Math 220B Final Exam Solutions March 18, 2002
1. (12 points)
(a) (6 points) Find the Green’s function for the tilted half-plane
Q= {(z1,72) € R? : 1y + 25 > 0}.

For x = (z1,22),y = (y1,92) € Q, express your Green’s function G(z,y) in terms
of T1, 22, Y1 and Y2
Answer:

1 1
G(z,y) = 5 In |(y1,y2) — (21, 22)| + oy In |(y1,y2) + (z2, 21)]

(b) (6 points) Use the Green’s function from part (a) to write the solution formula
for
Au=0 z€
u=gqg x € 0f).

Simplify your answer as much as possible.

Answer:

T+ T2 9(y)
MO8 Sy e Y

2. (8 points) Find a Neumann function for the interval [a,b] C R. That is, find a function
N(z,y) such that for each = € (a,b),

{ —AyN(z,y) =06, a<y<b

Answer:

3. (10 points) Let Q be the triangle bounded by 25 =0, 2o = 1 — 21 and 25 = 1+ x;. Let
Ai(Q) be the i'" eigenvalue of
—Au = A\u x €
u=">0 x € 0f)

(a) Prove that
Zﬁ < M),

Answer: Let Q) = {(z1,22): -1 <21 <1,0< 29 < 1}. We know Q C Q; —

nm\ 2
M) = (7) + (mm)2.
Therefore,
5
)\1(91) = 1_17]-2 < )\1(9)



(b) Prove that
5
—7T2 S )\2(9)
2
Answer: Let €y be the square with vertices at (1,0), (0,1), (—1,0) and (0, —1).

This square has side lengths v/2, and contains . The eigenvalues of 2, are given

by , ,
o= () + (5)

m 2_ 9 o
/\2(92) = 7 + 27" = 57’(’ S )\Q(Q)

Therefore,

4. (12 points) Consider the eigenvalue problem with Neumann boundary conditions,

(*){ —Au=X u 1€

(a) (8 points) Let X,, = {w € C*(Q);w # 0, (w,v;) =0 fori=1,...,n — 1} where
the v; are the first n — 1 eigenfunctions. Prove that the nth eigenvalue of (*)
satisfies

v
A, — min [IVwl|Z:
~weXo [JwlP,

Answer: Suppose u € X, is the minimizer of this quotient over all w € X,,.
Pick any v € X, and let

_ IV (u + t0)|[72q
|Ju 4+ tv||3,

If w is a minimizer, then ¢ has a local minimum at ¢t = 0, and, therefore, 7/(0) = 0.
By a straightforward calculation, we see that

(S u*)(J 2Vu- Vo) = (f[Vul*)(] 2u0)

o= (]

We see that i'(0) =0 =

/Auvdx+ —vdS m/uvd:v
Q o0 0

Therefore,

/[Aqumuvdx— —vdS( )
Q o0 OV

for all v € X,,.



Now let v; be one of the first n—1 eigenfunctions for this problem. By assumption,
u € X,, implies that u is orthogonal to v;. Therefore, we see that

/[Au + mulv; dr = / Auv; dx
Q

ov;

ulv; dr + —v ds /u—Jde
= [udvdes [ Stoaste) - [ uGlast)
:—)\j/uvjd$—l—/ aU]dS()

Q a0 OV

ou
= —uv,;dS

agal/] ()

Now let h be an arbitrary trial function (C? function which vanishes on the
boundary of €2). Define

n—1
v=~h— Z Ci;
i=1
where "
C; = < 7Ul>
<Uia UZ>
First, we note that
n—1
(v,v;) =(h =) cv;) =0

Therefore, we conclude that v € X,,.
Therefore,

/Q[Au—i—mu]hdx: /Q[Au—l—mu] {v+7§civi} dx

=1

n—1
:/[Au—i-mu]vdx—l—Zci/vidx

Q
= —U dS + C; / —U; dS
a0 aV ZZI 90 aV

—h dS(z) =0,
o0 0

using the assumption that h vanishes on 0f2. Therefore, we conclude that
Au~+ mu =0,

and, thus, u is an eigenfunction with corresponding eigenvalue m. Next, we will
show that m is the n'" eigenvalue. First, we note that X,, C X,,.1 C X,_o C
Therefore, m > X\,_1 > A\,—2 > .... To show that m < A,, let v; be



an eigenfunction with corresponding eigenvalue A; for j > n. Now v; € X,,.

Therefore,
L ||Vw||%2(9) ||ij||%2(9) _ fQ !VUj|2 - fQ v;Av; . Aj fQUJQ -\
m = min 5 < = = = L=\
weXo [|wl|72) T [lvillrze)2 Jo v Jo v Jo 3

(b) (4 points) Use the results of part (a) to give an estimate on the second eigenvalue

for (*) (eigenvalue problem of the Laplacian with Neumann boundary conditions)
in the case when (2 is the triangle from the previous problem (the triangle bounded
by xo =0, x5 =1 —x; and 25 = 1 + x7).
Answer: We need to find a function in X5, the space of functions which are
orthogonal to the first eigenfunction. As the first eigenvalue for the Laplacian
with Neumann boundary conditions is zero, we know the first eigenfunction is the
constant function. Therefore, X, consists of C? functions which are orthogonal
to constant functions; that is, functions which satisfy

/vdx:O.
Q

Here 2 is the triangle with vertices at (1,0), (0,1) and (—1,0). One function in X,
would be v(z,y) = x. Using this test function, we get the following approximation
for the second eigenvalue,

Ao A de.fﬂld.’L'Q . 1 — 6
QNfo%dxldxg_l/G_ ’

5. (15 points) Determine whether the following statements are true or false. Briefly
explain your answer.

(a) Let Q be an open, bounded, connected subset of R™. Consider the exterior Neu-
mann problem,

Au=0 2€Q°
%:g x € OfL.

A necessary condition for solvability is

/mg(y) dS(y) = 0.

Answer: For example, let Q = B(0,1) in R?® and consider u(x)
We see that u is a solution of

Au=0 z¢€QF
ou

— =1 0
5 T €0

but [,, —1dS(z) # 0.



(b) Let € be an open, bounded subset of R™. Let a(x) > 0. All eigenvalues of

—Au = \u x €}
ntalz)u=0 x €0

are non-negative.

Answer: |True.

)\/Ude:—/uAudx:/|Vu|2d:v—/u@d5(x)
Q Q Q o Ov

=/|Vu]2d:1:~l—/ a(z)u® dr > 0.
Q B

Therefore, A > 0.

(c) Let Q = {(z1,22) ER?*: 0 < z; < 7,0 < 29 < 7}. Suppose u and v are linearly
independent eigenfunctions of

—Au = \u €N
u=>0 x € 0f).

Then v and v are orthogonal.

Answer: The eigenvalues are given by A, = m? + n?. We see that
A = b5 is an eigenvalue with multiplicity 2. Therefore, it has a two-dimensional
eigenspace, and consequently the eigenfunctions need not be orthogonal.

(d) Let Q© = {(z1,22) € R?*: 0 < 1 < 1,0 < x5 < 7}. Suppose u and v are linearly
independent eigenfunctions of

—Au = \u z €
u=>0 x € 0f).

Then v and v are orthogonal.
Answer: The eigenvalues are given by A, = (mm)? + n? All eigenval-

ues are distinct. We know that for symmetric boundary conditions, eigenfunctions
corresponding to distinct eigenvalues are orthogonal. Therefore, all linearly inde-
pendent eigenfunctions must be orthogonal.

(e) Let 2 be an open, bounded set in R™. Assume u € C%(Q) N C(Q) is a harmonic
function on €. If there exists a point zy € 2 such that

u(zg) = max u(z),

then u(x) = constant.

Answer: We need the domain €2 to be connected for the strong maximum
principle to hold.

6. (7 points) Answer the following short answer questions.



(a) (4 points) State the minimax principle for the nth eigenvalue of

—Au=\u reQCR?
u=>0 x € 0f)

Answer: Let wy,...,w, be a set of n linearly independent trial functions (C?
functions which vanish on 09Q). Let

Yw 2 n
Ar(wy, .. wy) :max{m tw = Zciw,}.

70 [l |i2(9) i=1
Then
Ap = min A (wy, ..., wy),

where the minimum is taken over all possible sets of n linearly independent trial
functions.

(b) (3 points) State Liouville’s Theorem.
Answer: If u is a bounded, harmonic function on R”, then v must be constant.

. (10 points) Let € be an open, bounded subset of R™. Let {v;, A\;} be the eigenfunctions
and eigenvalues of

—Au = \u z €N
u=>0 x € 0N

Solve the following initial/boundary value problem,

uy — kAu =0 r €
u(z,0) = Crv () + Covg(x)
u(z,t) =0 x € S

Answer: Look for a solution of the form u(x,t) = X (z)7T'(t). Then we see that
Up(7,1) = Apvpe At

is a solution of the heat equation which satisfies the boundary condition for each n.
Now, we want

u(a:, 0) = 011]1(1') + 021)2(.7)).
Therefore, by letting A; = C;, Ay = Cy and A; = 0 for 7 > 3, we arrive at the solution

u(x,t) = Crvy(x)e ™M+ Covg(z)e ™ML,

. (16 points)



(a) (4 points) Let B3(0,1) be the ball of radius 1 about the origin in R3. Use the
fundamental solution of Laplace’s equation to construct a solution of

Au=0 z € (B5(0,1))°
<*>{ hel 2 OBO L)

which decays to zero as |z| — +o0.

Answer:

1

(b) (4 points) Prove uniqueness of solutions of (*) which decay to zero as |z| — +oc.

Answer:  Suppose u and v are two solutions of (*) which decay to zero as
|z| — 4o00. Fix C > 1. Let Q¢ = (Bs(0,1))° N B3(0,C). Then u and v are
harmonic on ¢, and w = u — v satisfies

Aw =0 I'GQC
w=0 ze€ 033(0, 1)
w<e x€ 833(0,0)

for some € = ¢(C'). By the maximum principle,

max w(z) = maxw(x) < max{0, €}.
Qc e

Therefore, w < max{0,e}. This is true for all € > 0 by choosing C' sufficiently
large. Therefore, we conclude that w = u —v < 0 on (B5(0,1))°. By a similar
analysis with w = v—u, we conclude that w = v—u < 0 on (B3(0,1))¢. Therefore,
we conclude that u = v.

(c) (4 points) Give the definition of a double-layer potential with moment h. If we
can write the solution of (*) as a double-layer potential, what equation must h

satisfy?
Answer:
0P
ue) == [ )5 (o - )dSiy)
a0 Vy
where

(d) (4 points) Using parts (a)-(c), explain why we cannot write the solution of (*) as
a double-layer potential.

Answer: Suppose we can write the solution as a double-layer potential. By

parts (a) and (b), we know the unique solution (which decays to zero) is given

by u(x) = ﬁ (Note: A solution given by the double-layer potential will decay



to zero.) By part (c), we know that if the solution is given by a double-layer
potential, then there must exist a continuous function A such that

1 / O
= h(y)=—(x — 7)) dS
2] . (y) auy( y) dS(y)

which satisfies

1 1
1= —h(z) + —
for all z € 9B3(0,1). Therefore, we need
1 1h( )+1
= ——h(z
2 Y

which implies h = 0. But, we can see this cannot be satisfied.

9. (10 points) Let

Prove that f, converges weakly to dy in the sense of distributions as n — +o0.

Answer: Let Fy, be the distribution such that

(Fy,. ¢) = /OO fo(z)o(x) da.

We need to show that
(Fy,, ) — (do, @) = ¢(0)

as n — +o0o. That is, we need to show that for all € > 0, there exists an N such that

|[(Fy, ¢) — ¢(0)] <€

for n > N. Using the fact that

/oo \ e e =1,

(F.0) =001 = | [\ 10(0) — o(0) e
| e o) - o(0) de
[ et o0 s

—I+J

we write

+




for § to be determined below.

Now for term I, we bound as follows. We write

1] =

[ e o) - 00) s
B(0,6) 0

< |6(2) = SO = < 5

by choosing ¢ sufficiently small, using the fact that ¢ is continuous.

Now for that choice of §, term .J is bounded as follows. We write

n —nz?/4
—e o(x) — ¢(0)] do
Lo e 00 = 600)
< C Ee—n(SQ/S/ e—naz2/8 dr
V 4m R—B(0,6)

n 2 €
<C _e—né /8 < -
- 4 2

| =

by choosing n sufficiently large. Therefore, our claim is proven.



