Math 220B - Summer 2003
 Homework 3
 Due Thursday, July 17, 2003

1. Suppose $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ is a sequence of continuous, nonnegative functions such that

$$
f_{n}(x) \rightarrow \begin{cases}\infty & x=0 \\ 0 & x \neq 0\end{cases}
$$

as $n \rightarrow+\infty$. In addition, assume

$$
\int_{-\infty}^{\infty} f_{n}(x) d x=1
$$

for all n, and there exists a closed, bounded subset $K \subset \mathbb{R}$ such that $f_{n}(x) \equiv 0$ for $x \notin K$. (That is, $\operatorname{supp}\left(f_{n}\right) \subset K$ for all n.)
Show that

$$
f_{n} \rightharpoonup \delta_{0}
$$

as $n \rightarrow+\infty$ in the sense of distributions. (That is, prove weak convergence.)
2. (a) We define the Fourier transform of a distribution as follows. Let $F: \mathcal{D} \rightarrow \mathbb{R}$ be a distribution. Then \widehat{F} is defined as the distribution such that $(\widehat{F}, \phi)=(F, \widehat{\phi})$ for all $\phi \in \mathcal{D}$. Using this definition, compute the Fourier transform of the delta function.
(b) Use your answer to part (a) to solve

$$
y^{\prime}(x)-a y=\delta_{0} \quad a \in \mathbb{R}, a \neq 0
$$

3. Define

$$
u(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\sin x & x \geq 0
\end{array}\right.
$$

Show that $u^{\prime \prime}+u=\delta_{0}$ in the sense of distributions, where δ denotes the delta function.
4. Solve

$$
\begin{cases}u_{t}-k u_{x x}+u=0 & 0<x<1, t>0 \\ u(x, 0)=\phi(x) & \\ u_{x}(0, t)-u(0, t)=g(t) \\ u_{x}(l, t)=h(t) & \end{cases}
$$

5. Let Ω be an open, bounded subset of \mathbb{R}^{n}. Use energy methods to prove uniqueness of solutions to

$$
\begin{cases}u_{t}-k \Delta u+u=f & x \in \Omega, t>0 \\ u(x, 0)=\phi(x) & \\ \frac{\partial u}{\partial \nu}+a u=g & x \in \partial \Omega\end{cases}
$$

for $a \geq 0$.

