
Math 220B Midterm Exam Solutions Winter 2002

1. Use the Fourier transform to solve
{

ut = kuxx − u x ∈ R, t > 0
u(x, 0) = φ(x).

You may use the fact that for x ∈ R,

f(x) = e−ε|x|2 =⇒ f̂(ξ) =
1√
2ε

e−|ξ|
2/4ε.

Answer:

ut − kuxx + u = 0

=⇒ ût − kûxx + û = 0

=⇒ ût − k(iξ)2û + û = 0

=⇒ ût + k(ξ2 + 1)û = 0

=⇒ ût

û
= −(kξ2 + 1)

=⇒ ln û = −(kξ2 + 1)t + C

=⇒ û = Ce−(kξ2+1)t.

The initial condition implies û(ξ) = φ̂e−(kξ2+1)t.

Using the inverse Fourier transform, we have

u(x, t) =
1√
2π

∫ ∞

−∞
eixξû(ξ, t) dξ

=
1√
2π

∫ ∞

−∞
eixξφ̂(ξ)e−(kξ2+1)t dξ

=
e−t

√
2π

∫ ∞

−∞
φ̂(ξ)e−kξ2teixξ dξ

=
e−t

√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
e−iyξφ(y) dy

]
e−kξ2teixξ dξ

=
e−t

√
2π

∫ ∞

−∞

[
1√
2π

∫ ∞

−∞
e−i(y−x)ξe−kξ2t dξ

]
φ(y) dy.

Now
1√
2π

∫ ∞

−∞
e−i(y−x)ξe−ξ2t dξ = f̂(y − x)

where
f(ξ) = e−ξ2t.

Now using the fact above, we see that

f(ξ) = e−kξ2t =⇒ f̂(x) =
1√
2kt

e−x2/4kt.
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Therefore,

u(x, t) =
e−t

√
4kπt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy.

2. Show that u(x) = e−|x| solves
−uxx + u = 2δ0

in the sense of distributions.

Answer: To say that −uxx + u = 2δ0 in the sense of distributions, means the
following. Let Fu be the distribution associated with u. That is, Fu : D → R such that

(Fu, φ) =

∫ ∞

−∞
e−|x|φ(x) dx

for all φ ∈ D. We need to show that

([−∂2
x + I]Fu, φ) = 2(δ0, φ) = 2φ(0).

Recall that the derivative of a distribution F is defined to be the distribution G such
that

(G, φ) ≡ −(F, φ′) ∀φ ∈ D.

Therefore,
([−∂2

x + I]Fu, φ) ≡ (Fu, [−∂2
x + I]φ).

Therefore, it remains to show that

(Fu, [−∂2
x + I]φ) = 2φ(0) ∀φ ∈ D.

We proceed as follows.

(Fu, [−∂2
x + I]φ) =

∫ ∞

−∞
e−|x|[−φ′′(x) + φ(x)] dx

=

∫ ∞

0

e−x[−φ′′(x)] dx +

∫ 0

−∞
ex[−φ′′(x)] dx +

∫ ∞

−∞
e−|x|φ(x) dx

≡ A1 + A2 + A3.

Now integrating A1 by parts, we see

∫ ∞

0

e−x[−φ′′(x)] dx = −
∫ ∞

0

e−xφ′(x) dx− e−xφ′(x)
∣∣∞
0

= −
∫ ∞

0

e−xφ(x) dx− e−xφ(x)
∣∣∞
0
− e−xφ′(x)

∣∣∞
0

= −
∫ ∞

0

e−xφ(x) dx + φ(0) + φ′(0).
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Similarly, integrating A2 by parts, we see

∫ 0

−∞
ex[−φ′′(x)] dx =

∫ 0

−∞
exφ′(x) dx− exφ′(x)|0−∞

= −
∫ 0

−∞
exφ(x) dx + exφ(x)|0−∞ − exφ′(x)|0−∞

= −
∫ 0

−∞
exφ(x) dx + φ(0)− φ′(0).

Now adding these terms with A3, we see that

(Fu, [−∂2
x + I]φ) = 2φ(0),

as claimed.

3. (a) Let Ω = {(x, y) ∈ R2 : 0 < x < π, 0 < y < π}. Solve the following boundary-value
problem, 




∆u = 0 (x, y) ∈ Ω
u(0, y) = 0 = u(π, y) 0 < y < π
u(x, 0) = 0 0 < x < π
u(x, π) = 2 sin(x)− sin(2x) 0 < x < π.

Answer: We use separation of variables. Look for a solution of the form
u(x, y) = X(x)Y (y). Plugging this into the PDE, we have

X ′′Y + XY ′′ = 0.

Dividing by XY , we have
X ′′

X
+

Y ′′

Y
= 0.

Given that we have homogeneous boundary conditions at x = 0 and x = π, we
will write the above equation as

X ′′

X
= −Y ′′

Y
= −λ.

We are led to the eigenvalue problem,

X ′′ = −λX 0 < x < π
X(0) = 0 = X(π).

We know the eigenvalues and eigenfunctions of this problem are given by

λn = n2 Xn(x) = sin(nx) for n = 1, 2, . . .

Now we need to solve our equation for Yn for each λn. In particular, we need to
solve

Y ′′
n − n2Yn = 0.
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The solutions of this second-order ODE are given by

Yn(y) = An cosh(ny) + Bn sinh(ny).

The boundary condition u(x, 0) = 0 implies Y (0) = 0. Therefore,

Yn(0) = An = 0.

Therefore, for each n = 1, 2, . . ., we have found a function un(x, y) = Xn(x)Yn(y)
which is harmonic in Ω and satisfies three of the boundary conditions. It remains
to satisfy our fourth boundary condition. Let

u(x, y) =
∞∑

n=1

un(x, y)

=
∞∑

n=1

Bn sinh(ny) sin(nx)

for Bn arbitrary. Now, we will choose Bn to satisfy our fourth boundary condition.
We want u(x, π) = 2 sin(x)− sin(2x). That is, we want to choose Bn such that

∞∑
n=1

Bn sinh(nπ) sin(nx) = 2 sin(x)− sin(2x).

We note that the right-hand side is a finite combination of sine functions. There-
fore, we just need to choose Bn such that

B1 sinh(π) = 2

B2 sinh(2π) = −1

Bn = 0 n = 3, 4, . . .

Therefore, our solution is given by

u(x, y) =
2

sinh(π)
sinh(y) sin(x)− 1

sinh(2π)
sinh(2y) sin(2x).

(b) Find max
Ω

u(x, y).

Answer: We know from the maximum principle for harmonic functions that

max
Ω

u(x, y) = max
∂Ω

u(x, y).

Now, u(x, y) = 0 along three of the sides. We just need to check what the
maximum of u is on the fourth side. On the fourth side,

u(x, π) = 2 sin(x)− sin(2x).
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To find the maximum on this side, we look for critical points of u(x, π).

ux(x, π) = 2 cos(x)− 2 cos(2x) = 0

=⇒ cos(x) = cos(2x)

=⇒ cos(x) = 2 cos2(x)− 1

=⇒ (2 cos(x) + 1)(cos(x)− 1) = 0

=⇒ x = 0, 2π/3.

We see that u(0, π) = 0. We see that u(2π/3, π) = 2 sin(2π/3) − sin(4π/3) =
2
√

3/2 +
√

3/2 = 3
√

3/2. Therefore,

max
Ω

u(x, y) = 3
√

3/2 .

4. (a) Solve 



ut − uxx + u = f(x) 0 < x < l
u(x, 0) = g(x) 0 < x < l
ux(0, t) = 0 = ux(l, t).

Answer: First, we will solve the homogeneous problem

ut − uxx + u = 0.

Using separation of variables, we are led to the eigenvalue problem

{
X ′′ = (1− λ)X 0 < x < l

X ′(0) = 0 = X ′(l).

Letting µ = λ− 1, this becomes the eigenvalue problem

{
X ′′ = −µX 0 < x < l

X ′(0) = 0 = X ′(l).

We know the eigenfunctions and eigenvalues for this problem are

Xn(x) = cos
(nπ

l
x
)

µn =
(nπ

l

)2

n = 0, 1, 2, . . .

Therefore, λn = 1 + µn = 1 +
(

nπ
l

)2
. Now we need to solve the equation for Tn,

T ′
n = −λnT =⇒ Tn(t) = Cne−(1+(nπ/l)2)t.

Let

u(x, t) =
∞∑

n=0

Cn cos
(nπ

l
x
)

e−(1+(nπ/l)2)t.
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In order for our initial condition to be satisfied, we need

u(x, 0) =
∞∑

n=0

Cn cos
(nπ

l
x
)

= g(x).

This is just the Fourier cosine series for φ. The coefficients Cn are given by

Cn =
〈cos

(
nπ
l
x
)
, g(x)〉

〈cos
(

nπ
l
x
)
, cos

(
nπ
l
x
)〉 =

∫ l

0
cos

(
nπ
l
x
)
g(x) dx∫ l

0
cos2

(
nπ
l
x
)

dx
.

Therefore,

Cn =

{
2
l

∫ l

0
cos

(
nπ
l
x
)
g(x) dx n = 1, 2, . . .

1
l

∫ l

0
g(x) dx n = 0.

Therefore, the solution operator S(t) associated with the homogeneous equation
is the operator such that

S(t)φ =
∞∑

n=0

Cn cos
(nπ

l
x
)

e−(1+(nπ/l)2)t

with Cn as defined above. Using Duhamel’s principle, we know that the solution
of the inhomogeneous equation is given by

u(x, t) = S(t)φ +

∫ t

0

S(t− s)f(s) ds.

Therefore, the solution of our problem is given by

u(x, t) =
∞∑

n=0

Cn cos
(nπ

l
x
)

e−(1+(nπ/l)2)t

+

∫ t

0

∞∑
n=0

Dn(s) cos
(nπ

l
x
)

e−(1+(nπ/l)2)(t−s) ds

where

Cn =

{
2
l

∫ l

0
cos

(
nπ
l
x
)
g(x) dx n = 1, 2, . . .

1
l

∫ l

0
φ(x) dx n = 0.

and

Dn(s) =

{
2
l

∫ l

0
cos

(
nπ
l
x
)
f(x, s) dx n = 1, 2, . . .

1
l

∫ l

0
f(x, s) dx n = 0

and Cn is as defined above.
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(b) Prove uniqueness of this solution.

Answer: Suppose there are two solutions u and v. Let w = u − v. Therefore,
w is a solution of





wt − wxx + w = 0 0 < x < l
w(x, 0) = 0 0 < x < l
wx(0, t) = 0 = wx(l, t).

Multiplying this equation by w and integrating, we see that

1

2
∂t

∫ l

0

w2(x, t) dx = −
∫ l

0

(w2
x + w2) dx ≤ 0.

Therefore, ∫ l

0

w2(x, t) dx ≤
∫ l

0

w2(x, 0) dx = 0.

This implies w(x, t) ≡ 0, which implies u ≡ v.

5. (a) Answer true or false to the following statements.

i. Let Ω be an open, bounded subset of Rn. There exists at most one smooth
solution of {

∆u = 0 x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω.

Answer: False. Only unique up to a constant.

ii. If u is a bounded, harmonic function on Rn, then u must be constant.
Answer: True. Liouville’s Theorem.

iii. There exists at most one smooth, bounded solution of
{

ut − k∆u = f x ∈ Rn, t > 0

u(x, 0) = φ(x)

Answer: True. Uniqueness of solutions to the heat equation on Rn which
satisfy the growth estimate u(x, t) ≤ Aea|x|2 .

iv. If u is a smooth, harmonic function in Ω and u = g ≥ 0 on ∂Ω, then u > 0 in
Ω.
Answer: False. It only guarantees u ≥ 0. For example, if g ≡ 0, then u ≡ 0
in Ω.

(b) Answer the following short answer questions.

i. What is the derivative of the delta function?
Answer: The delta function is the distribution defined as follows.

(δ0, φ) = φ(0).

The derivative of the delta function is defined to be the distribution G such
that

(G, φ) = −(δ0, φ
′) = −φ′(0).
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Therefore, δ′0 is the distribution such that

(δ′0, φ) = −φ′(0).

ii. State the strong maximum principle for the heat equation.
Answer: Let ΩT = Ω × (0, T ]. Let ΓT ≡ ΩT − ΩT . The strong maximum
principle says that if Ω is a connected set and there exists a point (x0, t0) ∈ ΩT

such that
u(x0, t0) = max

ΩT

u(x, t),

then u must be constant.
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