
Math 220B Midterm Exam Solutions Summer 2003

1. (14 points)

(a) Find all eigenvalues and eigenfunctions of



X ′′ = −λX 0 < x < 1
X ′(0)−X(0) = 0
X(1) = 0.

Justify your answer.

Answer: First, we look for positive eigenvalues λ = β2 > 0. In this case,

X(x) = A cos(βx) + B sin(βx).

The boundary condition

X ′(0)−X(0) = 0 =⇒ Bβ − A = 0.

The boundary condition

X(1) = 0 =⇒ A cos(β) + B sin(β) = 0.

Combining these two equations, we have

tan(β) = −β.

Therefore, our positive eigenvalues are given by

λn = β2
n where tan(βn) = −βn.

The corresponding eigenfunctions are given by

Xn(x) = βn cos(βnx) + sin(βnx).

If λ = 0, then
X(x) = Ax + B.

The boundary condition

X ′(0)−X(0) = 0 =⇒ A = B.

The boundary condition

X(1) = 0 =⇒ A = −B.

Combining these two equations, we see that A = 0 = B. Therefore, λ = 0 is not
an eigenvalue.

Next, we check if we have any negative eigenvalues. Using the result from a
previous homework, we consider

X ′X|x=1
x=0 .

We recall that if this quantity is non-positive, then we have no negative eigenval-
ues. We see that

X ′X|x=1
x=0 = X ′(1)X(1)−X ′(0)X(0)

= 0−X2(0) ≤ 0.

Therefore, we have no negative eigenvalues.
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(b) Solve the following initial/boundary value problem





ut − uxx = 0 0 < x < 1, t > 0
u(x, 0) = 0
ux(0, t)− u(0, t) = 0
u(1, t) = t.

You do not need to explicitly evaluate any integrals.

Answer: First, we will shift the boundary data. Introduce a function U(x, t) such
that Ux(0, t)− U(0, t) = 0 and U(1, t) = t. We see that the function

U(x, t) =
1

2
t(x + 1)

satisfies these conditions. Assuming u is a solution of the problem above, let v(x, t) =
u(x, t)− U(x, t). Then v satisfies





vt − vxx = −1
2
(x + 1) 0 < x < 1

v(x, 0) = 0
vx(0, t)− v(0, t) = 0
v(1, t) = 0.

In order to solve this inhomogeneous problem, we will first derive the solution operator
for the homogeneous problem and then apply Duhamel’s principle.

Using separation of variables, we look for a solution of the homogeneous problem the
form u(x, t) = X(x)T (t). Plugging this function into our PDE, we have

T ′

T
=

X ′′

X
= −λ.

In particular, we have the eigenvalue problem





X ′′ = −λX 0 < x < 1
X ′(0)−X(0) = 0
X(1) = 0.

The eigenfunctions Xn(x) and eigenvalues λn are given in part (a).

The solutions for our equation for Tn are given by Tn(t) = Cne−λnt.

Therefore, the solution operator for the homogeneous problem is given by

S(t)φ =
∞∑

n=1

CnXn(x)e−λnt

where

Cn =
〈Xn(x), φ〉

〈Xn(x), Xn(x)〉 .
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Therefore, by Duhamel’s principle the solution of the inhomogeneous problem is given
by

v(x, t) =

∫ t

0

∞∑
n=1

Dn(s)Xn(x)e−λn(t−s) ds

where

Dn(s) =
〈Xn(x), f(x, s)〉
〈Xn(x), Xn(x)〉

for f(x, t) = −1

2
(x + 1) . Finally, we conclude that

u(x, t) = v(x, t) + U(x, t)

for v and U defined above.

2. (10 points) Find

lim
n→+∞

√
ne−nx2

in the sense of distributions. Prove your answer.

Answer: First, we note that

√
ne−nx2 →

{
0 x 6= 0
+∞ x = 0.

Next, we note that ∫ ∞

−∞

√
ne−nx2

dx =

∫ ∞

−∞
e−y2

dy =
√

π.

Using the above motivation, we will show that
√

ne−nx2 → √
πδ0 in the sense of

distributions.

Define the distribution Fn : D → R such that

(Fn, φ) ≡
∫ ∞

−∞

√
ne−nx2

φ(x) dx.

To show that Fn ⇀
√

πδ0, we need to show that

(Fn, φ) → √
π(δ0, φ) =

√
πφ(0)

as n → +∞ for all φ ∈ D. We proceed as follows.

∣∣(Fn, φ)−√πφ(0)
∣∣ =

∣∣∣∣
∫ ∞

−∞

√
ne−nx2

φ(x) dx−√πφ(0)

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞

√
ne−nx2

φ(x) dx−
∫ ∞

−∞

√
ne−nx2

φ(0) dx

∣∣∣∣

=

∣∣∣∣
∫ ∞

−∞

√
ne−nx2

[φ(x)− φ(0)] dx

∣∣∣∣ .
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First, we note that φ has compact support. Therefore, let K denote the support of φ.
Now we break this integral into two pieces: B(0, δ) and K\B(0, δ). First, on B(0, δ),
we see that

∣∣∣∣
∫ δ

−δ

√
ne−nx2

[φ(x)− φ(0)] dx

∣∣∣∣ ≤ |φ(x)− φ(0)|L∞(−δ,δ)

∫ ∞

−∞

√
ne−nx2

dx

<
ε

2
,

for any ε > 0 by choosing δ sufficiently small. (Here, we have used the fact that φ is a
continuous function, and that

∫ √
ne−nx2

is bounded.

Now δ is fixed. We look at the integral over K\B(0, δ). Here we have

∣∣∣∣
∫

K\B(0,δ)

√
ne−nx2

[φ(x)− φ(0)] dx

∣∣∣∣ ≤ C|√ne−nx2|L∞(K\B(0,δ))

= C
√

ne−nδ2

<
ε

2

by choosing n sufficiently large, using the fact that
√

ne−nδ2 → 0 as n → +∞.

3. (10 points) Use the Fourier transform to solve

{
ut − e−tuxx = 0 x ∈ R, t > 0
u(x, 0) = φ(x).

You may use the fact that

f(x) = e−εx2

=⇒ f̂(ξ) =
1√
2ε

e−ξ2/4ε.

Simplify your answer as much as possible.

Answer:

ût − ê−tuxx = 0

=⇒ ût − e−t(iξ)2û = 0

=⇒ ût + ξ2e−tû = 0.

Solving this ODE, we have
ln û = ξ2e−t + C.

Therefore,
û(ξ, t) = Ceξ2e−t

.

The initial condition u(x, 0) = φ(x) implies û(ξ, 0) = φ̂(ξ). Therefore,

û(ξ, t) = Ceξ2

= φ̂(ξ) =⇒ C = φ̂e−ξ2

.
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Now

u(x, t) =
1√
2π

∫ ∞

−∞
eixξφ̂(ξ)e−ξ2

eξ2e−t

dξ

=
1√
2π

∫ ∞

−∞
eixξφ̂(ξ)eξ2[e−t−1] dξ

=
1√
2π

∫ ∞

−∞
eixξ 1√

2π

∫ ∞

−∞
e−iyξφ(y) dyeξ2[e−t−1] dξ

=
1√
2π

∫ ∞

−∞

(
1√
2π

∫ ∞

−∞
e−i(y−x)ξe−ξ2[1−e−t] dξ

)
φ(y) dy

=
1√
2π

∫ ∞

−∞
f̂(y − x)φ(y) dy

where f(ξ) = e−ξ2[1−e−t]. From the fact stated above,

f(ξ) = e−ξ2[1−e−t] =⇒ f̂(y − x) =
1

(2(1− e−t))1/2
e−|y−x|2/4(1−e−t).

Therefore, our solution is given by

u(x, t) =
1√

4π(1− e−t)

∫ ∞

−∞
e−|x−y|2/4(1−e−t)φ(y) dy.

4. (10 points)

(a) Let Ω be an open, bounded subset of Rn. Consider the following boundary-value
problem, {

∆u +
∑n

i=1 biuxi
+ cu = f x ∈ Ω

u = g x ∈ ∂Ω.
(1)

Prove there exists at most one solution of (2) in the case that c ≤ 0.

Answer: Suppose there are two solutions u and v. Let w = u − v. Then w
satisfies {

∆w +
∑n

i=1 biwxi
+ cw = 0 x ∈ Ω

w = 0 x ∈ ∂Ω.
(2)

Now multiplying our PDE by w and integrating over Ω, we have

0 =

∫

Ω

w(∆w +
n∑

i=1

biwxi
+ cw) dx

= −
∫

Ω

|∇w|2 dx +

∫

∂Ω

∂w

∂ν
w dS +

1

2

n∑
i=1

bi

∫

Ω

(w2)xi
dx + c

∫

Ω

w2 dx

= −
∫

Ω

|∇w|2 dx +
1

2

n∑
i=1

bi

∫

∂Ω

w2νi dS + c

∫

Ω

w2 dx

= −
∫

Ω

|∇w|2 dx + c

∫

Ω

w2 dx.
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Since c ≤ 0, we know that the only way the above equality can hold is if each
term is identically zero. Therefore,

∫

Ω

|∇w|2 dx = 0 =

∫

Ω

w2 dx,

which implies w ≡ 0. Therefore, u = v.

(b) Give a counterexample to show solutions of (2) need not be unique if c > 0. In
particular, find a set Ω for which there are two solutions of

{
∆u + u = 0 x ∈ Ω
u = 0 x ∈ ∂Ω.

Answer: Let Ω = (0, π). Then consider
{

u′′ + u = 0 x ∈ (0, π)
u(0) = 0 = u(π).

We know that u(x) = C sin(x) is a solution of this boundary-value problem for
any C. Therefore, the solution is not unique.

5. (12 points) Consider the eigenvalue problem
{ −(p(x)u′)′ = λr(x)u x ∈ (a, b)

u(a) = 0 = u(b)

where p(x) > 0 and r(x) > 0.

(a) Prove orthogonality of eigenfunctions (corresponding to distinct eigenvalues) with
respect to the weight function r(x). That is, show that if Xn and Xm are eigen-
functions corresponding to the eigenvalues λn 6= λm, then

∫ b

a

Xn(x)Xm(x)r(x) dx = 0.

Answer:

λn

∫ b

a

XnXmr(x) dx = −
∫ b

a

(p(x)X ′
n)′Xm dx

=

∫ b

a

p(x)X ′
nX

′
m dx− pX ′

nXm|x=b
x=a

=

∫ b

a

X ′
npX ′

m dx

= −
∫ b

a

Xn(pX ′
m)′ dx + Xnp(x)X ′

m|x=b
x=a

= −
∫ b

a

Xnλmr(x)Xm dx

= λm

∫ b

a

XnXmr(x) dx.
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Therefore,

(λn − λm)

∫ b

a

XnXmr(x) dx = 0.

Since λn 6= λm, we must have
∫ b

a

XmXmr(x) dx = 0,

as claimed.

(b) Consider the variable-coefficient heat equation




r(x)ut − (p(x)ux)x = 0 x ∈ (a, b)
u(x, 0) = φ(x)
u(a, t) = 0 = u(b, t)

(3)

where p(x) > 0 and r(x) > 0. Suppose λn and Xn are the eigenvalues and
corresponding eigenfunctions of the eigenvalue problem

{ −(p(x)X ′)′ = λr(x)X x ∈ (a, b)
X(a) = 0 = X(b).

Assume each eigenvalue λn has multiplicity one. Using the result of part (a),
write the solution of (3) in terms of Xn, λn and φ.

Answer: Look for a solution of the form u(x, t) = X(x)T (t). Plugging this into the
equation, we have

T ′

T
=

(pX ′)′

rX
= −λ.

We are led to the eigenvalue problem
{

(p(x)X ′)′ = −λr(x)X a < x < b
X(a) = 0 = X(b).

By assumption, the solutions of this eigenvalue problem are given by λn, Xn. The
solutions for the equation in T are given by Tn(t) = Cne

−λnt. Therefore, we let

u(x, t) =
∞∑

n=1

CnXne−λnt.

It remains to determine our coefficients. We want u(x, 0) = φ(x). Therefore, we want
to choose coefficients Cn such that

φ(x) =
∞∑

n=1

CnXn(x).

By the result from part (a), we know that the eigenfunctions Xn are orthogonal with
respect to the weight function r(x). Therefore, multiplying our equation by Xmr(x)
and integrating over (a, b), we conclude that

Cm =

∫ b

a
Xm(x)φ(x)r(x) dx∫ b

a
X2

m(x)r(x) dx
.
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6. (10 points) Solve {
ut − uxx = 0 x ∈ R, t > 0
u(x, 0) = sin(x).

Simplify your answer as much as possible.

Answer: We know the solution is given by convolution with the fundamental solution.
Therefore,

u(x, t) =
1√
4πt

∫ ∞

−∞
e−(x−y)2/4t sin(y) dy.

To simplify, we substitute

sin(y) =
eiy − e−iy

2i
.

First, we consider

1

2i
√

4πt

∫ ∞

−∞
e−(x−y)2/4teiy dy =

eix

2i
√

4πt

∫ ∞

−∞
e−(x−y)2/4te−i(x−y) dy.

We complete the square in the exponent. We see that

−(x− y)2

4t
− i(x− y) = − 1

4t

[
(x− y)2 + 4ti(x− y) + (2ti)2 − (2ti)2

]

= − 1

4t
[(x− y) + i2t]2 − t.

Therefore, we have

eix

2i
√

4πt

∫ ∞

−∞
e−(x−y)2/4te−i(x−y) dy =

eixe−t

2i
√

4πt

∫ ∞

−∞
e−

1
4t

[(x−y)+i2t]2 dy

=
eix−t

2i
√

4πt

∫ ∞

−∞
e−

1
4t

(x−y)2 dy.

Letting z = y − x/
√

4t, we see that
∫ ∞

−∞
e−

1
4t

(x−y)2 dy =
√

4πt.

Therefore, we have

1

2i
√

4πt

∫ ∞

−∞
e−(x−y)2/4teiy dy =

eix−t

2i
√

4πt

√
4πt =

eix−t

2i
.

Similarly, we note that

− 1

2i
√

4πt

∫ ∞

−∞
e−(x−y)2/4te−iy dy =

eix−t

2i
√

4πt

√
4πt = −e−ix−t

2i
.

Therefore, we conclude that

u(x, t) =
eix−t

2i
− e−ix−t

2i
,

or
u(x, t) = e−t sin(x).
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