
j

= −
∫
Ω

vj∆vj∫
Ω

v2
j

=
λj

∫
Ω

v2
j∫

Ω
v2

j

= λj.

(b) (4 points) Use the results of part (a) to give an estimate on the second eigenvalue
for (*) (eigenvalue problem of the Laplacian with Neumann boundary conditions)
in the case when Ω is the triangle from the previous problem (the triangle bounded
by x2 = 0, x2 = 1− x1 and x2 = 1 + x1).

Answer: We need to find a function in X2, the space of functions which are
orthogonal to the first eigenfunction. As the first eigenvalue for the Laplacian
with Neumann boundary conditions is zero, we know the first eigenfunction is the
constant function. Therefore, X2 consists of C2 functions which are orthogonal
to constant functions; that is, functions which satisfy

∫

Ω

v dx = 0.

Here Ω is the triangle with vertices at (1, 0), (0, 1) and (−1, 0). One function in X2

would be v(x, y) = x. Using this test function, we get the following approximation
for the second eigenvalue,

λ2 ≈
∫
Ω

dx1 dx2∫
Ω

x2
1 dx1 dx2

=
1

1/6
= 6.

5. (15 points) Determine whether the following statements are true or false. Briefly
explain your answer.

(a) Let Ω be an open, bounded, connected subset of Rn. Consider the exterior Neu-
mann problem, {

∆u = 0 x ∈ Ωc

∂u
∂ν

= g x ∈ ∂Ω.

A necessary condition for solvability is

∫

∂Ω

g(y) dS(y) = 0.

Answer: False. For example, let Ω = B(0, 1) in R3 and consider u(x) = 1
|x| .

We see that u is a solution of




∆u = 0 x ∈ Ωc

∂u

∂ν
= −1 x ∈ ∂Ω

but
∫

∂Ω
−1 dS(x) 6= 0.
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(b) Let Ω be an open, bounded subset of Rn. Let a(x) ≥ 0. All eigenvalues of

{ −∆u = λu x ∈ Ω
∂u
∂ν

+ a(x)u = 0 x ∈ ∂Ω

are non-negative.

Answer: True.

λ

∫

Ω

u2 dx = −
∫

Ω

u∆u dx =

∫

Ω

|∇u|2 dx−
∫

Ω

u
∂u

∂ν
dS(x)

=

∫

Ω

|∇u|2 dx +

∫

∂Ω

a(x)u2 dx ≥ 0.

Therefore, λ ≥ 0.

(c) Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < π, 0 < x2 < π}. Suppose u and v are linearly
independent eigenfunctions of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω.

Then u and v are orthogonal.

Answer: False. The eigenvalues are given by λmn = m2 + n2. We see that
λ = 5 is an eigenvalue with multiplicity 2. Therefore, it has a two-dimensional
eigenspace, and consequently the eigenfunctions need not be orthogonal.

(d) Let Ω = {(x1, x2) ∈ R2 : 0 < x1 < 1, 0 < x2 < π}. Suppose u and v are linearly
independent eigenfunctions of

{ −∆u = λu x ∈ Ω
u = 0 x ∈ ∂Ω.

Then u and v are orthogonal.

Answer: True. The eigenvalues are given by λmn = (mπ)2 + n2. All eigenval-
ues are distinct. We know that for symmetric boundary conditions, eigenfunctions
corresponding to distinct eigenvalues are orthogonal. Therefore, all linearly inde-
pendent eigenfunctions must be orthogonal.

(e) Let Ω be an open, bounded set in Rn. Assume u ∈ C2(Ω) ∩ C(Ω) is a harmonic
function on Ω. If there exists a point x0 ∈ Ω such that

u(x0) = max
Ω

u(x),

then u(x) ≡ constant.

Answer: False. We need the domain Ω to be connected for the strong maximum
principle to hold.

6. (7 points) Answer the following short answer questions.
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(a) (4 points) State the minimax principle for the nth eigenvalue of

{ −∆u = λu x ∈ Ω ⊂ Rn

u = 0 x ∈ ∂Ω

Answer: Let w1, . . . , wn be a set of n linearly independent trial functions (C2

functions which vanish on ∂Ω). Let

λ∗n(w1, . . . , wn) = max
c6≡0

{ ||∇w||2L2(Ω)

||w||2L2(Ω)

: w =
n∑

i=1

ciwi

}
.

Then
λn = min λ∗n(w1, . . . , wn),

where the minimum is taken over all possible sets of n linearly independent trial
functions.

(b) (3 points) State Liouville’s Theorem.

Answer: If u is a bounded, harmonic function on Rn, then u must be constant.

7. (10 points) Let Ω be an open, bounded subset of Rn. Let {vi, λi} be the eigenfunctions
and eigenvalues of { −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω

Solve the following initial/boundary value problem,





ut − k∆u = 0 x ∈ Ω
u(x, 0) = C1v1(x) + C2v2(x)
u(x, t) = 0 x ∈ ∂Ω.

Answer: Look for a solution of the form u(x, t) = X(x)T (t). Then we see that

un(x, t) = Anvne
−kλnt

is a solution of the heat equation which satisfies the boundary condition for each n.
Now, we want

u(x, 0) = C1v1(x) + C2v2(x).

Therefore, by letting A1 = C1, A2 = C2 and Ai = 0 for i ≥ 3, we arrive at the solution

u(x, t) = C1v1(x)e−kλ1t + C2v2(x)e−kλ2t.

8. (16 points)
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(a) (4 points) Let B3(0, 1) be the ball of radius 1 about the origin in R3. Use the
fundamental solution of Laplace’s equation to construct a solution of

(∗)
{

∆u = 0 x ∈ (B3(0, 1))c

u = 1 x ∈ ∂B3(0, 1)

which decays to zero as |x| → +∞.

Answer:

u(x) =
1

|x| .

(b) (4 points) Prove uniqueness of solutions of (*) which decay to zero as |x| → +∞.

Answer: Suppose u and v are two solutions of (*) which decay to zero as
|x| → +∞. Fix C > 1. Let ΩC = (B3(0, 1))c ∩ B3(0, C). Then u and v are
harmonic on ΩC , and w = u− v satisfies





∆w = 0 x ∈ ΩC

w = 0 x ∈ ∂B3(0, 1)

w ≤ ε x ∈ ∂B3(0, C)

for some ε = ε(C). By the maximum principle,

max
ΩC

w(x) = max
∂ΩC

w(x) ≤ max{0, ε}.

Therefore, w ≤ max{0, ε}. This is true for all ε > 0 by choosing C sufficiently
large. Therefore, we conclude that w = u − v ≤ 0 on (B3(0, 1))c. By a similar
analysis with w̃ = v−u, we conclude that w̃ = v−u ≤ 0 on (B3(0, 1))c. Therefore,
we conclude that u = v.

(c) (4 points) Give the definition of a double-layer potential with moment h. If we
can write the solution of (*) as a double-layer potential, what equation must h
satisfy?

Answer:

u(x) = −
∫

∂Ω

h(y)
∂Φ

∂νy

(x− y) dS(y)

where

g(x) = −1

2
h(x)−

∫

∂Ω

h(y)
∂Φ

∂νy

(x− y) dS(y).

(d) (4 points) Using parts (a)-(c), explain why we cannot write the solution of (*) as
a double-layer potential.

Answer: Suppose we can write the solution as a double-layer potential. By
parts (a) and (b), we know the unique solution (which decays to zero) is given
by u(x) = 1

|x| . (Note: A solution given by the double-layer potential will decay
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to zero.) By part (c), we know that if the solution is given by a double-layer
potential, then there must exist a continuous function h such that

1

|x| = −
∫

∂B3(0,1)

h(y)
∂Φ

∂νy

(x− y) dS(y)

which satisfies

1 = −1

2
h(x) +

1

|x|
for all x ∈ ∂B3(0, 1). Therefore, we need

1 = −1

2
h(x) + 1,

which implies h = 0. But, we can see this cannot be satisfied.

9. (10 points) Let

fn(x) =

√
n

4π
e−nx2/4.

Prove that fn converges weakly to δ0 in the sense of distributions as n → +∞.

Answer: Let Ffn be the distribution such that

(Ffn , φ) ≡
∫ ∞

−∞
fn(x)φ(x) dx.

We need to show that
(Ffn , φ) → (δ0, φ) = φ(0)

as n → +∞. That is, we need to show that for all ε > 0, there exists an N such that

|(Ffn , φ)− φ(0)| < ε

for n ≥ N . Using the fact that

∫ ∞

−∞

√
n

4π
e−nx2/4 dx = 1,

we write

|(Ffn , φ)− φ(0)| =
∣∣∣∣
∫ ∞

−∞

√
n

4π
e−nx2/4[φ(x)− φ(0)] dx

∣∣∣∣

≤
∣∣∣∣
∫

B(0,δ)

√
n

4π
e−nx2/4[φ(x)− φ(0)] dx

∣∣∣∣

+

∣∣∣∣
∫

R−B(0,δ)

√
n

4π
e−nx2/4[φ(x)− φ(0)] dx

∣∣∣∣
= I + J
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for δ to be determined below.

Now for term I, we bound as follows. We write

|I| =
∣∣∣∣
∫

B(0,δ)

√
n

4π
e−nx2/4[φ(x)− φ(0)] dx

∣∣∣∣

≤ |φ(x)− φ(0)|L∞(B(0,δ)) <
ε

2

by choosing δ sufficiently small, using the fact that φ is continuous.

Now for that choice of δ, term J is bounded as follows. We write

|J | =
∣∣∣∣
∫

R−B(0,δ)

√
n

4π
e−nx2/4[φ(x)− φ(0)] dx

∣∣∣∣

≤ C

√
n

4π
e−nδ2/8

∫

R−B(0,δ)

e−nx2/8 dx

≤ C

√
n

4π
e−nδ2/8 <

ε

2

by choosing n sufficiently large. Therefore, our claim is proven.
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