Math 220B - Summer 2003
 Homework 4
 Due Tuesday, July 22, 2003

1. Let Ω be an open, bounded set in \mathbb{R}^{n}. Let $\phi \in C(\bar{\Omega}), g \in C(\partial \Omega)$, and suppose $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ is a solution of

$$
\text { (1) } \begin{cases}u_{t}(x, t)=k \Delta u(x, t) & (x, t) \in \Omega \times(0, \infty) \\ u(x, t)=g(x) & (x, t) \in \partial \Omega \times[0, \infty) \\ u(x, 0)=\phi(x) & x \in \Omega .\end{cases}
$$

Also suppose that $v \in C^{2}(\bar{\Omega})$ is a solution of

$$
\text { (2) } \begin{cases}\Delta v(x)=0 & x \in \Omega \\ v(x)=g(x) & x \in \partial \Omega\end{cases}
$$

Prove $u(x, t) \rightarrow v(x)$ in $L^{2}(\Omega)$ as $t \rightarrow \infty$ as follows.
(a) For Ω an open, bounded set in \mathbb{R}^{n}, there exists a constant C (depending only on $\Omega)$ such that for every $f \in C^{1}(\bar{\Omega})$ with $f(x)=0$ for all $x \in \partial \Omega$,

$$
(*) \quad\|f\|_{L^{2}(\Omega)} \leq C\|\nabla f\| \|_{L^{2}(\Omega)} .
$$

Prove this inequality for the case when $\Omega=(a, b) \subset \mathbb{R}$.
(b) Using $\left(^{*}\right)$, prove that for u and v solutions of (1) and (2) respectively, $u(x, t) \rightarrow$ $v(x)$ in $L^{2}(\Omega)$ as $t \rightarrow+\infty$. (Hint: Let $w(x, t) \equiv u(x, t)-v(x)$. Consider the PDE that w solves. Show that $\|w(x, t)\|_{L^{2}(\Omega)}^{2} \rightarrow 0$ as $t \rightarrow+\infty$.)
2. Let $B_{n}(0, a)$ be the unit ball in \mathbb{R}^{n} centered at 0 with radius $a>0$.
(a) Let $\alpha>0$. Show that

$$
\int_{B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x<\infty
$$

if and only if $\alpha<n$. In particular, evaluate the integral for $n>\alpha>0$.
(b) Give conditions on α for which

$$
\int_{\mathbb{R}^{n} \backslash B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x<\infty
$$

3. Find all radial solutions of

$$
-\Delta u+u=0 \quad x \in \mathbb{R}^{3} .
$$

4. Prove that

$$
u(x) \equiv \frac{e^{-|x|}}{4 \pi|x|}
$$

satisfies

$$
-\Delta u+u=\delta_{0} \quad x \in \mathbb{R}^{3}
$$

in the sense of distributions.

