Math 220B - Summer 2003
 Homework 2
 Due Thursday, July 10, 2003

1. (a) Compute the Fourier transform of $x f$ in terms of \widehat{f}.
(b) Compute the Fourier transform of $x e^{-t x^{2}}$.
2. Use the Fourier transform to show that the solution of the inhomogeneous heat equation with zero initial data,

$$
\begin{cases}u_{t}-k u_{x x}=f(x, t) & -\infty<x<\infty, t>0 \\ u(x, 0)=0 & -\infty<x<\infty\end{cases}
$$

is given by

$$
u(x, t)=\int_{0}^{t} \frac{1}{\sqrt{4 \pi k(t-s)}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 k(t-s)} f(y, s) d y d s
$$

3. Use the Fourier transform to solve

$$
\begin{cases}u_{t}-t u_{x x}=0 & -\infty<x<\infty, t>0 \\ u(x, 0)=\phi(x) & -\infty<x<\infty\end{cases}
$$

4. (a) Consider the heat equation on a half-line with Dirichlet boundary conditions

$$
\begin{cases}u_{t}-k u_{x x}=0 & 0<x<\infty, t>0 \\ u(x, 0)=\phi(x) & 0<x<\infty \\ u(0, t)=0 & t>0\end{cases}
$$

Solve for $u(x, t)$.
(b) Consider the heat equation on a half-line with Robin boundary conditions

$$
(*) \begin{cases}u_{t}-k u_{x x}=0 & 0<x<\infty, t>0 \\ u(x, 0)=\phi(x) & 0<x<\infty \\ u_{x}(0, t)-h u(x, t)=0 & t>0\end{cases}
$$

Solve this initial value problem as follows. Assuming u is the solution of $\left(^{*}\right)$, introduce a new function v such that $v(x, t)=u_{x}(x, t)-h u(x, t)$.
i. Determine the initial/boundary value problem that v satisfies.
ii. Solve for u in terms of v.
5. Consider the initial/boundary-value problem

$$
(* *) \begin{cases}u_{t}-k u_{x x}=0 & 0<x<l, t>0 \\ u(x, 0)=\phi(x) & 0<x<l \\ u(0, t)=0=u(l, t) & t>0\end{cases}
$$

Let $\phi_{\text {ext }}(x)$ be the extension of ϕ to all of \mathbb{R} such that $\phi_{\text {ext }}$ is odd with respect to $x=0$ and $\phi_{\text {ext }}$ is $2 l$-periodic. That is,

$$
\phi_{e x t}(x)= \begin{cases}\phi(x) & 0<x<l \\ -\phi(-x) & -l<x<0\end{cases}
$$

and ϕ is $2 l$-periodic.
(a) Consider the initial-value problem

$$
\begin{cases}v_{t}-k v_{x x}=0 & -\infty<x<\infty, t>0 \\ v(x, 0)=\phi_{e x t}(x) & -\infty<x<\infty\end{cases}
$$

Write the solution formula for v. Show that if $u(x, t)$ is defined to be $v(x, t)$ for $0 \leq x \leq l$, then u will satisfy $\left({ }^{* *}\right)$.
(b) Assume that

$$
\phi(x)=\sum_{n=1} A_{n} \sin \left(\frac{n \pi}{l} x\right) \text { for } 0 \leq x \leq l,
$$

where

$$
A_{n}=\frac{\left\langle\phi, \sin \left(\frac{n \pi}{l} x\right)\right\rangle}{\left\langle\sin \left(\frac{n \pi}{l} x\right), \sin \left(\frac{n \pi}{l} x\right)\right\rangle}
$$

(That is, assume that the Fourier sine series for ϕ converges to ϕ.) Note that for $\phi_{\text {ext }}$ defined above,

$$
\phi_{e x t}(x)=\sum_{n=1} A_{n} \sin \left(\frac{n \pi}{l} x\right) \text { for }-\infty<x<\infty
$$

Using the solution formula found in part (a), show that

$$
v(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{l} x\right) e^{-k n^{2} \pi^{2} t / l^{2}}
$$

with A_{n} defined above. (Consequently if $u(x, t)=v(x, t)$ for $0 \leq x \leq l$, then u has this form. In particular, we have justified the separation of variables technique.)

