Math 220B - Summer 2003
 Homework 1
 Due Thursday, July 3, 2003

1. Consider the eigenvalue problem

$$
\begin{cases}-X^{\prime \prime}=\lambda X & 0<x<l \\ X \text { satisfies symmetric B.C.s. } & x=0, l .\end{cases}
$$

Suppose

$$
\left.f(x) f^{\prime}(x)\right|_{x=a} ^{x=b} \leq 0
$$

for all real-valued functions $f(x)$ which satisfy the boundary conditions. Show there are no negative eigenvalues.
2. Consider the eigenvalue problem,

$$
\begin{cases}X^{\prime \prime}=-\lambda X & a<x<b \\ X \text { satisfies certain B.C.'s. } & \end{cases}
$$

Suppose μ is an eigenvalue of multiplicity $m>1$. Let X_{1}, \ldots, X_{m} denote m linearly independent eigenfunctions (which may or may not be orthogonal) associated with the eigenvalue μ. Use these eigenfunctions to construct m eigenfunctions Y_{1}, \ldots, Y_{m} which are necessarily orthogonal.
3. Consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}=\lambda X \\
X^{\prime}(0)+X(0)=0 \\
X(l)=0 .
\end{array}\right.
$$

(a) Find an equation for the positive eigenvalues.
(b) Show graphically that there are an infinite number of positive eigenvalues.
(c) Show that $\lambda=0$ is an eigenvalue if and only if $l=1$. Find a corresponding eigenfunction in this case.
(d) Show that if $l \leq 1$, then there are no negative eigenvalues, but if $l>1$, then there is one negative eigenvalue. Find the corresponding eigenfunction.
4. Use separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0 \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0 \\
u_{x}(l, t)=0
\end{array}\right.
$$

5. Use separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}+u_{x}=0 \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0 \\
u_{x}(0, t)=0
\end{array}\right.
$$

(Hint: Introduct a function $f(x)$ such that $v(x, t)=f(x) u(x, t)$ will satisfy a PDE of the form

$$
v_{t}-k v_{x x}+a v=0
$$

with new initial and boundary conditions. Solve the equation for v, and from this solution, solve for u.)

