Math 220B Midterm Exam Solutions Summer 2002

1. (8 points) Let ¢ € L*(R). Use the Fourier transform to solve

u(z,0) = ¢(x).

{ut—(sint)uz:O —oco<xr<oo,t>0

Answer: Taking the Fourier transform with respect to the spatial variable, we have

~

Uy = sin(t)u,
uy = i€ sin(t)u
8_Au = i€ sin(t) dt
u
Inu = —i€ cos(t) + C
a(ﬁ, t) _ Cefié cos(t).

Ll

The initial condition

u(x,0) = ¢(z) = A(E,0) = (&)

Therefore, we have

U, 0) = Ce ™ = (€)
— C = e“(¢)
= (1) = $(E)es e,

Now using the fact that u(z,t) = @(€,t), we have

1 OO €S
u(z,t) = \/—_/ et (g, t) de

mﬁ 7,67@'6 cos(t)
g e
\/% / 'L &(xz+1—cos(t) )(b(é;) f

But, using the fact that ¢(y) = ;5(5), we know that

1Y€
o(y) = m/ () de.

~

eitleti=cos) gy (€) de = (x4 1 — cos(t)).

Therefore,

)

Therefore, our solution is given by

u(z,t) = ¢(x + 1 — cos(t)).




2. (12 points) Let Q be the upper half of the unit disk in R?. That is, let
Q={(z,y) eR*: 2 +9* < 1,y > 0}.

Solve
Uy + Uyy =0 (z,y) € Q
u(r,0) =0 = u(r,m)
u(l,60) =66 — ).

Answer: First, we write the equation in polar coordinates,

1
Upp + —Up + _2U99 = 0.
T T

Now, using separation of variables, we look for a solution of the form wu(r,d) =
R(r)O(0). Plugging this into our equation, we have

1 1
R'©+ -RO+ =-RO" =0.
r r2

Dividing by RO and multiplying by 72, we get

T2 R// r R/ @//

R R o N

Our boundary condition
u(0,0) =0 = u(r,0)

leads us to the eigenvalue problem

~0"=X0 O0<f<n
0(0) = 0 = O(n).

We know the solutions of this eigenvalue problem are
0,,(0) = sin(nh) A =nin=12...
Now we look at our equation for R,,, for n =1,2,.... We know
2 It / 2
r°R,+rR, —n"R, =0

has solutions
R,=Cyr"+D,r ™" n=12,...

As we do not want our solution to blow up as » — 0, we discard the solutions r~".

Therefore, our solutions for R, are



Therefore, we let

u(r,0) = Ry(r)0,(0)

= Z Cy,r" sin(nd).
n=1

Our other boundary condition u(1,6) = (6 — 7) implies we want to find constants C,,
such that

u(1,0) = Cysin(nf) = 66 — 7).

This is the Fourier sine series for our boundary data. We know our coefficients C,
must be given by

_ (0(0 — ), sin(nd))
(sin(n#), sin(nh))
_ [70(0 — ) sin(nd) df

0
[y sin®*(nd) b

Now we need to evaluate these integrals. First, we know that

™

/ sin®(nf) df = —.
0 2
Next, we look at
/ 0(0 — ) sin(nd) df = / 6? sin(nd) df — 7T/ Osin(nd)dfd =1+ J.
0 0 0

First, we look at term I. Integrating by parts, we have

9 K
0% cos(nd) +z/ 6 cos(nb) do
0

/ 0% sin(nd) df = —

0 n )

—n2 cos(n) N 2 [QSin(nQ) " /7r sin(nd) d@}
o Jo n

n

_ —m2(=1)" N 2 [cos(nd)|"
n n n? |,
—m2 (=" 2 [(=1)" 1
w2y 1
n n| n? n?
Therefore,
2
™ — == n odd
/ 0*sin(nf)dd =< " "
0 —T
— n even.
n



Next, we look at term J. Integrating by parts, we have

. / esin(ne)dez_ﬂ[M - / cos(nf) d&}
0 0 0 n

n
:|
0

S [_W(—l)” . sin(nf)

n n?
Therefore,
2
™ _—— n odd
—7r/ 0 sin(nb) df = n
0 T
— n even.
n
Adding I and J, we have
4 —— dd
/9(9—7r)d9: s
0 0 n even

8
o -—— n odd
= ™
0 n even

And, therefore, our solution is given by

u(r,0) = — Z %T sin(n@).
nodd

. (6 points) Let 2 be an open, bounded subset of R". Let o > 0. Prove uniqueness of
solutions to the following problem,

Au—au=f x e
gz—g x € 0N

Answer: Suppose there are two solutions u and v. Let w = u —v. Then w is a
solution of

%—f:O x € 0f)

Multiplying this equation by w and integrating over €2, we have

0= / w(Aw — aw) dx
0

= /|Vw|2d$—/aw d:v~|—/wg—yd5( )
= /|Vw]2dx /Ozw dx.

Therefore, |[Vw| =0 and w = 0 in Q, which implies u = v.

{Aw—aw:O x e

4



4. (12 points) Solve the following initial /boundary value problem,

Up — Ugy = 0 O<z<mt>0
u(z,0) =¢(x) O<z<m
u(0,8) =g(t) t>0

u(m,t) = h(t) t>0.

Answer: First, we introduce a function U(z,t) such that

U(0,1) = g(t)
U(r,t) = h(t).

In particular, let

U(z,t) = g(t)(z — ) + h(t).

Now, suppose u(z,t) is a solution of the initial/boundary value problem. Then let
v(z,t) = u(x,t) — U(x,t). Then v is a solution of

Uy — Vg = f(2,1) O<z<mt>0

(%) v(z,0) = ¢(z) O<z<m
v:(0,) =0 t>0
v(mt) =0 t>0.

where
f(z,t) = —U(z,t) = —g'(t)(x — 7) + 1'(?)
P(z) = o(x) —U(z,0) = d(x) — (9(0)(z — 7) + h(0)).

To solve this inhomogeneous problem, we start by looking for the solution operator
associated with the homogeneous problem,

Wy — Wey = 0 O<z<mt>0
w(z,0)=¢(x) O0<z<mw
w,(0,¢) =0 t>0

w(m, t) =0 t>0.

Using separation of variables, we look for a solution of the form w(z,t) = X (x)T'(t).
Plugging this into the equation, we have

XT' - X"T =0.
Dividing by XT', we have

T/ Xl/ )\

T X 7

We start by solving the eigenvalue problem,

{X”:—)\X O<z<m



Looking for positive eigenvalues A = 32 > 0, we see that
X(z) = Acos(fx) + Bsin(fz).

The boundary condition
X'(0)=0 = B=0.

The boundary condition

X(ﬂ):0:>Acos(ﬁw)zo:ﬁn:(n—l—%) n=20,1,2,....

Therefore, our eigenfunctions are

Kimrmeos((2)s)  num (ne )’

By a quick check, we see that there are no negative eigenvalues.

Now, the solution for our equation for 7;, is given by
T, (t) = Cre .

Therefore, we let

S - 1 12
=Y X, ()T,(t)=) C, - —(nt3)%,
w(z,t) ; ()T (t) Z cos ((n + 2) x) e
The initial condition w(z,0) = ¢ (z) implies the coefficients C,, are given by

ot D v cos((nt De)p(a)do
{cos((n + %)m), cos((n + %):13)) fow cos?((n+ 3)z)de

Therefore, the solution operator associated with the homogeneous problem is given by
- 1 1)2
St => C, = ~(n+3)%
(1) 2 cos(<n+2> x)e

[T cos((n+ Ya)y(x) do
Jy cos?((n+ 3)z)dx

By Duhamel’s principle, the solution for the nonhomogeneous problem (*) is given by

where

Cn =

t

v(x,t)—S(t)w—F/o S(t—s)f(x,s)ds.

Therefore,




where

o - foﬂ cos((n + %)x)q/)(x) dx
" Jy cos?((n+ 3)z) dx
and
N foﬂ cos((n + %)x)f(a:, s)dx
Dnls) = Jy cos?((n+ 3)z) dx

for ¢ and f defined above. Finally, using the definition of v, we conclude that

u(z,t) =v(x,t) +U(z,t)

with v and U as defined above.

. (10 points) Let Q be an open, bounded subset of R?>. Let f : R? — R. Assume
f(z,y) >0 for all (x,y) € 2. Suppose u is a solution of Poisson’s equation

{Ux:p+uyy:f($,y) (m,y)chRQ
u(z,y) = g(z,y) (z,y) € 9.

Show that
max u(x,y) = max g(z,y).
aQ oQ

Answer: Let

M = )

max g(z, y)
Fix € > 0. Introduce a new function
v(z,y) = u(z,y) + e(@® + y°).

We claim that

max v(x,y) < M + emax(z? + ¢?).
Q Q

Assuming, this claim for now, we conclude that for all (z,y) € Q,

u(q;, y) = U(Q?, y) — €(x2 + y2)
<M+ e(rnﬁaux(:r2 + %) — (332 + 7).

Since this is true for all €, we conclude that
u(z,y) < M

for all (z,y) € Q. Then the result follows.

Therefore, we just need to show that

(x)  w(z,y) <M+ mgX(ﬂsz + 47



for all (z,y) € Q. Clearly, (*) is true for all (z,y) € 9. Therefore, we just need to
check (z,y) € 2. By definition of v, we see that

Vgz + Uyy = Ugy + Uyy + 26 > 2€ > 0.

Now suppose v has an interior maximum at some interior point (x,y). But, then
Ugg, Uyy < 0, which contradicts the above inequality. Therefore, v cannot have an
interior maximum. And, therefore, for all (x,y) in Q, (*) holds. Therefore, the result
follows.

. (12 points) Determine whether the following statements are true or false. Provide a
reason for your answer.

(a) Let © be an open, bounded subset of R". Let Q¢ = R"\Q. There exists at most
one solution of

Au=0 z € QF
u=g x € 0f)

Answer: Counterexample: Let n = 1. Let Q = (0,1). Let g = 1 for
xr=0,1. Let Let
ur(z) =1 x<0,z>1.

u2(x):{ T r>1

r+1 z < 0.

Both wuq,us are solutions to our problem.

(b) Let 2 be an open, bounded subset of R™. Suppose u is a solution of

u(x,0) = o(x)
u(z,t) =0 x € 0N.

Then

Answer:

pr Qu2(x,t)dm:2/uutdx

Q

:Z/UAud:U
Q
ou
:—2/ quder/ u— dS(x
[Vultde+ | ugrds(o)

= —2/ |Vul? dx.
Q

d
—/uQ(x,O)dx:—Z/ Vo|*dr <0

Therefore,

unless ¢ is constant.



()

Let ¢ : R — R be a bounded function. There exits at most one bounded solution

u of
{ut—Au:O reR" t>0
u(z,0) = o().

Answer: This follows from the uniqueness theorem for solutions of the
heat equation on R"™. In particular, we know there exits at most one solution
u(z,t) which satisfies the growth estimate

u(z, )| < Ae®*’

for some constants A, a. Therefore, in particular, there exits at most one bounded
solution.

If v is a harmonic function on the rectangle
Q={(z,y) ER*:0 <z < a,0<y<b},

then
a b a b
/uy(x,O)dx+/ ux(a,y)dy—k/ uy(:zc,b)dm—I—/ u.(0,y)dy = 0.
0 0 0 0

Answer: Let u(z,y) = x. This function is harmonic on Q. Clearly,
u, = 0. But, u,(0,y) = 1 = u,(a,y). Therefore,

a b a b
/ uy(z,0) dz +/ uz(a,y) dy + / uy(z,b) dr + / uz(0,y) dy = 2b # 0.
0 0 0 0
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