Math 220B - Summer 2003
Homework 4 Solutions

1. Let Q be an open, bounded set in R". Let ¢ € C(Q), g € C(09), and suppose
u € C%*(Q x [0,00)) is a solution of

u(x,t) = kAu(z,t) (x,t) € 2 x (0,00)
(1) u(z,t) = g(x) (x,t) € 002 x [0, 00)
u(z,0) = ¢(x) z € Q.

Also suppose that v € C?(Q) is a solution of

Av(z) =0 r e
(2) { v(z) = g(z) x € 09.

Prove u(x,t) — v(z) in L*(Q) as t — oo as follows.

(a) For Q an open, bounded set in R", there exists a constant C' (depending only on

Q) such that for every f € C'(Q) with f(x) = 0 for all x € 99,

() M2 < CIVEllzz @)

Prove this inequality for the case when 2 = (a,b) C R

=/:f(y)dy

Then integrating by parts and using the Cauchy-Schwartz inequality, we have

b
||f||%2([a,b]) :/ f2($)d$

_ ‘_/bF( )f'(z)dx + F(x)f(x)[22,

/ F(2) ()| da
<( A |F<x>|2da:) " (/ b ) i)

Answer: Let

1/2



Now

() "= ([ ([ ) )

< (/ (/ab\f(y)|dy)2 dx)m
<o-a ([ 11w an)
<o-a”( gt ) " (/ b ) "

b 1/2
<(b—a) (/ |f(y)|2dy> .
Therefore,

[t <o-a ([ 1swpa) " ([ 1) !

1/2
Dividing both sides by (f; | f(2)]? dm) , we get the desired result.
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(b) Using (*), prove that for u and v solutions of (1) and (2) respectively, u(z,t) —
v(z) in L*(Q) as t — +oo. (Hint: Let w(x,t) = u(x,t) —v(zx). Consider the PDE
that w solves. Show that ||w(:v,t)||%2(m — 0 ast — +00.)

Answer: Let w(x,t) = u(x,t) — v(z). Then we see that w is a solution of

wy — kAw =0 (z,t) € Q x (0,00)
w(z,0) = ¢(x) —v(x) 2
w(x,t) =0 r € 0t>0

We want to show that ||w(:p,t)||%2(m — 0 ast — oo. Now

1 1
—||lw(z, t)||? :—/wx,thx
Sl e = 5 [ w

is the Energy function associated with the heat equation. Let

B(t) = %/Qw(;c,t)mx.



As we have seen,

E'(t) :/wwt dx
Q

:/kawdx
Q
ow
_ 2 -
= k:/Q|Vw\ dx+k/ wade( )
:—k;/ YVl dz.
Q

But, using part (a), we see that
E'(t) = —k:/ \Vw|* dw

< C/\wﬁdm
=—CE(t

Therefore, we see that
E(t) < Ke 9.

Therefore, E(t) — 0 as t — +00. In particular, this means [|w(,t)[|72, — 0 as
t — +00, as claimed.

2. Let B,,(0,a) be the unit ball in R™ centered at 0 with radius a > 0.

(a) Let a > 0. Show that

1
/ dr < oo
Bn(0,a) m

if and only if a < n. In particular, evaluate the integral for n > a > 0.
Answer: First, consider the case when o # n. We have

1 “ 1
/ / / L as(z)dr :/ / — dS(z)dr
Ba(0,0) 17]* 8Bn0r || 0 JoB.(os) T
/o re /8Bn(0r
_ il n— 1d
/0 " —na(n)r r

:/ na(n)r"=*tdr
0




We see that this limit is finite if and only if @ < n. In particular, for 0 < a < n,

we have
1
/ —dxr = _na(n) a" .
Bu(0.a) [T|* n—a«

Lastly, we consider the case when o = n. In this case, we see that the integral
becomes

| natwr et = [ natnyrtdr = natn) ()2 - oo,
0 0

Therefore, the integral is not finite for a = n.

(b) Give conditions on « for which

1
/ ——dx < 0.
R\ By (0,0) 17|

Answer: Again, consider o # n. As in part (a), we write

1 > 1
/ —adx:/ / = dS(z)dr
R\ B,y (0,0) |Z] o Jos,or |7l
> 1

— o n—1 d
/a ranoz(n)r r
:/ na(n)r"=*tdr

= r
n—uo

n—«x

r=a

We notice that this integral will only converge if n — a < 0.

Now if a = n, the integral becomes

r=a

/ na(n)r~tdr = na(n)Inr|/ " — +oo.

Therefore, we conclude that this integral is finite if and only if
a > n.

3. Find all radial solutions of

—Au+u=0 r € R*\{0}.

Answer: Suppose there is a radial solution u(z) = v(|z|). From class, we calculated
that if u(z) = v(|x|), then letting r = ||,

n—1

Au =

V' (r) + 0" (r).

r
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Therefore, in n = 3 dimensions, we have

2
—Av+v=—-0"—=V"+v=0
r
= —" =20 +rv=0

= —(rv)" +rv=0.
Let w = rv. Therefore, we see that w satisfies
w' —w =0

which implies

w(r) = Ae" + Be™".
Solving for v in terms of w, we have
w  Ae"+ Be™"

r r

v(r) =

Therefore, we see that all radial solutions of our equation must be given by

Ael*l + Be~l2l
ua) = vljal) = Z—
. Prove that
( ) €—|LI}|
u(z) =
47| x|
satisfies

—Au+u = dy reR?
in the sense of distributions.
Answer: Let F, : D(R?) — R be defined such that

(Fuy ) = / u()o()dr Vo € DY)

To say that
—Au+u =4

in the sense of distributions means that

(—AF, + Fuy8) = (39, 9) = 6(0).

Or, using the definition of derivative,
(Fu, —=Ad) + (Fu, ¢) = ¢(0).
Therefore, we just need to show that
(Fu, =A¢) + (Fu,6) = ¢(0) Vo € D(RY).
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We write

(Fu, —Ag) = —/ ulA¢ dx

]RS

= —/ ulA¢dr — / ulA¢ dx
B(0,8) K—-B(0,8)
=A+B
where K = supp(¢). In addition we write

(Fu, @) :/ u¢dx+/ u¢p dx
B(0,5) K~-B(0,6)
=C+D.

We will show that A+ B+ C + D — ¢(0) as 6 — 07, and, thus, the desired result
follows.

First, we look at terms A and C. We see that

— / ulA¢dr + / u¢ dx
B(0,6) B(0,6)

< (186100 +1olwon) [ fulds

B(0,0)
— ||
C/ e—d:x
B(0,5) |z

1
< C/ —dz.
B(0,6) |z

From our answer to 2(a), we know that this integral is equal to
3a(3)

2 _ 2
L0 = 0(5),

A+ C| =

IN

Therefore,
|[A+C|—0 as 6 — 0.

We now need to look at terms B and D. Integrating B by parts, we have
—/ uAgﬁd:L’:/ Vu-V¢dx—/ ua—?dS
K—B(0,5) K—B(0,) 9B(0,5) ov

where 0¢/0v = V¢ - v for v the inner unit normal to B(0,0). Above, we used the fact
that ¢ = 0 on K. We now need to look at the boundary term above. We have

/ .02 ds' <cl|?
8B(0,8) ov
C
<

ov
~ |zl Jopo,s

€_|z|

as

L>=(9B(0,5)) /83(0,6) ||
as

=Cf—0asd—0T.



Therefore, we see that

—/ qude:/ Vu - Vodr+ O(9).
K—B(0,5) K—B(0,5)

Integrating by parts again, we have

—/ uAgbdx:—/ Au¢dx+/ %¢d$+0(5)
K—B(0,5) K—B(0,5) dB(0,5) ov

= B(1) + B(2).
Now B(1)+ D = 0 by direct calculation, or using the result of problem 3. In particular,

we know that —A(e1*l/|z]) + e~#l/|z| = 0 for x # 0. Finally, it remains to look at
B(2). By direct calculation we see that

Vu =

1 Jellg  elzly
dr | |zf? |z[3

Further, we know that the inner unit normal on dB(0,6) is given by

. -
Uv=—°.
|z
Therefore, we see that
ou 1 eIt el
ov  Arm | |= | |2
Therefore, we have two terms to look at. First, we see that
1 / eIl e?
— —qﬁdS‘ =|— odS
A Jops 17| 470 Ja(0,5)
C
< — ds
0 JaB,s)
C o +
:Eé =C)—>0asd—0".

Now for the second term we have

1 e~ 1l e d
+ 6dS — / 6dS
A Jopos) 12]? 4m6% Jop(0,5)

—e° ][ pdS — e °¢(0) = ¢(0) as § — 0T,
2B(0,6)

using the fact that ¢ is continuous. Combining all of the above estimates, we conclude
that
A+B+C+ D — ¢(0) as 0 — 0T,



