
4 Green’s Functions

In this section, we are interested in solving the following problem. Let Ω be an open, bounded
subset of Rn. Consider { −∆u = f x ∈ Ω ⊂ Rn

u = g x ∈ ∂Ω.
(4.1)

4.1 Motivation for Green’s Functions

Suppose we can solve the problem,

{ −∆yG(x, y) = δx y ∈ Ω
G(x, y) = 0 y ∈ ∂Ω

(4.2)

for each x ∈ Ω. Then, formally, we can say that for u a solution of (4.1),

u(x) =

∫

Ω

δxu(y) dy

= −
∫

Ω

∆yG(x, y)u(y) dy

=

∫

Ω

∇yG(x, y) · ∇yu(y) dy −
∫

∂Ω

∂G

∂ν
(x, y)u(y) dS(y)

= −
∫

Ω

G(x, y)∆yu(y) dy +

∫

∂Ω

G(x, y)
∂u

∂ν
(y) dS(y)−

∫

∂Ω

∂G

∂ν
(x, y)u(y) dS(y)

=

∫

Ω

G(x, y)f(y) dy −
∫

∂Ω

∂G

∂ν
(y)g(y) dS(y).

Now, we do know that the fundamental solution of Laplace’s equation Φ(y) satisfies

−∆yΦ(y) = δ0

and, moreover,
−∆yΦ(x− y) = δx.

Of course, Φ(x − y) does not satisfy our boundary conditions, but we will use that as a
starting ground to try and construct a solution of (4.2), and, ultimately (4.1). Below, we
will also make the formal argument given above more precise.

Recalling the definition of distributional derivative, we will start by looking at

∫

Ω

Φ(x− y)∆yu(y) dy.

We would like to integrate this term by parts. However, we know that Φ(x − y) has a
singularity at y = x. Therefore, in order to integrate by parts, we must proceed as follows.

Fix x ∈ Ω and ε > 0 such that dist(x, ∂Ω) < ε and therefore, B(x, ε) ⊂ Ω. Let Vε ≡
Ω−B(x, ε).
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Let Φ be the fundamental solution of Laplace’s equation. That is,

Φ(x) =

{ − 1
2π

ln |x| n = 2
1

n(n−2)α(n)
1

|x|n−2 n ≥ 3.

Suppose u ∈ C2(Ω). By the Divergence Theorem, we have

∫

Vε

Φ(y − x)∆u(y) dy = −
∫

Vε

∇yΦ(y − x) · ∇yu(y) dy +

∫

∂Vε

Φ(y − x)
∂u

∂ν
dS(y)

=

∫

Vε

∆yΦ(y − x)u(y) dy −
∫

∂Vε

∂Φ

∂ν
(y − x)u(y) dS(y)

+

∫

∂Vε

Φ(y − x)
∂u

∂ν
dS(y).

where ∂u
∂ν

denotes the derivative of u in the outer normal direction to Vε. Now on Vε,
∆yΦ(y − x) = 0. Therefore,

∫

Vε

Φ(y − x)∆u(y) dy = −
∫

∂Vε

∂Φ

∂ν
(y − x)u(y) dS(y) +

∫

∂Vε

Φ(y − x)
∂u

∂ν
dS(y).

Now, we note that

lim
ε→0+

∫

Vε

Φ(y − x)∆u(y) dy =

∫

Ω

Φ(y − x)∆u(y) dy.

We make the following claims about the limits of the other two terms as ε → 0+.

Claim 1.

lim
ε→0+

[
−

∫

∂Vε

∂Φ

∂ν
(y − x)u(y) dS(y)

]
= −

∫

∂Ω

∂Φ

∂ν
(y − x)u(y) dS(y)− u(x).

Claim 2.

lim
ε→0+

∫

∂Vε

Φ(y − x)
∂u

∂ν
(y) dS(y) =

∫

∂Ω

Φ(y − x)
∂u

∂ν
dS(y).

Assuming these claims for a moment, we conclude that for any u ∈ C2(Ω),

u(x) =

∫

∂Ω

[
Φ(y − x)

∂u

∂ν
(y)− ∂Φ

∂ν
(y − x)u(y)

]
dS(y)−

∫

Ω

Φ(y − x)∆u(y) dy. (4.3)

2



We would now like to use the representation formula (4.3) to solve (4.1). If we knew ∆u
on Ω and u on ∂Ω and ∂u

∂ν
on ∂Ω, then we could solve for u. But, we don’t know all this

information. We know ∆u on Ω and u on ∂Ω.
We proceed as follows. For each x ∈ Ω, we introduce a corrector function hx(y) which

satisfies the following boundary-value problem,
{

∆yh
x(y) = 0 y ∈ Ω

hx(y) = Φ(y − x) y ∈ ∂Ω.
(4.4)

Now suppose we can find such a (smooth) function hx which satisfies (4.4). Then using
the same analysis as above, we have

∫

Ω

hx(y)∆u(y) dy = −
∫

Ω

∇yh
x(y) · ∇yu(y) dy +

∫

∂Ω

hx(y)
∂u

∂ν
(y) dS(y)

=

∫

Ω

∆yh
x(y)u(y) dy −

∫

∂Ω

∂hx

∂ν
(y)u(y) dS(y)

+

∫

∂Ω

hx(y)
∂u

∂ν
(y) dS(y).

Now using the fact that hx is a solution of (4.4), we conclude that

0 =

∫

∂Ω

[
Φ(y − x)

∂u

∂ν
(y)− ∂hx

∂ν
(y)u(y)

]
dS(y)−

∫

Ω

hx(y)∆u(y) dy. (4.5)

Now subtracting (4.5) from (4.3), we conclude that

u(x) = −
∫

∂Ω

[
∂Φ

∂ν
(y − x)− ∂hx

∂ν
(y)

]
u(y) dS(y)−

∫

Ω

[Φ(y − x)− hx(y)]∆u(y) dy.

Let
G(x, y) = Φ(y − x)− hx(y).

Then, u can be written as

u(x) = −
∫

∂Ω

∂G

∂ν
(x, y)u(y) dS(y)−

∫

Ω

G(x, y)∆u(y) dy. (4.6)

We define this function G as the Green’s function for Ω. That is, the Green’s function for
a domain Ω ⊂ Rn is the function defined as

G(x, y) = Φ(y − x)− hx(y) x, y ∈ Ω, x 6= y,

where Φ is the fundamental solution of Laplace’s equation and for each x ∈ Ω, hx is a
solution of (4.5). We leave it as an exercise to verify that G(x, y) satisfies (4.2) in the sense
of distributions.

Conclusion: If u is a (smooth) solution of (4.1) and G(x, y) is the Green’s function for Ω,
then

u(x) = −
∫

∂Ω

∂G

∂ν
(x, y)g(y) dS(y) +

∫

Ω

G(x, y)f(y) dy. (4.7)
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We will show below that conversely a function of the form (4.7) will give us a solution of
(4.1). First, however, we prove the two claims given above.

Proof of Claim 1.

−
∫

∂Vε

∂Φ

∂ν
(y − x)u(y) dS(y) = −

∫

∂Ω

∂Φ

∂ν
(y − x)u(y) dS(y) +

∫

∂B(x,ε)

∂Φ

∂ν
(y − x)u(y) dS(y).

Now

∇yΦ(y) = − 1

nα(n)

y

|y|n
and the outward normal on B(x, ε) is

ν =
y − x

|y − x| .

Therefore,

∂Φ

∂ν
(y − x) = ∇yΦ(y − x) · ν

= − 1

nα(n)

y − x

|y − x|n ·
y − x

|y − x|
= − 1

nα(n)
· 1

|y − x|n−1
.

Therefore,

∫

∂B(x,ε)

∂Φ

∂ν
(y − x)u(y) dS(y) = − 1

nα(n)

∫

∂B(x,ε)

1

|y − x|n−1
u(y) dS(y)

= − 1

nα(n)εn−1

∫

∂B(x,ε)

u(y) dS(y)

= −−
∫

∂B(x,ε)

u(y) dS(y).

As ε → 0+,

−
∫

∂B(x,ε)

u(y) dS(y) → u(x).

Therefore, we have

lim
ε→0+

∫

∂B(x,ε)

∂Φ

∂ν
(y − x)u(y) dS(y) = −u(x),

and the claim follows. ¤
Proof of Claim 2.

Now we know
∫

∂Vε

Φ(y − x)
∂u

∂ν
(y) dS(y) =

∫

∂Ω

Φ(y − x)
∂u

∂ν
(y) dS(y)−

∫

∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y).
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We just need to show that

∫

∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y) → 0 as ε → 0+.

Substituting in the explicit formula for Φ for n ≥ 3 (the case n = 2 can be handled similarly),
we see that

∣∣∣∣
∫

∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y)

∣∣∣∣ ≤
1

nα(n)(n− 2)

∫

∂B(x,ε)

1

|y − x|n−2

∣∣∣∣
∂u

∂ν
(y)

∣∣∣∣ dS(y)

≤
∣∣∣∣
∂u

∂ν

∣∣∣∣
L∞(B(x,ε))

1

nα(n)εn−2

∫

∂B(x,ε)

dS(y)

≤ Cε−
∫

∂B(x,ε)

dS(y)

= Cε.

Therefore, as ε → 0+, ∫

∂B(x,ε)

Φ(y − x)
∂u

∂ν
(y) dS(y) → 0

as claimed. Therefore, the claim follows. ¤
Above we have proven the following theorem.

Theorem 3. If u ∈ C2(Ω) is a solution of

{ −∆u = f x ∈ Ω ⊂ Rn

u = g x ∈ ∂Ω,

where f and g are continuous, then

u(x) = −
∫

∂Ω

g(y)
∂G

∂ν
(x, y) dS(y) +

∫

Ω

f(y)G(x, y) dy (4.8)

for x ∈ Ω, where G(x, y) is the Green’s function for Ω.

Corollary 4. If u is harmonic in Ω and u = g on ∂Ω, then

u(x) = −
∫

∂Ω

g(y)
∂G

∂ν
(x, y) dS(y).

4.2 Finding Green’s Functions

Finding a Green’s function is difficult. However, for certain domains Ω with special geome-
tries, it is possible to find Green’s functions. We show some examples below.

Example 5. Let R2
+ be the upper half-plane in R2. That is, let

R2
+ ≡ {(x1, x2) ∈ R2 : x2 > 0}.
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We will look for the Green’s function for R2
+. In particular, we need to find a corrector

function hx for each x ∈ R2
+, such that

{
∆yh

x(y) = 0 y ∈ R2
+

hx(y) = Φ(y − x) y ∈ ∂R2
+.

Fix x ∈ R2
+. We know ∆yΦ(y − x) = 0 for all y 6= x. Therefore, if we choose z /∈ Ω, then

∆yΦ(y − z) = 0 for all y ∈ Ω. Now, if we choose z = z(x) appropriately, z /∈ Ω, such that
Φ(y − z) = Φ(y − x) for y ∈ ∂Ω, then letting hx(y) = Φ(y − z(x)), we will have found a
corrector function. Recall that for n = 2,

Φ(y − z) = − 1

2π
ln |y − z|.

Therefore, Φ(y− z) is a function of |y− z|. Consequently, for x = (x1, x2) ∈ R2
+, we see that

for all y ∈ ∂R2
+,

|y − x| = |(y1, 0)− (x1, x2)| = |(y1, 0)− (x1,−x2)| = |y − x̃|
where

x̃ ≡ (x1,−x2)

is the reflection of x in the plane.

x

y

x~

R
2
+

Therefore, letting hx(y) = Φ(y−x̃), we have found a corrector function for R2
+. Therefore,

a Green’s function for the upper half-plane is given by

G(x, y) = Φ(y − x)− Φ(y − x̃)

= − 1

2π
[ln |y − x| − ln |y − x̃|] .

¦
Example 6. More generally, for the upper half-space in Rn,

Rn
+ ≡ {(x1, . . . , xn) ∈ Rn : xn > 0},

the corrector function hx(y) is given by

hx(y) = Φ(y − x̃)
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where
x̃ ≡ (x1, . . . , xn−1,−xn)

is the reflection of x in the plane. Therefore, a Green’s function for the upper half-space
Rn

+ is given by
G(x, y) = Φ(y − x)− Φ(y − x̃).

¦
Example 7. Let B2(0, 1) be the unit ball in R2. That is, let

B2(0, 1) ≡ {(x1, x2) ∈ R2 : x2
1 + x2

2 < 1}.

Fix x ∈ B2(0, 1). We need to find a corrector function hx for B2(0, 1). Again,

Φ(y − x) = − 1

2π
ln |y − x|.

Therefore, Φ(y− x) is a function of |y− x|. We need hx(y) = Φ(y− x) for all y ∈ ∂B2(0, 1),
that is, all y such that |y| = 1. Now for y ∈ ∂B2(0, 1),

|y − x|2 = (y − x) · (y − x)

= |y|2 − 2y · x + |x|2
= |x|2 − 2x · y + 1

= |x|2|y|2 − 2x · y + 1

= |x|2
(
|y|2 − 2x · y

|x|2 +
1

|x|2
)

= |x|2
(
|y|2 − 2y · x

|x|2 +
|x|2
|x|4

)

= |x|2|y − x∗|2,

where
x∗ =

x

|x|2
is called the point dual to x.

x

x ∗

B2(0,1)
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Notice that for x ∈ B2(0, 1), x∗ is not in B2(0, 1). Consequently, we can conclude that
Φ(|x|(y − x∗)) is harmonic for all y in Ω. In addition, Φ(|x|(y − x∗)) = Φ(y − x) for all
y ∈ ∂B2(0, 1). Therefore, letting

hx(y) = Φ(|x|(y − x∗)),

we see that hx is a corrector function for the unit ball B2(0, 1).
Consequently, the Green’s function for B2(0, 1) is given by

G(x, y) = Φ(y − x)− Φ(|x|(y − x∗))

= − 1

2π
[ln |y − x| − ln[|x||y − x∗|]] .

¦
Example 8. For the unit ball in Rn,

Bn(0, 1) ≡ {(x1, . . . , xn) : x2
1 + . . . + x2

n = 1},

a corrector function hx is given by

hx(y) = Φ(|x|(y − x∗))

where
x∗ =

x

|x|2
is the point dual to x. Therefore, a Green’s function for Bn(0, 1) is given by

G(x, y) = Φ(y − x)− Φ(|x|(y − x∗)).

¦

4.3 Using Green’s Functions to Solve Poisson’s Equation

We have shown above that if u is a smooth solution of the Dirichlet problem

{ −∆u = f x ∈ Ω
u = g x ∈ ∂Ω,

then u can be represented in terms of the Green’s function for Ω by (4.8). It remains to
show the converse. That is, it remains to show that for continuous functions f , g and a given
domain Ω ⊂ Rn, the representation formula (4.8) does give us a solution of the Dirichlet
problem. First, however, we will use the representation formula (4.8) to write the proposed
formula for the solution in the cases above, where we can explicitly calculate the Green’s
function for the domain Ω.
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Example 9. Let Rn
+ be the upper half-space in Rn,

Rn
+ = {(x1, . . . , xn) ∈ R2 : xn > 0}.

From above, we calculated that

G(x, y) = Φ(y − x)− Φ(y − x̃)

is a Green’s function for Rn
+, where x̃ = (x1, . . . , xn−1,−xn) and Φ is the fundamental solution

of Laplace’s equation in Rn. Now, from (4.8), our proposed solution has the form

u(x) = −
∫

∂Rn
+

g(y)
∂G

∂ν
(x, y) dS(y) +

∫

Rn
+

f(y)G(x, y) dy.

(Note: The analysis in Section 4.1 was carried out under the assumption that Ω was a
bounded domain. However, for now we will assume we can use the same representation
formula to derive a solution for the unbounded half-space. Later, we will need to prove that
this representation formula actually gives us a solution.)

Now, we calculate ∂G
∂ν

on {yn = 0} to find an explicit formula for solutions to

{
∆u = 0 x ∈ Ω
u = g x ∈ ∂Ω.

Now
∂Φ

∂yn

(y) = − yn

nα(n)|y|n .

Therefore, the normal derivative of G on {yn = 0} is given by

∂G

∂ν
(x, y) =

∂Φ

∂yn

(y − x)− ∂Φ

∂yn

(y − x̃)

=
yn − xn

nα(n)|y − x|n −
yn − x̃n

nα(n)|y − x̃|n

= − 2xn

nα(n)|y − x|n .

Therefore, if u is the solution of Laplace’s equation on the upper half-space Ω with Dirichlet
boundary conditions, then we suspect that u will have the form

u(x) =
2xn

nα(n)

∫

∂Rn
+

g(y)

|y − x|n dy. (4.9)

This is called Poisson’s formula for the half-space Rn
+. The function

K(x, y) =
2xn

nα(n)

1

|x− y|n

is called Poisson’s kernel for the half-space Rn
+.

¦
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Example 10. Let Bn(0, 1) be the unit ball in Rn. We look for a formula for the solution of
Laplace’s equation in Bn(0, 1) with Dirichlet boundary conditions,

{
∆u = 0 x ∈ Bn(0, 1)
u = g x ∈ ∂Bn(0, 1).

(4.10)

By (4.8), if u is a solution of (4.10), then u will have the form

u(x) = −
∫

∂Bn(0,1)

g(y)
∂G

∂ν
(x, y) dS(y).

Now we just need to calculate ∂G
∂ν

on ∂Bn(0, 1) where G is a Green’s function for Bn(0, 1).
As shown above,

G(x, y) = Φ(y − x)− Φ(|x|(y − x∗))

is a Green’s function for the unit ball in Rn where

x∗ =
x

|x|2

is the point dual to x. We consider the case when n ≥ 3. The case n = 2 can be handled
similarly. For n ≥ 3, we have

Φ(y) =
1

nα(n)

1

|y|n−2
,

which implies

∇Φ(y) = − y

nα(n)|y|n .

Therefore,

∇yΦ(y − x) = − y − x

nα(n)|y − x|n ,

while

Φ(|x|(y − x∗)) =
1

nα(n)

1

||x|(y − x∗)|n−2

=
1

|x|n−2
Φ(y − x∗).

Therefore,

∇yΦ(|x|(y − x∗)) = − 1

|x|n−2

y − x∗

nα(n)|y − x∗|n

= − y|x|2 − x

nα(n)||x|(y − x∗)|n

= − y|x|2 − x

nα(n)|y − x|n .

Now, the unit normal to Bn(0, 1) is given by

ν =
y

|y| = y.
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Therefore, the normal derivative of G(x, ·) on ∂Bn(0, 1) is given by

∂G

∂ν
(x, y) =

∂Φ

∂ν
(y − x)− ∂Φ

∂ν
(|x|(y − x∗))

= − y − x

nα(n)|y − x|n · y +
y|x|2 − x

nα(n)|y − x|n · y

=
−|y|2 + x · y + |y|2|x|2 − x · y

nα(n)|y − x|n

=
|y|2(|x|2 − 1)

nα(n)|y − x|n

=
|x|2 − 1

nα(n)|y − x|n .

Therefore, the solution formula for (4.10) is given by

u(x) = −
∫

∂Bn(0,1)

g(y)
∂G

∂ν
(x, y) dS(y)

=
1− |x|2
nα(n)

∫

∂Bn(0,1)

g(y)

|y − x|n dS(y).

We can use this formula to derive the solution formula for Laplace’s equation on the ball
of radius r with Dirichlet boundary conditions,

{
∆u = 0 x ∈ Bn(0, r)
u = g x ∈ ∂Bn(0, r).

(4.11)

Suppose u is a solution of (4.11), then ũ(x) = u(rx) is a solution of (4.10) with boundary
data g̃(x) = g(rx). Therefore, by our work above, we see the formula for ũ is given by

ũ(x) =
1− |x|2
nα(n)

∫

∂Bn(0,1)

g̃(y)

|y − x|n dS(y)

= (1− |x|2)−
∫

∂Bn(0,1)

g(ry)

|y − x|n dS(y)

= (1− |x|2)−
∫

∂Bn(0,r)

g(ỹ)

|ỹ/r − x|n dS(ỹ)

= rn(1− |x|2)−
∫

∂Bn(0,r)

g(ỹ)

|ỹ − rx|n dS(ỹ)

=
r2 − |rx|2
nα(n)r

∫

∂Bn(0,r)

g(ỹ)

|ỹ − rx|n dS(ỹ).

Therefore,

u(rx) =
r2 − |rx|2
nα(n)r

∫

∂Bn(0,r)

g(y)

|y − rx|n dS(y),
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which implies the solution formula for (4.11) is given by

u(x) =
r2 − |x|2
nα(n)r

∫

∂Bn(0,r)

g(y)

|y − x|n dS(y). (4.12)

This representation formula is called Poisson’s formula for the ball. The function

K(x, y) ≡ r2 − |x|2
nα(n)r|y − x|n (4.13)

is called Poisson’s kernel for the ball.
¦

As mentioned above, formulas (4.9) and (4.12) will give solutions of

{
∆u = 0 x ∈ Ω
u = g x ∈ ∂Ω

in the cases when Ω is the half-space and the ball respectively, assuming a solution exists. We
now will show that these formulas actually solve Laplace’s equation with Dirichlet boundary
conditions, u = g for x ∈ ∂Ω.

In particular, we state the following theorems, (Ref: Evans, Sec. 2.2),

Theorem 11. For g ∈ C(Rn−1)∩L∞(Rn−1) and u defined by (4.9), u satisfies the following,

1. u ∈ C∞(Rn
+) ∩ L∞(Rn

+)

2. ∆u = 0 for x ∈ Rn
+

3. lim
x→x0
x∈Rn

+

u(x) = g(x0) for all x0 ∈ ∂Rn
+.

Theorem 12. For g ∈ C(∂Bn(0, r)) and u defined by (4.12), u satisfies the following,

1. u ∈ C∞(Bn(0, r))

2. ∆u = 0 for x ∈ Bn(0, r)

3. lim
x→x0

x∈Bn(0,r)

u(x) = g(x0) for all x0 ∈ ∂Bn(0, r).

We will prove the first of these theorems. The second one follows similarly. In order to
prove this theorem, we make use of the following lemma.

Lemma 13. Green’s functions are symmetric. For all x, y ∈ Ω, x 6= y,

G(x, y) = G(y, x).

12



Proof. (Ref: Evans, Sec. 2.2) Fix x, y ∈ Ω, x 6= y. Let

v(z) ≡ G(x, z)

w(z) ≡ G(y, z).

We will show that v(y) = w(x), and, therefore, G(x, y) = G(y, x). Recall that

G(x, y) = Φ(y − x)− hx(y)

where hx(y) satisfies {
∆yh

x(y) = 0 y ∈ Ω
hx(y) = Φ(y − x) y ∈ ∂Ω.

Therefore, for z ∈ ∂Ω,

v(z) = G(x, z) = Φ(z − x)− hx(z) = Φ(z − x)− Φ(z − x) = 0

w(z) = G(y, z) = Φ(z − y)− hy(z) = Φ(z − y)− Φ(z − y) = 0.

Further, ∆zv = 0 for z 6= x and ∆zw = 0 for z 6= y. Now v is smooth, except near z = x,
while w is smooth, except near z = y. Define the region Vε = Ω− [B(x, ε)∪B(y, ε)] for ε > 0.
On Vε, our functions are smooth. Therefore, we can use our integration by parts formula as
follows,

∫

Vε

∆vw dz = −
∫

Vε

∇v · ∇w dz +

∫

∂Vε

∂v

∂ν
w dS(z)

=

∫

Vε

v∆w dz −
∫

∂Vε

v
∂w

∂ν
dS(z) +

∫

∂Vε

∂v

∂ν
w dS(z)

Using the fact that ∆v = 0 = ∆w on Vε, we conclude that
∫

∂Vε

v
∂w

∂ν
dS(z) =

∫

∂Vε

∂v

∂ν
w dS(z).

Using the fact that v = 0 = w on ∂Ω, we conclude that
∫

∂B(x,ε)

[
∂v

∂ν
w − ∂w

∂ν
v

]
dS(z) =

∫

∂B(y,ε)

[
∂w

∂ν
v − ∂v

∂ν
w

]
dS(z)

where ν denotes the inward pointing unit vector field on ∂B(x, ε) ∪ ∂B(y, ε). Now we claim
that as ε → 0+, the left-hand side converges to w(x), while the right-hand side converges to
v(y). For the terms on the left-hand side, we first look at

∫

∂B(x,ε)

∂w

∂ν
v dS(z).

Now w is smooth near x. Therefore, ∂w
∂ν

is bounded near ∂B(x, ε). Now v(z) = Φ(z − x)−
hx(z). Therefore, on ∂B(x, ε), v(z) ≈ 1/εn−2. Therefore,

∣∣∣∣
∫

∂B(x,ε)

∂w

∂ν
v dS(z)

∣∣∣∣ ≤ C sup
∂B(x,ε)

|v|
∫

∂B(x,ε)

dS(z)

= Cεn−1 sup
∂B(x,ε)

|v| = O(ε) → 0 as ε → 0.

13



Next, we look at ∫

∂B(x,ε)

∂v

∂ν
w dS(z).

Now ∫

∂B(x,ε)

∂v

∂ν
w dS(z) =

∫

∂B(x,ε)

[
∂Φ

∂ν
(z − x)− ∂hx

∂ν
(z)

]
w dS(z).

First, using the fact that hx is smooth and w is smooth near x, we see that∣∣∣∣
∫

∂B(x,ε)

∂hx

∂ν
(z)w dS(z)

∣∣∣∣ ≤ C

∫

∂B(x,ε)

dS(z)

≤ Cεn−1.

Therefore, ∫

∂B(x,ε)

∂hx

∂ν
(z)w dS(z) → 0 as ε → 0.

For the other term, we see that∫

∂B(x,ε)

∂Φ

∂ν
(z − x)w(z) dS(z) =

1

nα(n)

∫

∂B(x,ε)

1

|z − x|n−1
w(z) dS(z)

=
1

nα(n)εn−1

∫

∂B(x,ε)

w(z) dS(z)

= −
∫

∂B(x,ε)

w(z) dS(z) → w(x) as ε → 0.

Similarly, the right-hand side converges to v(y). Therefore, the lemma is proven.

We will now prove the first of the theorems above. The second one follows similarly.

Proof of Theorem 11.
For u defined by (4.9), the Poisson kernel is given by

K(x, y) =
2xn

nα(n)

1

|x− y|n = − ∂

∂yn

G(x, y).

Now, we know that
∆yG(x, y) = 0 for y 6= x.

In addition, using the fact that G is symmetric, we see that

∆xG(x, y) = ∆xG(y, x) = 0 for x 6= y.

Therefore,

∆xu(x) = −∆x

∫

∂Rn
+

∂

∂yn

G(x, y)g(y) dS(y)

= −
∫

∂Rn
+

∆x∇yG(x, y) · ν(y)g(y) dS(y)

= −
∫

∂Rn
+

∇y∆xG(x, y) · ν(y)g(y) dS(y) = 0.
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Therefore, ∆xu = 0. Using this same reasoning, and the fact that for each y 6= x, G(x, y) ∈
C∞(Rn) for x 6= y, we can show that u ∈ C∞.

To show that
lim

x→x0
x∈Rn

+

u(x) = g(x0) for all x0 ∈ ∂Rn
+,

we will use the fact that for each x ∈ Rn
+,

∫

∂Rn
+

K(x, y) dy = 1. (4.14)

This can be seen by a direct calculation, and we omit this proof here.
Using this fact, we proceed as follows. Fix x0 ∈ ∂Rn

+, ε > 0. We need to show that there
exists a δ > 0 such that

|u(x)− g(x0)| < ε

for |x− x0| < δ. Now using (4.14), we see

|u(x)− g(x0)| =
∣∣∣∣∣
∫

∂Rn
+

K(x, y)g(y) dy −
∫

∂Rn
+

K(x, y)g(x0) dy

∣∣∣∣∣

=

∣∣∣∣∣
∫

∂Rn
+

K(x, y)[g(y)− g(x0)] dy

∣∣∣∣∣ .

Now, we know that K(x, y) has a singularity at y = x0, and we are considering K(x, y) as
x → x0. Therefore, we divide the integral into two pieces and handle them separately.

∣∣∣∣∣
∫

∂Rn
+

K(x, y)[g(y)− g(x0)] dy

∣∣∣∣∣ =

∣∣∣∣
∫

B(x0,γ)

K(x, y)[g(y)− g(x0)] dy

∣∣∣∣

+

∣∣∣∣∣
∫

∂Rn
+−B(x0,γ)

K(x, y)[g(y)− g(x0)] dy

∣∣∣∣∣
≡ I + J.

We first look at term I. Using the assumption that g is continuous, we have

|g(y)− g(x0)|L∞(B(x0,γ)) <
ε

2
for γ sufficiently small,

and ∫

B(x0,γ)

K(x, y) dy ≤
∫

Rn
+

K(x, y) dy = 1.

Therefore, |I| < ε
2

for γ sufficiently small.
Now for this choice of γ, consider term J .

J =

∫

∂Rn
+\B(x0,δ)

K(x, y)[g(y)− g(x0)] dy.
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On J , |y − x0| > γ. Take |x− x0| < γ/2. Then

|y − x0| ≤ |y − x|+ |x− x0| ≤ |y − x|+ γ

2
≤ |y − x|+ 1

2
|y − x0|.

Therefore, |y − x| ≥ 1
2
|y − x0| for |x − x0| < γ/2. This implies |y − x|−n ≤ 2n|y − x0|−n.

Therefore,

|J | ≤ 2|g|L∞
∫

∂Rn
+−B(x0,γ)

K(x, y) dy

= 2|g|L∞
∫

∂Rn
+−B(x0,γ)

xn

nα(n)|y − x|n dy

≤ 2|g|L∞
∫

∂Rn
+−B(x0,γ)

2nxn

nα(n)|y − x0|n dy

=
2n+1xn

nα(n)
|g|L∞

∫

∂Rn
+−B(x0,γ)

1

|y − x0|n dy → 0 as x → x0.

Therefore, we can make J arbitrarily small by choosing x sufficiently close to x0.
¤
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