
Math 220B Midterm Exam Solutions Summer 2002

1. (8 points) Let φ ∈ L2(R). Use the Fourier transform to solve

{
ut − (sin t)ux = 0 −∞ < x < ∞, t > 0

u(x, 0) = φ(x).

Answer: Taking the Fourier transform with respect to the spatial variable, we have

ût = sin(t)ûx

=⇒ ût = iξ sin(t)û

=⇒ ∂û

û
= iξ sin(t) dt

=⇒ ln û = −iξ cos(t) + C

=⇒ û(ξ, t) = Ce−iξ cos(t).

The initial condition
u(x, 0) = φ(x) =⇒ û(ξ, 0) = φ̂(ξ).

Therefore, we have

û(ξ, 0) = Ce−iξ = φ̂(ξ)

=⇒ C = eiξφ̂(ξ)

=⇒ û(ξ, t) = φ̂(ξ)eiξ−iξ cos(t).

Now using the fact that u(x, t) = ˇ̂u(ξ, t), we have

u(x, t) =
1√
2π

∫ ∞

−∞
eixξû(ξ, t) dξ

=
1√
2π

∫ ∞

−∞
eixξφ̂(ξ)eiξ−iξ cos(t) dξ

=
1√
2π

∫ ∞

−∞
eiξ(x+1−cos(t))φ̂(ξ) dξ

But, using the fact that φ(y) =
ˇ̂
φ(ξ), we know that

φ(y) =
1√
2π

∫ ∞

−∞
eiyξφ̂(ξ) dξ.

Therefore,
1√
2π

∫ ∞

−∞
eiξ(x+1−cos(t))φ̂(ξ) dξ = φ(x + 1− cos(t)).

Therefore, our solution is given by

u(x, t) = φ(x + 1− cos(t)).
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2. (12 points) Let Ω be the upper half of the unit disk in R2. That is, let

Ω ≡ {(x, y) ∈ R2 : x2 + y2 < 1, y > 0}.

Solve 



uxx + uyy = 0 (x, y) ∈ Ω
u(r, 0) = 0 = u(r, π)
u(1, θ) = θ(θ − π).

Answer: First, we write the equation in polar coordinates,

urr +
1

r
ur +

1

r2
uθθ = 0.

Now, using separation of variables, we look for a solution of the form u(r, θ) =
R(r)Θ(θ). Plugging this into our equation, we have

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ = 0.

Dividing by RΘ and multiplying by r2, we get

r2R′′

R
+

rR′

R
= −Θ′′

Θ
= λ.

Our boundary condition
u(0, θ) = 0 = u(r, θ)

leads us to the eigenvalue problem

{
−Θ′′ = λΘ 0 < θ < π

Θ(0) = 0 = Θ(π).

We know the solutions of this eigenvalue problem are

Θn(θ) = sin(nθ) λn = n2, n = 1, 2, . . .

Now we look at our equation for Rn, for n = 1, 2, . . .. We know

r2R′′
n + rR′

n − n2Rn = 0

has solutions
Rn = Cnr

n + Dnr
−n n = 1, 2, . . .

As we do not want our solution to blow up as r → 0, we discard the solutions r−n.
Therefore, our solutions for Rn are

Rn(r) = Cnr
n n = 1, 2, . . .
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Therefore, we let

u(r, θ) =
∞∑

n=1

Rn(r)Θn(θ)

=
∞∑

n=1

Cnrn sin(nθ).

Our other boundary condition u(1, θ) = θ(θ− π) implies we want to find constants Cn

such that

u(1, θ) =
∞∑

n=0

Cn sin(nθ) = θ(θ − π).

This is the Fourier sine series for our boundary data. We know our coefficients Cn

must be given by

Cn =
〈θ(θ − π), sin(nθ)〉
〈sin(nθ), sin(nθ)〉

=

∫ π

0
θ(θ − π) sin(nθ) dθ∫ π

0
sin2(nθ) dθ

.

Now we need to evaluate these integrals. First, we know that

∫ π

0

sin2(nθ) dθ =
π

2
.

Next, we look at

∫ π

0

θ(θ − π) sin(nθ) dθ =

∫ π

0

θ2 sin(nθ) dθ − π

∫ π

0

θ sin(nθ) dθ ≡ I + J.

First, we look at term I. Integrating by parts, we have

∫ π

0

θ2 sin(nθ) dθ = − θ2 cos(nθ)

n

∣∣∣∣
π

0

+
2

n

∫ π

0

θ cos(nθ) dθ

=
−π2 cos(nπ)

n
+

2

n

[
θ sin(nθ)

n

∣∣∣∣
π

0

−
∫ π

0

sin(nθ)

n
dθ

]

=
−π2(−1)n

n
+

2

n

[
cos(nθ)

n2

∣∣∣∣
π

0

]

=
−π2(−1)n

n
+

2

n

[
(−1)n

n2
− 1

n2

]

Therefore,

∫ π

0

θ2 sin(nθ) dθ =





π2

n
− 4

n3
n odd

−π2

n
n even.
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Next, we look at term J . Integrating by parts, we have

−π

∫ π

0

θ sin(nθ) dθ = −π

[−θ cos(nθ)

n

∣∣∣∣
π

0

−
∫ π

0

cos(nθ)

n
dθ

]

= −π

[−π(−1)n

n
+

sin(nθ)

n2

∣∣∣∣
π

0

]
.

Therefore,

−π

∫ π

0

θ sin(nθ) dθ =





−π2

n
n odd

π2

n
n even.

Adding I and J , we have

∫ π

0

θ(θ − π) dθ =




− 4

n3
n odd

0 n even.

Therefore, we conclude that

Cn =




− 8

πn3
n odd

0 n even.

And, therefore, our solution is given by

u(r, θ) = −
∑

n odd

8

πn3
rn sin(nθ).

3. (6 points) Let Ω be an open, bounded subset of Rn. Let α > 0. Prove uniqueness of
solutions to the following problem,

{
∆u− αu = f x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω

Answer: Suppose there are two solutions u and v. Let w = u − v. Then w is a
solution of {

∆w − αw = 0 x ∈ Ω
∂w
∂ν

= 0 x ∈ ∂Ω

Multiplying this equation by w and integrating over Ω, we have

0 =

∫

Ω

w(∆w − αw) dx

= −
∫

Ω

|∇w|2 dx−
∫

Ω

αw2 dx +

∫

Ω

w
∂w

∂ν
dS(x)

= −
∫

Ω

|∇w|2 dx−
∫

Ω

αw2 dx.

Therefore, |∇w| = 0 and w = 0 in Ω, which implies u ≡ v.
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4. (12 points) Solve the following initial/boundary value problem,





ut − uxx = 0 0 < x < π, t > 0
u(x, 0) = φ(x) 0 < x < π
ux(0, t) = g(t) t > 0
u(π, t) = h(t) t > 0.

Answer: First, we introduce a function U(x, t) such that

Ux(0, t) = g(t)

U(π, t) = h(t).

In particular, let
U(x, t) = g(t)(x− π) + h(t).

Now, suppose u(x, t) is a solution of the initial/boundary value problem. Then let
v(x, t) = u(x, t)− U(x, t). Then v is a solution of

(∗)





vt − vxx = f(x, t) 0 < x < π, t > 0
v(x, 0) = ψ(x) 0 < x < π
vx(0, t) = 0 t > 0
v(π, t) = 0 t > 0.

where

f(x, t) = −Ut(x, t) = −g′(t)(x− π) + h′(t)

ψ(x) = φ(x)− U(x, 0) = φ(x)− (g(0)(x− π) + h(0)).

To solve this inhomogeneous problem, we start by looking for the solution operator
associated with the homogeneous problem,





wt − wxx = 0 0 < x < π, t > 0
w(x, 0) = ψ(x) 0 < x < π
wx(0, t) = 0 t > 0
w(π, t) = 0 t > 0.

Using separation of variables, we look for a solution of the form w(x, t) = X(x)T (t).
Plugging this into the equation, we have

XT ′ −X ′′T = 0.

Dividing by XT , we have
T ′

T
=

X ′′

X
= −λ.

We start by solving the eigenvalue problem,
{

X ′′ = −λX 0 < x < π

X ′(0) = 0 = X(π).
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Looking for positive eigenvalues λ = β2 > 0, we see that

X(x) = A cos(βx) + B sin(βx).

The boundary condition
X ′(0) = 0 =⇒ B = 0.

The boundary condition

X(π) = 0 =⇒ A cos(βπ) = 0 =⇒ βn =

(
n +

1

2

)
n = 0, 1, 2, . . . .

Therefore, our eigenfunctions are

Xn(x) = cos

((
n +

1

2

)
x

)
λn =

(
n +

1

2

)2

.

By a quick check, we see that there are no negative eigenvalues.

Now, the solution for our equation for Tn is given by

Tn(t) = Cne
−λnt.

Therefore, we let

w(x, t) =
∞∑

n=0

Xn(x)Tn(t) =
∞∑

n=0

Cn cos

((
n +

1

2

)
x

)
e−(n+ 1

2
)2t.

The initial condition w(x, 0) = ψ(x) implies the coefficients Cn are given by

Cn =
〈cos((n + 1

2
)x), ψ(x)〉

〈cos((n + 1
2
)x), cos((n + 1

2
)x)〉 =

∫ π

0
cos((n + 1

2
)x)ψ(x) dx∫ π

0
cos2((n + 1

2
)x) dx

.

Therefore, the solution operator associated with the homogeneous problem is given by

S(t)ψ =
∞∑

n=0

Cn cos

((
n +

1

2

)
x

)
e−(n+ 1

2
)2t

where

Cn =

∫ π

0
cos((n + 1

2
)x)ψ(x) dx∫ π

0
cos2((n + 1

2
)x) dx

.

By Duhamel’s principle, the solution for the nonhomogeneous problem (*) is given by

v(x, t) = S(t)ψ +

∫ t

0

S(t− s)f(x, s) ds.

Therefore,

v(x, t) =
∞∑

n=0

Cn cos

((
n +

1

2

)
x

)
e−(n+ 1

2
)2t

+

∫ t

0

∞∑
n=0

Dn(s) cos

((
n +

1

2

)
x

)
e−(n+ 1

2
)2(t−s)
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where

Cn =

∫ π

0
cos((n + 1

2
)x)ψ(x) dx∫ π

0
cos2((n + 1

2
)x) dx

and

Dn(s) =

∫ π

0
cos((n + 1

2
)x)f(x, s) dx∫ π

0
cos2((n + 1

2
)x) dx

for ψ and f defined above. Finally, using the definition of v, we conclude that

u(x, t) = v(x, t) + U(x, t)

with v and U as defined above.

5. (10 points) Let Ω be an open, bounded subset of R2. Let f : R2 → R. Assume
f(x, y) ≥ 0 for all (x, y) ∈ Ω. Suppose u is a solution of Poisson’s equation

{
uxx + uyy = f(x, y) (x, y) ∈ Ω ⊂ R2

u(x, y) = g(x, y) (x, y) ∈ ∂Ω.

Show that
max

Ω
u(x, y) = max

∂Ω
g(x, y).

Answer: Let
M ≡ max

∂Ω
g(x, y).

Fix ε > 0. Introduce a new function

v(x, y) = u(x, y) + ε(x2 + y2).

We claim that
max

Ω
v(x, y) ≤ M + ε max

Ω
(x2 + y2).

Assuming, this claim for now, we conclude that for all (x, y) ∈ Ω,

u(x, y) = v(x, y)− ε(x2 + y2)

≤ M + ε(max
Ω

(x2 + y2)− (x2 + y2)).

Since this is true for all ε, we conclude that

u(x, y) ≤ M

for all (x, y) ∈ Ω. Then the result follows.

Therefore, we just need to show that

(∗) v(x, y) ≤ M + max
Ω

(x2 + y2)
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for all (x, y) ∈ Ω. Clearly, (*) is true for all (x, y) ∈ ∂Ω. Therefore, we just need to
check (x, y) ∈ Ω. By definition of v, we see that

vxx + vyy = uxx + uyy + 2ε ≥ 2ε > 0.

Now suppose v has an interior maximum at some interior point (x, y). But, then
vxx, vyy ≤ 0, which contradicts the above inequality. Therefore, v cannot have an
interior maximum. And, therefore, for all (x, y) in Ω, (*) holds. Therefore, the result
follows.

6. (12 points) Determine whether the following statements are true or false. Provide a
reason for your answer.

(a) Let Ω be an open, bounded subset of Rn. Let Ωc ≡ Rn\Ω. There exists at most
one solution of {

∆u = 0 x ∈ Ωc

u = g x ∈ ∂Ω

Answer: False Counterexample: Let n = 1. Let Ω = (0, 1). Let g = 1 for
x = 0, 1. Let Let

u1(x) = 1 x ≤ 0, x ≥ 1.

u2(x) =

{
x x ≥ 1

x + 1 x ≤ 0.

Both u1, u2 are solutions to our problem.

(b) Let Ω be an open, bounded subset of Rn. Suppose u is a solution of




ut −∆u = 0 x ∈ Ω, t > 0
u(x, 0) = φ(x)
u(x, t) = 0 x ∈ ∂Ω.

Then ∫

Ω

u2(x, t) dx =

∫

Ω

φ2(x) dx.

Answer: False

d

dt

∫

Ω

u2(x, t) dx = 2

∫

Ω

uut dx

= 2

∫

Ω

u∆u dx

= −2

∫

Ω

|∇u|2 dx +

∫

∂Ω

u
∂u

∂ν
dS(x)

= −2

∫

Ω

|∇u|2 dx.

Therefore,
d

dt

∫

Ω

u2(x, 0) dx = −2

∫

Ω

|∇φ|2 dx < 0

unless φ is constant.
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(c) Let φ : Rn → R be a bounded function. There exits at most one bounded solution
u of {

ut −∆u = 0 x ∈ Rn, t > 0
u(x, 0) = φ(x).

Answer: True This follows from the uniqueness theorem for solutions of the
heat equation on Rn. In particular, we know there exits at most one solution
u(x, t) which satisfies the growth estimate

|u(x, t)| ≤ Aea|x|2

for some constants A, a. Therefore, in particular, there exits at most one bounded
solution.

(d) If u is a harmonic function on the rectangle

Ω ≡ {(x, y) ∈ R2 : 0 < x < a, 0 < y < b},

then

∫ a

0

uy(x, 0) dx +

∫ b

0

ux(a, y) dy +

∫ a

0

uy(x, b) dx +

∫ b

0

ux(0, y) dy = 0.

Answer: False Let u(x, y) = x. This function is harmonic on Ω. Clearly,
uy = 0. But, ux(0, y) = 1 = ux(a, y). Therefore,

∫ a

0

uy(x, 0) dx +

∫ b

0

ux(a, y) dy +

∫ a

0

uy(x, b) dx +

∫ b

0

ux(0, y) dy = 2b 6= 0.
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Scratch Paper
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