Math 220B - Summer 2003 Homework 4 Due Tuesday, July 22, 2003

1. Let Ω be an open, bounded set in \mathbb{R}^n . Let $\phi \in C(\overline{\Omega})$, $g \in C(\partial\Omega)$, and suppose $u \in C^2(\overline{\Omega} \times [0,\infty))$ is a solution of

(1)
$$\begin{cases} u_t(x,t) = k\Delta u(x,t) & (x,t) \in \Omega \times (0,\infty) \\ u(x,t) = g(x) & (x,t) \in \partial\Omega \times [0,\infty) \\ u(x,0) = \phi(x) & x \in \Omega. \end{cases}$$

Also suppose that $v \in C^2(\overline{\Omega})$ is a solution of

(2)
$$\begin{cases} \Delta v(x) = 0 & x \in \Omega \\ v(x) = g(x) & x \in \partial \Omega. \end{cases}$$

Prove $u(x,t) \to v(x)$ in $L^2(\Omega)$ as $t \to \infty$ as follows.

(a) For Ω an open, bounded set in \mathbb{R}^n , there exists a constant C (depending only on Ω) such that for every $f \in C^1(\overline{\Omega})$ with f(x) = 0 for all $x \in \partial\Omega$,

(*) $||f||_{L^2(\Omega)} \le C ||\nabla f|||_{L^2(\Omega)}.$

Prove this inequality for the case when $\Omega = (a, b) \subset \mathbb{R}$.

- (b) Using (*), prove that for u and v solutions of (1) and (2) respectively, $u(x,t) \rightarrow v(x)$ in $L^2(\Omega)$ as $t \rightarrow +\infty$. (*Hint: Let* $w(x,t) \equiv u(x,t) v(x)$. Consider the PDE that w solves. Show that $||w(x,t)||_{L^2(\Omega)}^2 \rightarrow 0$ as $t \rightarrow +\infty$.)
- 2. Let $B_n(0, a)$ be the unit ball in \mathbb{R}^n centered at 0 with radius a > 0.
 - (a) Let $\alpha > 0$. Show that

$$\int_{B_n(0,a)} \frac{1}{|x|^{\alpha}} \, dx < \infty$$

if and only if $\alpha < n$. In particular, evaluate the integral for $n > \alpha > 0$.

(b) Give conditions on α for which

$$\int_{\mathbb{R}^n \setminus B_n(0,a)} \frac{1}{|x|^{\alpha}} \, dx < \infty.$$

3. Find all radial solutions of

$$-\Delta u + u = 0 \qquad x \in \mathbb{R}^3.$$

4. Prove that

$$u(x) \equiv \frac{e^{-|x|}}{4\pi |x|}$$

satisfies

$$-\Delta u + u = \delta_0 \qquad x \in \mathbb{R}^3$$

in the sense of distributions.