

Julie Levadosky

**Name:** \_\_\_\_\_

Please sign below in acknowledgment and acceptance of the Honor Code.

**Signature:** \_\_\_\_\_

This exam is closed notes, closed book. The exam is worth a total of 116 points. The point value of each problem is indicated. Please show all work and clearly mark your answer.

| Number | Points |
|--------|--------|
| 1.     |        |
| 2.     |        |
| 3.     |        |
| 4.     |        |
| 5.     |        |
| 6.     |        |
| 7.     |        |
| 8.     |        |
| 9.     |        |
| 10.    |        |
| Total  |        |

1. (14 points) Let  $\Omega$  be the upper half of the unit disk in  $\mathbb{R}^2$ . That is, let

$$\Omega \equiv \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1, y > 0\}.$$

Use separation of variables to solve

$$\begin{cases} u_{xx} + u_{yy} = 0 & (x, y) \in \Omega \\ u(r, 0) = 0 = u(r, \pi) \\ u(1, \theta) = \theta(\theta - \pi). \end{cases}$$

You do **not** need to evaluate any integrals.

**Answer:** First, we write the equation in polar coordinates,

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0.$$

Now, using separation of variables, we look for a solution of the form  $u(r, \theta) = R(r)\Theta(\theta)$ . Plugging this into our equation, we have

$$R''\Theta + \frac{1}{r}R'\Theta + \frac{1}{r^2}R\Theta'' = 0.$$

Dividing by  $R\Theta$  and multiplying by  $r^2$ , we get

$$\frac{r^2R''}{R} + \frac{rR'}{R} = -\frac{\Theta''}{\Theta} = \lambda.$$

Our boundary condition

$$u(0, \theta) = 0 = u(r, \theta)$$

leads us to the eigenvalue problem

$$\begin{cases} -\Theta'' = \lambda\Theta & 0 < \theta < \pi \\ \Theta(0) = 0 = \Theta(\pi). \end{cases}$$

We know the solutions of this eigenvalue problem are

$$\Theta_n(\theta) = \sin(n\theta) \quad \lambda_n = n^2, n = 1, 2, \dots$$

Now we look at our equation for  $R_n$ , for  $n = 1, 2, \dots$ . We know

$$r^2R_n'' + rR_n' - n^2R_n = 0$$

has solutions

$$R_n = C_n r^n + D_n r^{-n} \quad n = 1, 2, \dots$$

As we do not want our solution to blow up as  $r \rightarrow 0$ , we discard the solutions  $r^{-n}$ . Therefore, our solutions for  $R_n$  are

$$R_n(r) = C_n r^n \quad n = 1, 2, \dots$$

Therefore, we let

$$\begin{aligned} u(r, \theta) &= \sum_{n=1}^{\infty} R_n(r) \Theta_n(\theta) \\ &= \sum_{n=1}^{\infty} C_n r^n \sin(n\theta). \end{aligned}$$

Our other boundary condition  $u(1, \theta) = \theta(\theta - \pi)$  implies we want to find constants  $C_n$  such that

$$u(1, \theta) = \sum_{n=0}^{\infty} C_n \sin(n\theta) = \theta(\theta - \pi).$$

This is the Fourier sine series for our boundary data. We know our coefficients  $C_n$  must be given by

$$\begin{aligned} C_n &= \frac{\langle \theta(\theta - \pi), \sin(n\theta) \rangle}{\langle \sin(n\theta), \sin(n\theta) \rangle} \\ &= \frac{\int_0^\pi \theta(\theta - \pi) \sin(n\theta) d\theta}{\int_0^\pi \sin^2(n\theta) d\theta}. \end{aligned}$$

Therefore, our solution is given by

$$u(r, \theta) = \sum_{n=1}^{\infty} C_n r^n \sin(n\theta)$$

where

$$C_n = \frac{\int_0^\pi \theta(\theta - \pi) \sin(n\theta) d\theta}{\int_0^\pi \sin^2(n\theta) d\theta}.$$

2. (10 points) Let  $\Omega$  be the upper half-plane in  $\mathbb{R}^2$ . That is, let

$$\Omega = \{(x, y) \in \mathbb{R}^2, y > 0\}.$$

Consider the boundary-value problem,

$$\begin{cases} \Delta u = 0 & (x, y) \in \Omega \\ u = 0 & (x, y) \in \partial\Omega. \end{cases} \quad (1)$$

(a) Prove uniqueness of *bounded* solutions of (1). *Hint:* Suppose  $u$  is a solution of (1). Consider the odd reflection of  $u$  across the  $x$ -axis; that is, consider the function  $v$  defined as

$$v(x, y) = \begin{cases} u(x, y) & y > 0 \\ -u(x, -y) & y < 0. \end{cases}$$

**Answer:** Suppose  $u$  is a solution of (1). Then by defining  $v$  as the odd reflection of  $u$ , we note that  $v$  is a harmonic function in all of  $\mathbb{R}^2$ . Also, by assumption,  $u$  is bounded. Therefore,  $v$  is bounded. By Liouville's Theorem, the only bounded, harmonic functions in all of  $\mathbb{R}^n$  are constant functions. Therefore,  $v$  must be constant. But,  $v(x, 0) = 0$ . Therefore,  $v(x, y) \equiv 0$ , which implies  $u(x, y) \equiv 0$ .

(b) Give an unbounded counterexample.

**Answer:** We note that  $u(x, y) = Cy$  is a solution of (1) for any  $C \in \mathbb{R}$ . Therefore, for any  $C_1 \neq C_2$  (neither of which is zero),  $u_1(x, y) = C_1 y$  and  $u_2(x, y) = C_2 y$  are two unbounded solutions of (1).

3. (18 points) Let  $\Omega$  be the triangle with vertices at  $(1, 0)$ ,  $(-1, 0)$  and  $(0, 2)$ . Consider the eigenvalue problem

$$\begin{cases} -\Delta u = \lambda u & x \in \Omega \\ u = 0 & x \in \partial\Omega. \end{cases} \quad (2)$$

(a) Use the Comparison Principle to get an upper bound on the first eigenvalue for this eigenvalue problem. In particular, find the best upper bound on  $\lambda_1$  among all rectangles contained within  $\Omega$  with sides parallel to the coordinate axes.

**Answer:** For any rectangle  $R$  contained within  $\Omega$  with sides parallel to the axes, and vertices  $(x, 0)$ ,  $(-x, 0)$ ,  $(x, y)$ ,  $(-x, y)$ , the eigenvalues of  $R$  are given by

$$\lambda_{nm}(R) = \left(\frac{n\pi}{2x}\right)^2 + \left(\frac{m\pi}{y}\right)^2.$$

For any rectangle contained within  $\Omega$ , we can get a better estimate if we extend the rectangle so that its vertices intersect the boundary. Therefore, we want to minimize the first eigenvalue for all rectangles contained within  $\Omega$  such that  $y = 2 - 2x$ . That is, we want to minimize the function

$$f(x) = \frac{1}{(2x)^2} + \frac{1}{y(x)^2} = \frac{1}{4x^2} + \frac{1}{(2-2x)^2} = \frac{1}{4} \left[ \frac{1}{x^2} + \frac{1}{(1-x)^2} \right].$$

For simplicity, we neglect the coefficient  $1/4$ . We just need to minimize

$$g(x) = \frac{1}{x^2} + \frac{1}{(1-x)^2}.$$

We look for critical points.

$$g'(x) = \frac{-2}{x^3} + \frac{2}{(1-x)^3}.$$

Now  $g'(x) = 0$  implies

$$\frac{1}{(1-x)^3} = \frac{1}{x^3}$$

or

$$x^3 = (1-x)^3 \implies x = 1-x \implies x = \frac{1}{2}.$$

We see that  $x = 1/2$  minimizes  $g$ . Therefore, the best upper bound on the first eigenvalue of  $\Omega$  given by rectangles with sides parallel to the coordinate axes is the rectangle with vertices  $(1/2, 0)$ ,  $(-1/2, 0)$ ,  $(1/2, 1)$ ,  $(-1/2, 1)$ . Denote this rectangle by  $R^*$ . Therefore,

$$\boxed{\lambda_1(R^*) = 2\pi^2 \geq \lambda_1(\Omega).}$$

(b) Let  $w_1, w_2$  be two  $C^2$  functions which are identically zero for  $(x, y) \in \partial\Omega$ . Explain how to use the Rayleigh-Ritz method with  $w_1$  and  $w_2$  to approximate the second eigenvalue of (2).

**Answer:** Define the  $2 \times 2$  matrices

$$A = (\langle \nabla w_j, \nabla w_k \rangle)$$

$$B = (\langle w_j, w_k \rangle).$$

Consider the equation

$$\det(A - \lambda B) = 0.$$

The larger of the roots of this second-order equation gives an approximation for the second eigenvalue of (2).

(c) Find two linearly independent functions  $w_1$  and  $w_2$  which can be used for this approximation. (You do **not** need to apply the Rayleigh-Ritz approximation to these functions.)

**Answer:** We need to find two functions  $w_1$  and  $w_2$ , both of which vanish for  $(x, y) \in \partial\Omega$ . In particular, we want both functions to vanish along the lines  $y = 0$ ,  $y = -2x + 2$  and  $y = 2x + 2$ . Therefore, for example, we let

$$\begin{aligned} w_1(x, y) &= y(y - (-2x + 2))(y - (2x + 2)) \\ w_2(x, y) &= y^2(y - (-2x + 2))^2(y - (2x + 2))^2. \end{aligned}$$

4. (8 points) Let  $\Omega$  be an open, bounded subset of  $\mathbb{R}^n$ . Consider

$$\begin{cases} \Delta u = 0 & x \in \Omega \\ \frac{\partial u}{\partial \nu} + u = g & x \in \partial\Omega. \end{cases} \quad (3)$$

(a) State the definition of a single-layer potential with moment  $h$ .

**Answer:**

$$\boxed{\bar{u}(x) = - \int_{\Omega} h(y) \Phi(y - x) dS(y).}$$

(b) In order to write the solution of (3) as a single-layer potential with moment  $h$ , what integral equation must  $h$  satisfy?

**Answer:** Fix  $x_0 \in \partial\Omega$ . Let  $\nu(x_0)$  be the outer unit normal to  $\partial\Omega$  at  $x_0$ . For all  $t < 0$  such that  $x_0 + t\nu(x_0) \in \Omega$ , let

$$i^{x_0}(t) = \nabla \bar{u}(x_0 + t\nu(x_0)) \cdot \nu(x_0).$$

We will say the boundary condition is satisfied if

$$\lim_{t \rightarrow 0^-} i^{x_0}(t) + \bar{u}(x) = g(x_0).$$

for all  $x \in \Omega$ ,  $x_0 \in \partial\Omega$ . Now

$$\lim_{t \rightarrow 0^-} i^{x_0}(t) = -\frac{1}{2}h(x_0) - \int_{\partial\Omega} h(y) \frac{\partial \Phi}{\partial \nu_x}(x_0 - y) dS(y).$$

In addition, we recall that a single-layer potential is continuous for all  $x \in \mathbb{R}^n$ . Therefore, in order to find a solution as a single-layer potential, we need  $h$  to satisfy

$$\boxed{-\frac{1}{2}h(x_0) - \int_{\partial\Omega} h(y) \frac{\partial\Phi}{\partial\nu_x}(x_0 - y) dS(y) - \int_{\partial\Omega} h(y)\Phi(y - x_0) dS(y) = g(x_0)}$$

for all  $x_0 \in \partial\Omega$ .

5. (10 points) Recall that a Neumann function satisfies

$$\begin{cases} -\Delta_y N(x, y) = \delta_x & y \in \Omega \subset \mathbb{R}^n \\ \frac{\partial N}{\partial \nu}(x, y) = C & y \in \partial\Omega \end{cases}$$

for each  $x \in \Omega$ , where  $C = \frac{1}{\int_{\partial\Omega} dS}$ . Find the Neumann function for the first quadrant

$$\Omega = \{(x_1, x_2) \in \mathbb{R}^2 : x_1, x_2 > 0\}.$$

**Answer:** We note that  $\int_{\partial\Omega} dS = 0$  for  $\Omega$  the first quadrant. Therefore, our Neumann function must satisfy

$$\begin{cases} -\Delta_y N(x, y) = \delta_x & y \in \Omega \subset \mathbb{R}^n \\ \frac{\partial N}{\partial \nu}(x, y) = 0 & y \in \partial\Omega. \end{cases}$$

In particular, letting  $\Phi(y)$  denote the fundamental solution of Laplace's equation in  $\mathbb{R}^2$ , we can write  $N(x, y) = \Phi(y - x) - \tilde{h}^x(y)$  if  $h^x(y)$  is a solution of

$$\begin{cases} \Delta_y h^x(y) = 0 & y \in \Omega \\ \frac{\partial h^x(y)}{\partial \nu} = \frac{\partial \Phi(y-x)}{\partial \nu} y \in \partial\Omega. \end{cases}$$

We see that if  $x = (x_1, x_2) \in \Omega$ , then considering the reflected points  $x^* = (x_1, -x_2)$ ,  $\tilde{x} = (-x_1, x_2)$  and  $\tilde{x}^* = (-x_1, -x_2)$ , then

$$\boxed{N(x, y) = \Phi(y - x) + \Phi(y - x^*) + \Phi(y - \tilde{x}) + \Phi(y - \tilde{x}^*)}$$

satisfies the necessary conditions, where

$$\boxed{\Phi(y) = -\frac{1}{2\pi} \ln |y|}.$$

6. (8 points) Let  $F_n : \mathcal{D} \rightarrow \mathbb{R}$  be the distribution defined such that

$$(F_n, \phi) = \int_{-\infty}^{\infty} \sin(nx) \phi(x) dx \quad \forall \phi \in \mathcal{D}.$$

Show that  $F_n$  converges to 0 weakly as  $n \rightarrow +\infty$ .

**Answer:** To show that  $F_n$  converges to 0 weakly as  $n \rightarrow +\infty$ , we need to show that  $(F_n, \phi) \rightarrow 0$  for all  $\phi \in \mathcal{D}$ . Consider  $\phi \in \mathcal{D}$ . Therefore,  $\phi$  has compact support. We note that

$$\begin{aligned} (F_n, \phi) &= \int_{-\infty}^{\infty} \sin(nx)\phi(x) dx \\ &= - \int_{-\infty}^{\infty} \frac{1}{n} \cos(nx)\phi'(x) dx + \frac{1}{n} \cos(nx)\phi'(x) \Big|_{-\infty}^{\infty}. \end{aligned}$$

Using the fact that  $\phi$  has compact support, we know that the boundary terms go to zero. Therefore, we are left with

$$\begin{aligned} |(F_n, \phi)| &\leq \left| \int_{-\infty}^{\infty} \frac{1}{n} \cos(nx)\phi'(x) dx \right| \\ &\leq \frac{C}{n} \rightarrow 0 \text{ as } n \rightarrow +\infty. \end{aligned}$$

7. (8 points) Let  $\Omega$  be an open, bounded subset of  $\mathbb{R}^n$ . Assume  $a(x) > 0$  for all  $x \in \partial\Omega$ . Consider the eigenvalue problem

$$\begin{cases} -\Delta X = \lambda X & x \in \Omega \\ \frac{\partial X}{\partial \nu} + a(x)X = 0 & x \in \partial\Omega. \end{cases}$$

Prove that all eigenvalues are positive.

**Answer:** Suppose  $\lambda$  is an eigenvalue with eigenfunction  $X$ . Then

$$\begin{aligned} \lambda \int_{\Omega} X^2 dx &= - \int \Delta X X dx \\ &= + \int |\nabla X|^2 dx - \int_{\partial\Omega} \frac{\partial X}{\partial \nu} X dS(x) \\ &= \int_{\Omega} |\nabla X|^2 dx + \int_{\partial\Omega} a(x)X^2 dx \geq 0, \end{aligned}$$

using the assumption that  $a(x) > 0$  for all  $x \in \partial\Omega$ . Therefore, we see that  $\lambda \geq 0$ .

It just remains to show that  $\lambda \neq 0$ . Suppose  $\lambda = 0$ . Then

$$\int_{\Omega} |\nabla X|^2 dx = 0 = \int_{\partial\Omega} a(x)X^2 dx.$$

The first equality implies that  $X \equiv C$ . The second equality implies  $X \equiv 0$  for all  $x \in \partial\Omega$ . Therefore,  $X \equiv 0$  for all  $x \in \Omega$ . But, the zero function is not an eigenfunction. Therefore, all eigenvalues are positive.

8. (10 points) Let  $\Omega$  be an open, bounded subset of  $\mathbb{R}^n$ . Suppose  $u \in C^2(\bar{\Omega})$  is a solution of

$$\Delta u = f \geq 0 \quad x \in \Omega.$$

Show that

$$u(x) \leq \int_{\partial B(x,r)} u(y) dS(y)$$

for all  $B(x,r) \subset \Omega$ .

**Answer:** Define the function

$$\phi(r) = \int_{\partial B(x,r)} u(y) dS(y)$$

for  $r > 0$  and  $\phi(0) = u(x)$ . Using the assumption that  $u$  is continuous, we conclude that  $\phi$  is continuous. We now look at  $\phi'(r)$ .

$$\begin{aligned} \phi'(r) &= \frac{d}{dr} \int_{\partial B(x,r)} u(y) dS(y) \\ &= \frac{d}{dr} \int_{\partial B(0,1)} u(x + rz) dS(z) \\ &= \int_{\partial B(0,1)} \nabla u(x + rz) \cdot z dS(z) \\ &= \int_{\partial B(x,r)} \nabla u(y) \cdot \frac{y - x}{r} dS(y) \\ &= \int_{\partial B(x,r)} \frac{\partial u}{\partial \nu} dS(y) \\ &= \frac{1}{n\alpha(n)r^{n-1}} \int_{\partial B(x,r)} \frac{\partial u}{\partial \nu} dS(y) \\ &= \frac{1}{n\alpha(n)r^{n-1}} \int_{B(x,r)} \Delta u dy \\ &\geq 0. \end{aligned}$$

Therefore,  $\phi'$  is an increasing function of  $r$ . Therefore, we conclude that  $\phi(0) \leq \phi(r)$ . Therefore, we have

$$u(x) \leq \int_{\partial B(x,r)} u(y) dS(y),$$

as claimed.

9. (18 points) Determine whether the following statements are true or false. **Provide a reason for your answer.**

(a) Let  $h$  be a continuous function. The function

$$\bar{u}(x) = - \int_{\partial \Omega} h(y) \Phi(x - y) dS(y)$$

is harmonic for all  $x \in \mathbb{R}^n$ .

**Answer:** False. It is not harmonic for  $x \in \partial \Omega$ . (It is not even continuous for  $x \in \partial \Omega$ .)

(b) Let  $h$  be a continuous function. The function

$$\bar{u}(x) = - \int_{\partial\Omega} h(y) \frac{\partial\Phi}{\partial\nu_y}(x-y) dS(y)$$

is continuous for all  $x \in \mathbb{R}^n$ .

**Answer:** False. For example, let  $h = 1$ . By Gauss' Lemma, we know that

$$\bar{u}(x) = \begin{cases} 1 & x \in \Omega \\ \frac{1}{2} & x \in \partial\Omega \\ 0 & x \in \Omega^c \end{cases}$$

(c) Let  $h$  be a continuous function. Let  $n \geq 2$ . The function

$$\bar{u}(x) = - \int_{\partial\Omega} h(y) \frac{\partial\Phi}{\partial\nu_y}(x-y) dS(y)$$

is  $O(|x|^{2-n})$ .

**Answer:** True. We note that  $\Phi(x-y) = \frac{C}{|x-y|^{n-2}}$ . Therefore,  $\frac{\partial\Phi}{\partial\nu_y}(x-y) = C|x-y|^{n-1} \cdot \nu(y) = O(|x|^{n-1}) = O(|x|^{n-2})$ .

(d) Let  $\Omega$  be an open, bounded subset of  $\mathbb{R}^n$ . Assume  $a(x) \not\equiv 0$ . There exists at most one solution of

$$\begin{cases} \Delta u = 0 & x \in \Omega \\ \frac{\partial u}{\partial\nu} - a(x)u = 0 & x \in \partial\Omega. \end{cases}$$

**False.** Suppose  $\Omega = (0, 1)$ . If  $u$  is harmonic in  $\Omega$ , then  $u(x) = A + Bx$ . Now

$$\begin{aligned} \frac{\partial u}{\partial\nu}(0) - a(0)u(0) &= -u_x(0) - a(0)u(0) \\ \frac{\partial u}{\partial\nu}(1) - a(1)u(1) &= u_x(1) - a(1)u(1). \end{aligned}$$

Suppose  $a(0) = -1$ ,  $a(1) = 1/2$ . Then our boundary conditions read

$$\begin{aligned} -u_x(0) + u(0) &= 0 \\ u_x(1) - \frac{1}{2}u(1) &= 0. \end{aligned}$$

The first boundary condition implies

$$-B + A = 0.$$

The second boundary condition implies

$$B - \frac{1}{2}(A + B) = 0.$$

We see that there are an infinite number of solutions to this system of equations, and, therefore, an infinite number of solutions to this boundary-value problem.

(e) Let  $\phi : \mathbb{R}^n \rightarrow \mathbb{R}$  be a bounded function. There exists at most one bounded solution  $u$  of

$$\begin{cases} u_t - \Delta u = 0 & x \in \mathbb{R}^n, t > 0 \\ u(x, 0) = \phi(x). \end{cases}$$

**Answer:** True This follows from the uniqueness theorem for solutions of the heat equation on  $\mathbb{R}^n$ . In particular, we know there exists at most one solution  $u(x, t)$  which satisfies the growth estimate

$$|u(x, t)| \leq Ae^{a|x|^2}$$

for some constants  $A, a$ . Therefore, in particular, there exists at most one bounded solution.

(f) If  $u$  is a harmonic function on the rectangle

$$\Omega \equiv \{(x, y) \in \mathbb{R}^2 : 0 < x < a, 0 < y < b\},$$

then

$$\int_0^a u_y(x, 0) dx + \int_0^b u_x(a, y) dy + \int_0^a u_y(x, b) dx + \int_0^b u_x(0, y) dy = 0.$$

**Answer:** False Let  $u(x, y) = x$ . This function is harmonic on  $\Omega$ . Clearly,  $u_y = 0$ . But,  $u_x(0, y) = 1 = u_x(a, y)$ . Therefore,

$$\int_0^a u_y(x, 0) dx + \int_0^b u_x(a, y) dy + \int_0^a u_y(x, b) dx + \int_0^b u_x(0, y) dy = 2b \neq 0.$$

10. (12 points) Consider the initial/boundary value problem

$$\begin{cases} u_t - u_{xx} + u_x = 0 & 0 < x < l, t > 0 \\ u(x, 0) = \phi(x) & 0 < x < l \\ u_x(0, t) = 0 = u_x(l, t). \end{cases} \quad (4)$$

(a) Suppose  $u$  is a solution of this problem. Find a function  $g$  such that the function  $v = gu$  satisfies

$$v_t - v_{xx} + v = 0.$$

Write the initial/boundary value problem that  $v$  satisfies.

**Answer:** If  $v = gu$ , then we see that

$$\begin{aligned} v_t - v_{xx} + v &= g_t u + g u_t - g_{xx} u - 2g_x u_x - g u_{xx} + g u \\ &= g(u_t - u_{xx} + u_x) - g u_x + g_t u - g_{xx} u - 2g_x u_x + g u \\ &= u(g_t - g_{xx} + g) - u_x(g + 2g_x). \end{aligned}$$

In order for this to equal zero, we need

$$g + 2g_x = 0$$

$$g_t - g_{xx} + g = 0.$$

The first equation implies  $g(x, t) = C(t)e^{-\frac{1}{2}x}$ . Plugging this into the second equation, we have

$$C''(t)e^{-\frac{1}{2}x} - \frac{1}{4}C(t)e^{-\frac{1}{2}x} + C(t)e^{-\frac{1}{2}x},$$

which implies

$$C'(t) + \frac{3}{4}C(t) = 0.$$

Therefore,  $C(t) = e^{-\frac{3}{4}t}$ . Therefore, we let

$$g(x, t) = e^{-\frac{3}{4}t}e^{-\frac{1}{2}x}.$$

Then for  $v = gu$ , using the fact that

$$\begin{aligned} v_x(0, t) &= g_x(0, t)u(0, t) + g(0, t)u_x(0, t) = -\frac{1}{2}e^{-\frac{3}{4}t}u(0, t) = -\frac{1}{2}v(0, t) \\ v_x(l, t) &= g_x(l, t)u(l, t) + g(l, t)u_x(l, t) = -\frac{1}{2}e^{-\frac{3}{4}t}e^{-\frac{1}{2}l}u(l, t) = -\frac{1}{2}v(l, t) \end{aligned}$$

we see that  $v$  is a solution of

$$\begin{cases} v_t - v_{xx} + v = 0 & 0 < x < l \\ v(x, 0) = g(x, 0)u(x, 0) = e^{-\frac{1}{2}x}\phi(x) \\ v_x(0, t) + \frac{1}{2}v(0, t) = 0 \\ v_x(l, t) + \frac{1}{2}v(l, t) = 0. \end{cases}$$

(b) In part (a) you show that  $v = gu$  will satisfy an initial/boundary value problem of the form

$$\begin{cases} v_t - v_{xx} + v = 0 & 0 < x < l, t > 0 \\ v(x, 0) = f(x) & 0 < x < l \\ v \text{ satisfies symmetric B.C.s} & \end{cases} \quad (5)$$

Suppose  $\lambda_n, X_n$  are the eigenvalues and corresponding eigenfunctions of the eigenvalue problem

$$\begin{cases} -X'' = \lambda X & 0 < x < l \\ X \text{ satisfies (*)} & x = 0, l, \end{cases}$$

where (\*) denotes the symmetric boundary conditions in (5). Write the solution of (5) in terms of  $X_n, \lambda_n$  and  $f$ .

**Answer:** We look for a solution of (5) by using separation of variables. Look for a solution of the form  $v(x, t) = X(x)T(t)$ . Plugging this into (5), we have

$$T'X - TX'' + TX = 0,$$

which implies

$$\frac{T'}{T} - \frac{X''}{X} + 1 = 0 \implies \frac{T'}{T} + 1 = \frac{X''}{X} = -\lambda.$$

Now the solutions of the eigenfunction problem

$$\begin{cases} -X'' = \lambda X & 0 < x < l \\ X \text{ satisfies (*)} & x = 0, l, \end{cases}$$

are assumed to be given by  $X_n, \lambda_n$ . Then we see the solutions of

$$\frac{T'_n}{T_n} + 1 = -\lambda_n$$

are given by  $T_n(t) = C_n e^{-(\lambda_n+1)t}$ . Therefore, our solution is given by

$$u(x, t) = \sum_{n=1}^{\infty} C_n X_n(x) e^{-(\lambda_n+1)t}$$

where

$$C_n = \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle}.$$