Math 220B - Summer 2003 Homework 1 Solutions

1. Consider the eigenvalue problem

$$
\begin{cases}-X^{\prime \prime}=\lambda X & 0<x<l \\ X \text { satisfies symmetric B.C.s. } & x=0, l .\end{cases}
$$

Suppose

$$
\left.f(x) f^{\prime}(x)\right|_{x=a} ^{x=b} \leq 0
$$

for all real-valued functions $f(x)$ which satisfy the boundary conditions. Show there are no negative eigenvalues.
Answer: Let X be an eigenfunction with eigenvalue λ.

$$
\begin{aligned}
\lambda\langle X, X\rangle & =-\left\langle X^{\prime \prime}, X\right\rangle \\
& =\left\langle X^{\prime}, X^{\prime}\right\rangle-\left.X^{\prime} X\right|_{x=0} ^{x=l} \\
& \geq 0
\end{aligned}
$$

using the assumption that $\left.X^{\prime} X\right|_{x=0} ^{x=l} \leq 0$.
2. Consider the eigenvalue problem,

$$
\begin{cases}X^{\prime \prime}=-\lambda X & a<x<b \\ X \text { satisfies certain B.C.'s. } & \end{cases}
$$

Suppose μ is an eigenvalue of multiplicity $m>1$. Let X_{1}, \ldots, X_{m} denote m linearly independent eigenfunctions (which may or may not be orthogonal) associated with the eigenvalue μ. Use these eigenfunctions to construct m eigenfunctions Y_{1}, \ldots, Y_{m} which are necessarily orthogonal.
Answer: First, define

$$
Y_{1}=\frac{X_{1}}{\left\|X_{1}\right\|}
$$

Next, we define a function orthogonal to Y_{1} by subtracting the piece of X_{2} which is parallel to Y_{1}. Therefore, let

$$
Z_{2}=X_{2}-\left\langle X_{2}, Y_{1}\right\rangle Y_{1}
$$

We normalize, letting $Y_{2}=Z_{2} /\left\|Z_{2}\right\|$. Continuing in this way, we let

$$
Z_{3}=X_{3}-\left\langle X_{3}, Y_{1}\right\rangle Y_{1}-\left\langle X_{3}, Y_{2}\right\rangle Y_{2}
$$

and then define $Y_{3}=Z_{3} /\left\|Z_{3}\right\|$. In general, we define

$$
Z_{m}=X_{m}-\left\langle X_{m}, Y_{1}\right\rangle Y_{1}-\ldots-\left\langle X_{m}, Y_{m-1}\right\rangle Y_{m-1}
$$

and let $Y_{m}=Z_{m} /\left\|Z_{m}\right\|$.
3. Consider the eigenvalue problem

$$
\begin{cases}-X^{\prime \prime}=\lambda X & 0<x<l \\ X^{\prime}(0)+X(0)=0 \\ X(l)=0\end{cases}
$$

(a) Find an equation for the positive eigenvalues.

Answer: If $\lambda=\beta^{2}>0$, then

$$
X^{\prime \prime}+\beta^{2} X=0 \Longrightarrow X(x)=A \cos (\beta x)+B \sin (\beta x)
$$

The boundary condition

$$
X^{\prime}(0)+X(0)=B \beta+A=0 .
$$

The boundary condition

$$
X(l)=0 \Longrightarrow A \cos (\beta l)+B \sin (\beta l)=0 .
$$

Combining these two equations, we conclude that λ is a positive eigenvalue if and only if

$$
-\beta \cos (\beta l)+\sin (\beta l)=0
$$

or

$$
\tan (\beta l)=\beta
$$

(b) Show graphically that there are an infinite number of positive eigenvalues.

Answer: Let

$$
\begin{aligned}
f(\beta) & =\beta \\
g(\beta) & =\tan (\beta l) .
\end{aligned}
$$

We know that $g(\beta)$ has vertical asymptotes at $\beta=\left(n+\frac{1}{2}\right) \pi / l$ and $g(\beta) \rightarrow+\infty$ as $\beta \rightarrow\left(n+\frac{1}{2}\right) \pi / l$. By graphing both functions, we see that $f(\beta)$ and $g(\beta)$ have an infinite number of intersections.
(c) Show that $\lambda=0$ is an eigenvalue if and only if $l=1$. Find a corresponding eigenfunction in this case.
Answer:

$$
\lambda=0 \Longrightarrow X^{\prime \prime}=0 \Longrightarrow X(x)=A+B x
$$

The boundary condition

$$
X^{\prime}(0)+X(0)=0 \Longrightarrow B+A=0
$$

The boundary condition

$$
X(l)=0 \Longrightarrow A+B l=0
$$

Combining these two equations implies

$$
B(1-l)=0 .
$$

Therefore, zero is an eigenvalue if and only if $l=1$. In this case, the corresponding eigenfunction is

$$
X_{0}(x)=B_{0}(1-x)
$$

for any B_{0}.
(d) Show that if $l \leq 1$, then there are no negative eigenvalues, but if $l>1$, then there is one negative eigenvalue. Find the corresponding eigenfunction.

Answer:

$$
\lambda=-\gamma^{2}<0 \Longrightarrow X(x)=A \cosh (\gamma x)+B \sinh (\gamma x)
$$

The boundary condition

$$
X^{\prime}(0)+X(0)=0 \Longrightarrow B \gamma+A=0 .
$$

The boundary condition

$$
X(l)=0 \Longrightarrow A \cosh (\gamma l)+B \sinh (\gamma l)=0
$$

Combining these two equations, we conclude that

$$
-B \gamma \cosh (\gamma l)+B \sinh (\gamma l)=0
$$

If $B=0$, then $X(x) \equiv 0$. Therefore, we must have

$$
-\gamma \cosh (\gamma l)+\sinh (\gamma l)=0
$$

or

$$
\tanh (\gamma l)=\gamma
$$

To look for roots of this equation, we consider the graphs of the functions

$$
\begin{aligned}
& f(\gamma)=\gamma \\
& g(\gamma)=\tanh (\gamma l)
\end{aligned}
$$

We note that $f^{\prime}(\gamma)=1$ and $g^{\prime}(\gamma)=l \operatorname{sech}^{2}(\gamma l)$. Therefore, $f^{\prime}(0)=1, g^{\prime}(0)=l$. Further, we note that $g^{\prime \prime}(\gamma)=-2 l \operatorname{sech}^{2}(\gamma l) \tanh (\gamma l)<0$. Also, we note that $g(\gamma) \rightarrow 1$ as $\gamma \rightarrow+\infty$.
From this information, we conclude that $f(\gamma)$ and $g(\gamma)$ only intersect at $\gamma=0$ if $l \leq 1$, and, consequently, there are no negative eigenvalues if $l \leq 1$.
On the other hand, if $l>1, f(\gamma)$ and $g(\gamma)$ will intersect once, implying there is exactly one negative eigenvalue if $l>1$.
4. Use separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}=0 \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0 \\
u_{x}(l, t)=0
\end{array}\right.
$$

Answer: We use separation of variables, letting $u(x, t)=X(x) T(t)$. Plugging this function into our PDE, we have

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}=-\lambda
$$

We are led to the eigenvalue problem

$$
\left\{\begin{aligned}
-X^{\prime \prime} & =\lambda X \\
X(0) & =0=X^{\prime}(l) .
\end{aligned}\right.
$$

Looking for positive eigenvalues,

$$
\lambda=\beta^{2}>0 \Longrightarrow X(x)=A \cos (\beta x)+B \sin (\beta x)
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)=0 \Longrightarrow B \beta \cos (\beta l)=0 \Longrightarrow \beta_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{l}
$$

Therefore,

$$
\lambda_{n}=\left(\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right)^{2} \quad X_{n}(x)=B_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{l} x\right)
$$

By straightforward calculation, we see these are all the eigenvalues. Solving the equation for T_{n},

$$
\begin{aligned}
T^{\prime}=-k \lambda_{n} T & \Longrightarrow T_{n}(t)=C_{n} e^{-k \lambda_{n} t} \\
& \Longrightarrow T_{n}(t)=C_{n} e^{-k\left(\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right)^{2} t}
\end{aligned}
$$

Therefore, we let

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{l} x\right) e^{-k\left(\frac{\left(n+\frac{1}{2}\right) \pi}{l}\right)^{2} t}
$$

In order for the initial condition $u(x, 0)=\phi(x)$ to be satisfied, we need

$$
C_{n}=\frac{\left\langle\sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{l} x\right), \phi(x)\right\rangle}{\left\langle\sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{l} x\right), \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi}{l} x\right)\right\rangle}
$$

5. Use separation of variables to solve

$$
\left\{\begin{array}{l}
u_{t}-k u_{x x}+u_{x}=0 \quad 0<x<l, t>0 \\
u(x, 0)=\phi(x) \\
u(0, t)=0 \\
u_{x}(0, t)=0
\end{array}\right.
$$

(Hint: Introduce a function $f(x)$ such that $v(x, t)=f(x) u(x, t)$ will satisfy a PDE of the form

$$
v_{t}-k v_{x x}+a v=0
$$

with new initial and boundary conditions. Solve the equation for v, and from this solution, solve for u.)
Answer: We will give two methods.
Method 1. We want to find a function f such that defining $v=f u$, then v satisfies a PDE of the form $v_{t}-k v_{x x}+a v=0$. Let $g=1 / f$. Therefore, $u=g v$. Plugging this function into our PDE, we have

$$
g v_{t}-k g v_{x x}+\left[-2 k g^{\prime}+g\right] v_{x}+\left[-k g^{\prime \prime}+g^{\prime}\right] v=0 .
$$

In order to eliminate the v_{x} term, we want to choose g such that $-2 k g^{\prime}+g=0$, which implies $g(x)=e^{x / 2 k}$. Then let $v=f u=(1 / g) u=e^{-x / 2 k} u$. Solving for $-k g^{\prime \prime}+g^{\prime}$, we see that v will satisfy the following initial/boundary-value problem

$$
\left\{\begin{array}{l}
v_{t}-k v_{x x}+\frac{1}{4 k} v=0 \quad 0<x<l, t>0 \\
v(x, 0)=e^{-x / 2 k} \phi(x) \\
v(0, t)=0 \\
v_{x}(l, t)+\frac{1}{2 k} v(l, t)=0
\end{array}\right.
$$

Now use separation of variables on this initial/boundary-value problem. Plugging in a function $v(x, t)=X(x) T(t)$ implies

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}}{X}-\frac{1}{4 k}=-\lambda
$$

We need to solve the ODE

$$
\frac{X^{\prime \prime}}{X}=-\lambda+\frac{1}{4 k}
$$

Let $-\mu=-\lambda+\frac{1}{4 k}$. We are led to the eigenvalue problem

$$
\begin{cases}X^{\prime \prime}=-\mu X & 0<x<l \\ X(0)=0 \\ X^{\prime}(l)+\frac{1}{2 k} X(l)=0\end{cases}
$$

If $\mu=\beta^{2}>0$, then $X(x)=A \cos (\beta x)+B \sin (\beta x)$. The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)+\frac{1}{2 k} X(l)=0 \Longrightarrow B \beta \cos (\beta l)+\frac{1}{2 k} B \sin (\beta l)=0 .
$$

If $B=0$, then $X(x) \equiv 0$. Therefore, we need

$$
\beta \cos (\beta l)+\frac{1}{2 k} \sin (\beta l)=0
$$

or

$$
\tan (\beta l)=-2 k \beta
$$

The corresponding eigenfunctions are

$$
X_{n}(x)=B_{n} \sin \left(\beta_{n} x\right)
$$

If $\mu=0$, then $X(x)=A+B x$. The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)+\frac{1}{2 k} X(l)=0 \Longrightarrow B+\frac{1}{2 k} B l=0 \Longrightarrow B=0 .
$$

Therefore, zero is not an eigenvalue.
Using the result from problem (1), we can conclude that there are no negative eigenvalues.
Recalling the definition of μ, we see that

$$
\lambda_{n}=\beta_{n}^{2}+\frac{1}{4 k}
$$

where

$$
\tan \left(\beta_{n} l\right)=-2 k \beta_{n}
$$

Solving our equation for T_{n}, we have

$$
T_{n}(t)=C_{n} e^{-k \lambda_{n} t}
$$

Therefore, we let

$$
v(x, t)=\sum_{n=1}^{\infty} C_{n} \sin \left(\beta_{n} x\right) e^{-k \lambda_{n} t}
$$

where λ_{n} and β_{n} are defined above. We want $v(x, 0)=e^{-x / 2 k} \phi(x)$. Therefore, let

$$
C_{n}=\frac{\left\langle\sin \left(\beta_{n} x\right), e^{-x / 2 k} \phi(x)\right\rangle}{\left\langle\sin \left(\beta_{n} x\right), \sin \left(\beta_{n} x\right)\right\rangle}
$$

Finally, we recall that $u(x, t)=e^{x / 2 k} v(x, t)$ for v defined above.
Method 2. Here is an alternate method, which allows one to use separation of variables directly, but requires knowledge about Sturm-Liouville problems. (You are not responsible for this material, but I thought I'd write up a solution using this method because some students used this technique.)
Let $u=X T$. Plugging u into our equation, we have

$$
\frac{T^{\prime}}{k T}=\frac{X^{\prime \prime}-\frac{1}{k} X^{\prime}}{X}=-\lambda
$$

We need to consider the eigenvalue problem

$$
\left\{\begin{array}{l}
-X^{\prime \prime}+\frac{1}{k} X^{\prime}-\lambda X=0 \quad 0<x<l \\
X(0)=0=X^{\prime}(l) .
\end{array}\right.
$$

Multiplying by the integrating factor $e^{-x / k}$, we see this ODE can be rewritten as

$$
-\left(e^{-x / k} X^{\prime}\right)^{\prime}-\lambda e^{-x / k} X=0
$$

an example of a Sturm-Liouville problem. We note that eigenfunctions of this SturmLiouville problem are orthogonal with respect to the weight function $e^{-x / k}$.
To find the solutions of our second-order ODE,

$$
X^{\prime \prime}-\frac{1}{k} X^{\prime}+\lambda X=0
$$

we look at the characteristic polynomial $p(r)=r^{2}-\frac{1}{k} r+\lambda=0$. The roots of this polynomial are given by

$$
\begin{aligned}
r & =\frac{\frac{1}{k} \pm \sqrt{\frac{1}{k^{2}}-4 \lambda}}{2} \\
& =\frac{1}{2 k} \pm \sqrt{\frac{1}{4 k^{2}}-\lambda}
\end{aligned}
$$

Let $-\mu=\frac{1}{4 k^{2}}-\lambda$. Then

$$
r=\frac{1}{2 k} \pm \sqrt{-\mu} .
$$

The first case is $\mu>0$. In this case,

$$
r=\frac{1}{2 k} \pm i \sqrt{\mu},
$$

which implies the associated eigenfunctions are given by

$$
X(x)=e^{x / 2 k}[A \cos (\sqrt{\mu} x)+B \sin (\sqrt{\mu} x)]
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)=0 \Longrightarrow\left[\frac{1}{2 k} \sin (\sqrt{\mu} l)+\sqrt{\mu} \cos (\sqrt{\mu} l)\right]=0 \Longrightarrow \tan (\sqrt{\mu} l)=-2 k \sqrt{\mu} .
$$

Thus far, we have eigenvalues

$$
\lambda_{n}=\frac{1}{4 k^{2}}+\mu_{n}
$$

where

$$
\tan \left(\sqrt{\mu}_{n} l\right)=-2 k \sqrt{\mu}_{n}
$$

and the associated eigenfunctions

$$
X_{n}(x)=e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right)
$$

Next, we consider $\mu=0$. In this case, $r=\frac{1}{2 k}$ which implies

$$
X(x)=A e^{x / 2 k}+B x e^{x / 2 k}
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

The boundary condition

$$
X^{\prime}(l)=0 \Longrightarrow B\left[e^{x / 2 l}+\frac{1}{2 k} l e^{l / 2 k}\right]=0
$$

But this can only happen if $B=0$ which implies $X(x) \equiv 0$. Therefore, $\mu \neq 0$.
Next, we consider $\mu<0$. In this case, $r=\frac{1}{2 k} \pm \sqrt{-\mu}$, which implies

$$
X(x)=e^{x / 2 k}\left[A e^{\sqrt{-\mu x}}+B e^{-\sqrt{-\mu x}}\right] .
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A+B=0
$$

The boundary condition

$$
X^{\prime}(l)=0 \Longrightarrow\left(\frac{\frac{1}{2 k}+\sqrt{-\mu}}{\frac{1}{2 k}-\sqrt{-\mu}}\right) e^{2 \sqrt{-\mu l}}=1
$$

or $B=0$. Since both terms in the expression above are greater than 1 , we must have $B=0$. Therefore, $\mu \nless 0$.
We conclude that

$$
\lambda=\frac{1}{4 k^{2}}+\mu
$$

where $\mu>0$ such that

$$
\tan (\sqrt{\mu} l)=-2 k \sqrt{\mu}
$$

and

$$
X_{n}(x)=e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right)
$$

The solution for our equation for T is given by

$$
T_{n}(t)=C_{n} e^{-k \lambda_{n} t} .
$$

Therefore, let

$$
u(x, t)=\sum_{n=1}^{\infty} C_{n} e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right) e^{-k \lambda_{n} t}
$$

We want $u(x, 0)=\phi(x)$. That is, we want to choose C_{n} such that

$$
\sum_{n=1}^{\infty} C_{n} e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right)=\phi(x)
$$

Using the fact that eigenfunctions are orthogonal with respect to the weight function $e^{-x / 2 k}$, we can multiply both sides by $\sin \left(\sqrt{\mu}_{m} x\right)$ and integrate over $[0, l]$ with respect to the weight function $e^{-x / 2 k}$.
In particular, we conclude that

$$
C_{n}=\frac{\int_{0}^{l} \phi(x) e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right) e^{-x / k} d x}{\int_{0}^{l}\left(e^{x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right)\right)^{2} e^{-x / k} d x}
$$

Simplifying, we have

$$
C_{n}=\frac{\int_{0}^{l} \phi(x) e^{-x / 2 k} \sin \left(\sqrt{\mu}_{n} x\right) d x}{\int_{0}^{l} \sin ^{2}\left(\sqrt{\mu}_{n} x\right) d x}
$$

