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1. (14 points) Let Ω be the upper half of the unit disk in R2. That is, let

Ω ≡ {(x, y) ∈ R2 : x2 + y2 < 1, y > 0}.

Use separation of variables to solve





uxx + uyy = 0 (x, y) ∈ Ω
u(r, 0) = 0 = u(r, π)
u(1, θ) = θ(θ − π).

You do not need to evaluate any integrals.

Answer: First, we write the equation in polar coordinates,

urr +
1

r
ur +

1

r2
uθθ = 0.

Now, using separation of variables, we look for a solution of the form u(r, θ) =
R(r)Θ(θ). Plugging this into our equation, we have

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0.

Dividing by RΘ and multiplying by r2, we get

r2R′′

R
+

rR′

R
= −Θ′′

Θ
= λ.

Our boundary condition
u(0, θ) = 0 = u(r, θ)

leads us to the eigenvalue problem

{
−Θ′′ = λΘ 0 < θ < π

Θ(0) = 0 = Θ(π).

We know the solutions of this eigenvalue problem are

Θn(θ) = sin(nθ) λn = n2, n = 1, 2, . . .

Now we look at our equation for Rn, for n = 1, 2, . . .. We know

r2R′′
n + rR′

n − n2Rn = 0

has solutions
Rn = Cnr

n + Dnr
−n n = 1, 2, . . .

As we do not want our solution to blow up as r → 0, we discard the solutions r−n.
Therefore, our solutions for Rn are

Rn(r) = Cnr
n n = 1, 2, . . .
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Therefore, we let

u(r, θ) =
∞∑

n=1

Rn(r)Θn(θ)

=
∞∑

n=1

Cnrn sin(nθ).

Our other boundary condition u(1, θ) = θ(θ− π) implies we want to find constants Cn

such that

u(1, θ) =
∞∑

n=0

Cn sin(nθ) = θ(θ − π).

This is the Fourier sine series for our boundary data. We know our coefficients Cn

must be given by

Cn =
〈θ(θ − π), sin(nθ)〉
〈sin(nθ), sin(nθ)〉

=

∫ π

0
θ(θ − π) sin(nθ) dθ∫ π

0
sin2(nθ) dθ

.

Therefore, our solution is given by

u(r, θ) =
∞∑

n=1

Cnr
n sin(nθ)

where

Cn =

∫ π

0
θ(θ − π) sin(nθ) dθ∫ π

0
sin2(nθ) dθ

.

2. (10 points) Let Ω be the upper half-plane in R2. That is, let

Ω = {(x, y) ∈ R2, y > 0}.
Consider the boundary-value problem,

{
∆u = 0 (x, y) ∈ Ω
u = 0 (x, y) ∈ ∂Ω.

(1)

(a) Prove uniqueness of bounded solutions of (1). Hint: Suppose u is a solution
of (1). Consider the odd reflection of u across the x-axis; that is, consider the
function v defined as

v(x, y) =

{
u(x, y) y > 0
−u(x,−y) y < 0.

Answer: Suppose u is a solution of (1). Then by defining v as the odd reflection
of u, we note that v is a harmonic function in all of R2. Also, by assumption, u
is bounded. Therefore, v is bounded. By Liouville’s Theorem, the only bounded,
harmonic functions in all of Rn are constant functions. Therefore, v must be
constant. But, v(x, 0) = 0. Therefore, v(x, y) ≡ 0, which implies u(x, y) ≡ 0.
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(b) Give an unbounded counterexample.

Answer: We note that u(x, y) = Cy is a solution of (1) for any C ∈ R. There-
fore, for any C1 6= C2 (neither of which is zero), u1(x, y) = C1y and u2(x, y) = C2y
are two unbounded solutions of (1).

3. (18 points) Let Ω be the triangle with vertices at (1, 0), (−1, 0) and (0, 2). Consider
the eigenvalue problem { −∆u = λu x ∈ Ω

u = 0 x ∈ ∂Ω.
(2)

(a) Use the Comparison Principle to get an upper bound on the first eigenvalue for
this eigenvalue problem. In particular, find the best upper bound on λ1 among
all rectangles contained within Ω with sides parallel to the coordinate axes.

Answer: For any rectangle R contained within Ω with sides parallel to the axes,
and vertices (x, 0), (−x, 0), (x, y), (−x, y), the eigenvalues of R are given by

λnm(R) =
(nπ

2x

)2

+

(
mπ

y

)2

.

For any rectangle contained within Ω, we can get a better estimate if we extend
the rectangle so that its vertices intersect the boundary. Therefore, we want
to minimize the first eigenvalue for all rectangles contained within Ω such that
y = 2− 2x. That is, we want to minimize the function

f(x) =
1

(2x)2
+

1

y(x)2
=

1

4x2
+

1

(2− 2x)2
=

1

4

[
1

x2
+

1

(1− x)2

]
.

For simplicity, we neglect the coefficient 1/4. We just need to minimize

g(x) =
1

x2
+

1

(1− x)2
.

We look for critical points.

g′(x) =
−2

x3
+

2

(1− x)3
.

Now g′(x) = 0 implies
1

(1− x)3
=

1

x3

or

x3 = (1− x)3 =⇒ x = 1− x =⇒ x =
1

2
.

We see that x = 1/2 minimizes g. Therefore, the best upper bound on the first
eigenvalue of Ω given by rectangles with sides parallel to the coordinate axes is
the rectangle with vertices (1/2, 0), (−1/2, 0), (1/2, 1), (−1/2, 1). Denote this
rectangle by R∗. Therefore,

λ1(R
∗) = 2π2 ≥ λ1(Ω).

4



(b) Let w1, w2 be two C2 functions which are identically zero for (x, y) ∈ ∂Ω. Explain
how to use the Rayleigh-Ritz method with w1 and w2 to approximate the second
eigenvalue of (2).

Answer: Define the 2× 2 matrices

A = (〈∇wj,∇wk〉)
B = (〈wj, wk〉).

Consider the equation
det(A− λB) = 0.

The larger of the roots of this second-order equation gives an approximation for
the second eigenvalue of (2).

(c) Find two linearly independent functions w1 and w2 which can be used for this
approximation. (You do not need to apply the Rayleigh-Ritz approximation to
these functions.)

Answer: We need to find two functions w1 and w2, both of which vanish for
(x, y) ∈ ∂Ω. In particular, we want both functions to vanish along the lines y = 0,
y = −2x + 2 and y = 2x + 2. Therefore, for example, we let

w1(x, y) = y(y − (−2x + 2))(y − (2x + 2))

w2(x, y) = y2(y − (−2x + 2))2(y − (2x + 2))2.

4. (8 points) Let Ω be an open, bounded subset of Rn. Consider
{

∆u = 0 x ∈ Ω
∂u
∂ν

+ u = g x ∈ ∂Ω.
(3)

(a) State the definition of a single-layer potential with moment h.

Answer:

u(x) = −
∫

Ω

h(y)Φ(y − x) dS(y).

(b) In order to write the solution of (3) as a single-layer potential with moment h,
what integral equation must h satisfy?

Answer: Fix x0 ∈ ∂Ω. Let ν(x0) be the outer unit normal to ∂Ω at x0. For all
t < 0 such that x0 + tν(x0) ∈ Ω, let

ix0(t) = ∇u(x0 + tν(x0)) · ν(x0).

We will say the boundary condition is satisfied if

lim
t→0−

ix0(t) + u(x) = g(x0).

for all x ∈ Ω, x0 ∈ ∂Ω. Now

lim
t→0−

ix0(t) = −1

2
h(x0)−

∫

∂Ω

h(y)
∂Φ

∂νx

(x0 − y) dS(y).
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In addition, we recall that a single-layer potential is continuous for all x ∈ Rn.
Therefore, in order to find a solution as a single-layer potential, we need h to
satisfy

−1

2
h(x0)−

∫

∂Ω

h(y)
∂Φ

∂νx

(x0 − y) dS(y)−
∫

∂Ω

h(y)Φ(y − x0) dS(y) = g(x0)

for all x0 ∈ ∂Ω.

5. (10 points) Recall that a Neumann function satisfies

{ −∆yN(x, y) = δx y ∈ Ω ⊂ Rn

∂N
∂ν

(x, y) = C y ∈ ∂Ω

for each x ∈ Ω, where C = 1R
∂Ω dS

. Find the Neumann function for the first quadrant

Ω = {(x1, x2) ∈ R2 : x1, x2 > 0}.

Answer: We note that
∫

∂Ω
dS = 0 for Ω the first quadrant. Therefore, our Neumann

function must satisfy

{ −∆yN(x, y) = δx y ∈ Ω ⊂ Rn

∂N
∂ν

(x, y) = 0 y ∈ ∂Ω.

In particular, letting Φ(y) denote the fundamental solution of Laplace’s equation in

R2, we can write N(x, y) = Φ(y − x)− h̃x(y) if hx(y) is a solution of

{
∆yh

x(y) = 0 y ∈ Ω
∂hx(y)

∂ν
= ∂Φ(y−x)

∂ν
y ∈ ∂Ω.

We see that if x = (x1, x2) ∈ Ω, then considering the reflected points x∗ = (x1,−x2),
x̃ = (−x1, x2) and x̃∗ = (−x1,−x2), then

N(x, y) = Φ(y − x) + Φ(y − x∗) + Φ(y − x̃) + Φ(y − x̃∗)

satisfies the necessary conditions, where

Φ(y) = − 1

2π
ln |y|.

6. (8 points) Let Fn : D → R be the distribution defined such that

(Fn, φ) =

∫ ∞

−∞
sin(nx)φ(x) dx ∀φ ∈ D.

Show that Fn converges to 0 weakly as n → +∞.
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Answer: To show that Fn converges to 0 weakly as n → +∞, we need to show that
(Fn, φ) → 0 for all φ ∈ D. Consider φ ∈ D. Therefore, φ has compact support. We
note that

(Fn, φ) =

∫ ∞

−∞
sin(nx)φ(x) dx

= −
∫ ∞

−∞

1

n
cos(nx)φ′(x) dx +

1

n
cos(nx)φ′(x)

∣∣∣∣
∞

−∞
.

Using the fact that φ has compact support, we know that the boundary terms go to
zero. Therefore, we are left with

|(Fn, φ)| ≤
∣∣∣∣
∫ ∞

−∞

1

n
cos(nx)φ′(x) dx

∣∣∣∣

≤ C

n
→ 0 as n → +∞.

7. (8 points) Let Ω be an open, bounded subset of Rn. Assume a(x) > 0 for all x ∈ ∂Ω.
Consider the eigenvalue problem

{ −∆X = λX x ∈ Ω
∂X
∂ν

+ a(x)X = 0 x ∈ ∂Ω.

Prove that all eigenvalues are positive.

Answer: Suppose λ is an eigenvalue with eigenfunction X. Then

λ

∫

Ω

X2 dx = −
∫

∆XX dx

= +

∫
|∇X|2 dx−

∫

∂Ω

∂X

∂ν
X dS(x)

=

∫

Ω

|∇X|2 dx +

∫

∂Ω

a(x)X2 dx ≥ 0,

using the assumption that a(x) > 0 for all x ∈ ∂Ω. Therefore, we see that λ ≥ 0.

It just remains to show that λ 6= 0. Suppose λ = 0. Then

∫

Ω

|∇X|2 dx = 0 =

∫

∂Ω

a(x)X2 dx.

The first equality implies that X ≡ C. The second equality implies X ≡ 0 for all
x ∈ ∂Ω. Therefore, X ≡ 0 for all x ∈ Ω. But, the zero function is not an eigenfunction.
Therefore, all eigenvalues are positive.

8. (10 points) Let Ω be an open, bounded subset of Rn. Suppose u ∈ C2(Ω) is a solution
of

∆u = f ≥ 0 x ∈ Ω.
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Show that

u(x) ≤ −
∫

∂B(x,r)

u(y) dS(y)

for all B(x, r) ⊂ Ω.

Answer: Define the function

φ(r) = −
∫

∂B(x,r)

u(y) dS(y)

for r > 0 and φ(0) = u(x). Using the assumption that u is continuous, we conclude
that φ is continuous. We now look at φ′(r).

φ′(r) =
d

dr
−
∫

∂B(x,r)

u(y) dS(y)

=
d

dr
−
∫

∂B(0,1)

u(x + rz) dS(z)

= −
∫

∂B(0,1)

∇u(x + rz) · z dS(z)

= −
∫

∂B(x,r)

∇u(y) · y − x

r
dS(y)

= −
∫

∂B(x,r)

∂u

∂ν
dS(y)

=
1

nα(n)rn−1

∫

∂B(x,r)

∂u

∂ν
dS(y)

=
1

nα(n)rn−1

∫

B(x,r)

∆u dy

≥ 0.

Therefore, φ′ is an increasing function of r. Therefore, we conclude that φ(0) ≤ φ(r).
Therefore, we have

u(x) ≤ −
∫

∂B(x,r)

u(y) dS(y),

as claimed.

9. (18 points) Determine whether the following statements are true or false. Provide a
reason for your answer.

(a) Let h be a continuous function. The function

u(x) = −
∫

∂Ω

h(y)Φ(x− y) dS(y)

is harmonic for all x ∈ Rn.

Answer: False. It is not harmonic for x ∈ ∂Ω. (It is not even continuous for
x ∈ ∂Ω.)
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(b) Let h be a continuous function. The function

u(x) = −
∫

∂Ω

h(y)
∂Φ

∂νy

(x− y) dS(y)

is continuous for all x ∈ Rn.

Answer: False. For example, let h = 1. By Gauss’ Lemma, we know that

u(x) =





1 x ∈ Ω
1
2

x ∈ ∂Ω
0 x ∈ Ωc

(c) Let h be a continuous function. Let n ≥ 2. The function

u(x) = −
∫

∂Ω

h(y)
∂Φ

∂νy

(x− y) dS(y)

is O(|x|2−n).

Answer: True. We note that Φ(x − y) = C
|x−y|n−2 . Therefore, ∂Φ

∂νy
(x − y) =

C|x− y|n−1 · ν(y) = O(|x|n−1) = O(|x|n−2).

(d) Let Ω be an open, bounded subset of Rn. Assume a(x) 6≡ 0. There exists at most
one solution of {

∆u = 0 x ∈ Ω
∂u
∂ν
− a(x)u = 0 x ∈ ∂Ω.

False. Suppose Ω = (0, 1). If u is harmonic in Ω, then u(x) = A + Bx. Now

∂u

∂ν
(0)− a(0)u(0) = −ux(0)− a(0)u(0)

∂u

∂ν
(1)− a(1)u(1) = ux(1)− a(1)u(1).

Suppose a(0) = −1, a(1) = 1/2. Then our boundary conditions read

− ux(0) + u(0) = 0

ux(1)− 1

2
u(1) = 0.

The first boundary condition implies

−B + A = 0.

The second boundary condition implies

B − 1

2
(A + B) = 0.

We see that there are an infinite number of solutions to this system of equations,
and, therefore, an infinite number of solutions to this boundary-value problem.
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(e) Let φ : Rn → R be a bounded function. There exists at most one bounded
solution u of {

ut −∆u = 0 x ∈ Rn, t > 0
u(x, 0) = φ(x).

Answer: True This follows from the uniqueness theorem for solutions of the
heat equation on Rn. In particular, we know there exits at most one solution
u(x, t) which satisfies the growth estimate

|u(x, t)| ≤ Aea|x|2

for some constants A, a. Therefore, in particular, there exits at most one bounded
solution.

(f) If u is a harmonic function on the rectangle

Ω ≡ {(x, y) ∈ R2 : 0 < x < a, 0 < y < b},
then

∫ a

0

uy(x, 0) dx +

∫ b

0

ux(a, y) dy +

∫ a

0

uy(x, b) dx +

∫ b

0

ux(0, y) dy = 0.

Answer: False Let u(x, y) = x. This function is harmonic on Ω. Clearly,
uy = 0. But, ux(0, y) = 1 = ux(a, y). Therefore,

∫ a

0

uy(x, 0) dx +

∫ b

0

ux(a, y) dy +

∫ a

0

uy(x, b) dx +

∫ b

0

ux(0, y) dy = 2b 6= 0.

10. (12 points) Consider the initial/boundary value problem




ut − uxx + ux = 0 0 < x < l, t > 0
u(x, 0) = φ(x) 0 < x < l
ux(0, t) = 0 = ux(l, t).

(4)

(a) Suppose u is a solution of this problem. Find a function g such that the function
v = gu satisfies

vt − vxx + v = 0.

Write the initial/boundary value problem that v satisfies.

Answer: If v = gu, then we see that

vt − vxx + v = gtu + gut − gxxu− 2gxux − guxx + gu

= g(ut − uxx + ux)− gux + gtu− gxxu− 2gxux + gu

= u(gt − gxx + g)− ux(g + 2gx).

In order for this to equal zero, we need

g + 2gx = 0

gt − gxx + g = 0.
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The first equation implies g(x, t) = C(t)e−
1
2
x. Plugging this into the second

equation, we have

C ′(t)e−
1
2
x − 1

4
C(t)e−

1
2
x + C(t)e−

1
2
x,

which implies

C ′(t) +
3

4
C(t) = 0.

Therefore, C(t) = e−
3
4
t. Therefore, we let

g(x, t) = e−
3
4
te−

1
2
x.

Then for v = gu, using the fact that

vx(0, t) = gx(0, t)u(0, t) + g(0, t)ux(0, t) = −1

2
e−

3
4
tu(0, t) = −1

2
v(0, t)

vx(l, t) = gx(l, t)u(l, t) + g(l, t)ux(l, t) = −1

2
e−

3
4
te−

1
2
lu(l, t) = −1

2
v(l, t)

we see that v is a solution of

vt − vxx + v = 0 0 < x < l

v(x, 0) = g(x, 0)u(x, 0) = e−
1
2
xφ(x)

vx(0, t) + 1
2
v(0, t) = 0

vx(l, t) + 1
2
v(l, t) = 0.

(b) In part (a) you show that v = gu will satisfy an initial/boundary value problem
of the form





vt − vxx + v = 0 0 < x < l, t > 0
v(x, 0) = f(x) 0 < x < l
v satisfies symmetric B.C.s

(5)

Suppose λn, Xn are the eigenvalues and corresponding eigenfunctions of the eigen-
value problem { −X ′′ = λX 0 < x < l

X satisfies (*) x = 0, l,

where (*) denotes the symmetric boundary conditions in (5). Write the solution
of (5) in terms of Xn, λn and f .

Answer: We look for a solution of (5) by using separation of variables. Look
for a solution of the form v(x, t) = X(x)T (t). Plugging this into (5), we have

T ′X − TX ′′ + TX = 0,

which implies
T ′

T
− X ′′

X
+ 1 = 0 =⇒ T ′

T
+ 1 =

X ′′

X
= −λ.
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Now the solutions of the eigenfunction problem

{ −X ′′ = λX 0 < x < l
X satisfies (*) x = 0, l,

are assumed to be given by Xn, λn. Then we see the solutions of

T ′
n

Tn

+ 1 = −λn

are given by Tn(t) = Cne−(λn+1)t. Therefore, our solution is given by

u(x, t) =
∞∑

n=1

CnXn(x)e−(λn+1)t

where

Cn =
〈f, Xn〉
〈Xn, Xn〉 .
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