Math 220B - Summer 2003 Homework 4 Solutions

1. Let Ω be an open, bounded set in \mathbb{R}^{n}. Let $\phi \in C(\bar{\Omega}), g \in C(\partial \Omega)$, and suppose $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ is a solution of

$$
\text { (1) } \begin{cases}u_{t}(x, t)=k \Delta u(x, t) & (x, t) \in \Omega \times(0, \infty) \\ u(x, t)=g(x) & (x, t) \in \partial \Omega \times[0, \infty) \\ u(x, 0)=\phi(x) & x \in \Omega .\end{cases}
$$

Also suppose that $v \in C^{2}(\bar{\Omega})$ is a solution of

$$
\text { (2) } \begin{cases}\Delta v(x)=0 & x \in \Omega \\ v(x)=g(x) & x \in \partial \Omega .\end{cases}
$$

Prove $u(x, t) \rightarrow v(x)$ in $L^{2}(\Omega)$ as $t \rightarrow \infty$ as follows.
(a) For Ω an open, bounded set in \mathbb{R}^{n}, there exists a constant C (depending only on $\Omega)$ such that for every $f \in C^{1}(\bar{\Omega})$ with $f(x)=0$ for all $x \in \partial \Omega$,

$$
(*) \quad\|f\|_{L^{2}(\Omega)} \leq C\|\nabla f\|_{L^{2}(\Omega)}
$$

Prove this inequality for the case when $\Omega=(a, b) \subset \mathbb{R}$.
Answer: Let

$$
F(x)=\int_{a}^{x} f(y) d y
$$

Then integrating by parts and using the Cauchy-Schwartz inequality, we have

$$
\begin{aligned}
\|f\|_{L^{2}([a, b])}^{2} & =\int_{a}^{b} f^{2}(x) d x \\
& =\left|-\int_{a}^{b} F(x) f^{\prime}(x) d x+F(x) f(x)\right|_{x=a}^{x=b} \mid \\
& \leq \int_{a}^{b}\left|F(x) f^{\prime}(x)\right| d x \\
& \leq\left(\int_{a}^{b}|F(x)|^{2} d x\right)^{1 / 2}\left(\int_{a}^{b}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2} .
\end{aligned}
$$

Now

$$
\begin{aligned}
\left(\int_{a}^{b} F^{2}(x) d x\right)^{1 / 2} & =\left(\int_{a}^{b}\left(\int_{a}^{x} f(y) d y\right)^{2} d x\right)^{1 / 2} \\
& \leq\left(\int_{a}^{b}\left(\int_{a}^{b}|f(y)| d y\right)^{2} d x\right)^{1 / 2} \\
& \leq(b-a)^{1 / 2}\left(\int_{a}^{b}|f(y)| d y\right) \\
& \leq(b-a)^{1 / 2}\left(\int_{a}^{b} 1^{2} d y\right)^{1 / 2}\left(\int_{a}^{b}|f(y)|^{2} d y\right)^{1 / 2} \\
& \leq(b-a)\left(\int_{a}^{b}|f(y)|^{2} d y\right)^{1 / 2}
\end{aligned}
$$

Therefore,

$$
\int_{a}^{b}|f(x)|^{2} d x \leq(b-a)\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2}\left(\int_{a}^{b}\left|f^{\prime}(x)\right|^{2} d x\right)^{1 / 2}
$$

Dividing both sides by $\left(\int_{a}^{b}|f(x)|^{2} d x\right)^{1 / 2}$, we get the desired result.
(b) Using $\left(^{*}\right)$, prove that for u and v solutions of (1) and (2) respectively, $u(x, t) \rightarrow$ $v(x)$ in $L^{2}(\Omega)$ as $t \rightarrow+\infty$. (Hint: Let $w(x, t) \equiv u(x, t)-v(x)$. Consider the PDE that w solves. Show that $\|w(x, t)\|_{L^{2}(\Omega)}^{2} \rightarrow 0$ as $t \rightarrow+\infty$.)
Answer: Let $w(x, t)=u(x, t)-v(x)$. Then we see that w is a solution of

$$
\begin{cases}w_{t}-k \Delta w=0 & (x, t) \in \Omega \times(0, \infty) \\ w(x, 0)=\phi(x)-v(x) & x \in \Omega \\ w(x, t)=0 & x \in \partial \Omega, t>0\end{cases}
$$

We want to show that $\|w(x, t)\|_{L^{2}(\Omega)}^{2} \rightarrow 0$ as $t \rightarrow \infty$. Now

$$
\frac{1}{2}\|w(x, t)\|_{L^{2}(\Omega)}^{2}=\frac{1}{2} \int_{\Omega} w(x, t)^{2} d x
$$

is the Energy function associated with the heat equation. Let

$$
E(t)=\frac{1}{2} \int_{\Omega} w(x, t)^{2} d x .
$$

As we have seen,

$$
\begin{aligned}
E^{\prime}(t) & =\int_{\Omega} w w_{t} d x \\
& =\int_{\Omega} w k \Delta w d x \\
& =-k \int_{\Omega}|\nabla w|^{2} d x+k \int_{\partial \Omega} w \frac{\partial w}{\partial \nu} d S(x) \\
& =-k \int_{\Omega}|\nabla w|^{2} d x
\end{aligned}
$$

But, using part (a), we see that

$$
\begin{aligned}
E^{\prime}(t) & =-k \int_{\Omega}|\nabla w|^{2} d x \\
& \leq-C \int_{\Omega}|w|^{2} d x \\
& =-C E(t)
\end{aligned}
$$

Therefore, we see that

$$
E(t) \leq K e^{-C t}
$$

Therefore, $E(t) \rightarrow 0$ as $t \rightarrow+\infty$. In particular, this means $\|w(x, t)\|_{L^{2}(\Omega)}^{2} \rightarrow 0$ as $t \rightarrow+\infty$, as claimed.
2. Let $B_{n}(0, a)$ be the unit ball in \mathbb{R}^{n} centered at 0 with radius $a>0$.
(a) Let $\alpha>0$. Show that

$$
\int_{B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x<\infty
$$

if and only if $\alpha<n$. In particular, evaluate the integral for $n>\alpha>0$.
Answer: First, consider the case when $\alpha \neq n$. We have

$$
\begin{aligned}
\int_{B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x & =\int_{0}^{a} \int_{\partial B_{n}(0, r)} \frac{1}{|x|^{\alpha}} d S(x) d r \quad=\int_{0}^{a} \int_{\partial B_{n}(0, r)} \frac{1}{r^{\alpha}} d S(x) d r \\
& =\int_{0}^{a} \frac{1}{r^{\alpha}} \int_{\partial B_{n}(0, r)} d S(x) d r \\
& =\int_{0}^{a} \frac{1}{r^{\alpha}} n \alpha(n) r^{n-1} d r \\
& =\int_{0}^{a} n \alpha(n) r^{n-\alpha-1} d r \\
& =\left.\frac{n \alpha(n)}{n-\alpha} r^{n-\alpha}\right|_{r \rightarrow 0} ^{r=a}
\end{aligned}
$$

We see that this limit is finite if and only if $\alpha<n$. In particular, for $0<\alpha<n$, we have

$$
\int_{B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x=\frac{n \alpha(n)}{n-\alpha} a^{n-\alpha}
$$

Lastly, we consider the case when $\alpha=n$. In this case, we see that the integral becomes

$$
\int_{0}^{a} n \alpha(n) r^{n-\alpha-1} d r=\int_{0}^{a} n \alpha(n) r^{-1} d r=\left.n \alpha(n) \ln (r)\right|_{r \rightarrow 0} ^{r=a} \rightarrow+\infty
$$

Therefore, the integral is not finite for $\alpha=n$.
(b) Give conditions on α for which

$$
\int_{\mathbb{R}^{n} \backslash B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x<\infty
$$

Answer: Again, consider $\alpha \neq n$. As in part (a), we write

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash B_{n}(0, a)} \frac{1}{|x|^{\alpha}} d x & =\int_{a}^{\infty} \int_{\partial B_{n}(0, r)} \frac{1}{|x|^{\alpha}} d S(x) d r \\
& =\int_{a}^{\infty} \frac{1}{r^{\alpha}} n \alpha(n) r^{n-1} d r \\
& =\int_{a}^{\infty} n \alpha(n) r^{n-\alpha-1} d r \\
& =\left.\frac{n \alpha(n)}{n-\alpha} r^{n-\alpha}\right|_{r=a} ^{r \rightarrow+\infty}
\end{aligned}
$$

We notice that this integral will only converge if $n-\alpha<0$.
Now if $\alpha=n$, the integral becomes

$$
\int_{a}^{\infty} n \alpha(n) r^{-1} d r=\left.n \alpha(n) \ln r\right|_{r=a} ^{r \rightarrow+\infty} \rightarrow+\infty
$$

Therefore, we conclude that this integral is finite if and only if

$$
\alpha>n .
$$

3. Find all radial solutions of

$$
-\Delta u+u=0 \quad x \in \mathbb{R}^{3} \backslash\{0\}
$$

Answer: Suppose there is a radial solution $u(x)=v(|x|)$. From class, we calculated that if $u(x)=v(|x|)$, then letting $r=|x|$,

$$
\Delta u=\frac{n-1}{r} v^{\prime}(r)+v^{\prime \prime}(r) .
$$

Therefore, in $n=3$ dimensions, we have

$$
\begin{aligned}
-\Delta v+v & =-v^{\prime \prime}-\frac{2}{r} v^{\prime}+v=0 \\
& \Longrightarrow-r v^{\prime \prime}-2 v^{\prime}+r v=0 \\
& \Longrightarrow-(r v)^{\prime \prime}+r v=0
\end{aligned}
$$

Let $w=r v$. Therefore, we see that w satisfies

$$
w^{\prime \prime}-w=0
$$

which implies

$$
w(r)=A e^{r}+B e^{-r} .
$$

Solving for v in terms of w, we have

$$
v(r)=\frac{w}{r}=\frac{A e^{r}+B e^{-r}}{r} .
$$

Therefore, we see that all radial solutions of our equation must be given by

$$
u(x)=v(|x|)=\frac{A e^{|x|}+B e^{-|x|}}{|x|}
$$

4. Prove that

$$
u(x) \equiv \frac{e^{-|x|}}{4 \pi|x|}
$$

satisfies

$$
-\Delta u+u=\delta_{0} \quad x \in \mathbb{R}^{3}
$$

in the sense of distributions.
Answer: Let $F_{u}: \mathcal{D}\left(\mathbb{R}^{3}\right) \rightarrow \mathbb{R}$ be defined such that

$$
\left(F_{u}, \phi\right)=\int_{\mathbb{R}^{3}} u(x) \phi(x) d x \quad \forall \phi \in \mathcal{D}\left(\mathbb{R}^{3}\right)
$$

To say that

$$
-\Delta u+u=\delta_{0}
$$

in the sense of distributions means that

$$
\left(-\Delta F_{u}+F_{u}, \phi\right)=\left(\delta_{0}, \phi\right)=\phi(0)
$$

Or, using the definition of derivative,

$$
\left(F_{u},-\Delta \phi\right)+\left(F_{u}, \phi\right)=\phi(0)
$$

Therefore, we just need to show that

$$
\left(F_{u},-\Delta \phi\right)+\left(F_{u}, \phi\right)=\phi(0) \quad \forall \phi \in \mathcal{D}\left(\mathbb{R}^{3}\right)
$$

We write

$$
\begin{aligned}
\left(F_{u},-\Delta \phi\right) & =-\int_{\mathbb{R}^{3}} u \Delta \phi d x \\
& =-\int_{B(0, \delta)} u \Delta \phi d x-\int_{K-B(0, \delta)} u \Delta \phi d x \\
& \equiv A+B
\end{aligned}
$$

where $K=\operatorname{supp}(\phi)$. In addition we write

$$
\begin{aligned}
\left(F_{u}, \phi\right) & =\int_{B(0, \delta)} u \phi d x+\int_{K-B(0, \delta)} u \phi d x \\
& \equiv C+D
\end{aligned}
$$

We will show that $A+B+C+D \rightarrow \phi(0)$ as $\delta \rightarrow 0^{+}$, and, thus, the desired result follows.

First, we look at terms A and C. We see that

$$
\begin{aligned}
|A+C| & =\left|-\int_{B(0, \delta)} u \Delta \phi d x+\int_{B(0, \delta)} u \phi d x\right| \\
& \leq\left(|\Delta \phi|_{L^{\infty}(B(0, \delta))}+|\phi|_{\left.L^{\infty}(B(0, \delta))\right)}\right) \int_{B(0, \delta)}|u| d x \\
& \leq C \int_{B(0, \delta)} \frac{e^{-|x|}}{|x|} d x \\
& \leq C \int_{B(0, \delta)} \frac{1}{|x|} d x .
\end{aligned}
$$

From our answer to 2(a), we know that this integral is equal to

$$
\frac{3 \alpha(3)}{2} \delta^{2}=O\left(\delta^{2}\right)
$$

Therefore,

$$
|A+C| \rightarrow 0 \quad \text { as } \delta \rightarrow 0^{+}
$$

We now need to look at terms B and D. Integrating B by parts, we have

$$
-\int_{K-B(0, \delta)} u \Delta \phi d x=\int_{K-B(0, \delta)} \nabla u \cdot \nabla \phi d x-\int_{\partial B(0, \delta)} u \frac{\partial \phi}{\partial \tilde{\nu}} d S
$$

where $\partial \phi / \partial \tilde{\nu} \equiv \nabla \phi \cdot \tilde{\nu}$ for $\tilde{\nu}$ the inner unit normal to $B(0, \delta)$. Above, we used the fact that $\phi \equiv 0$ on ∂K. We now need to look at the boundary term above. We have

$$
\begin{aligned}
\left|\int_{\partial B(0, \delta)} u \frac{\partial \phi}{\partial \nu} d S\right| & \leq C\left|\frac{\partial \phi}{\partial \nu}\right|_{L^{\infty}(\partial B(0, \delta))} \int_{\partial B(0, \delta)} \frac{e^{-|x|}}{|x|} d S \\
& \leq \frac{C}{|x|} \int_{\partial B(0, \delta)} d S \\
& =\frac{C}{\delta} \delta^{n-1} \\
& =C \delta \rightarrow 0 \text { as } \delta \rightarrow 0^{+}
\end{aligned}
$$

Therefore, we see that

$$
-\int_{K-B(0, \delta)} u \Delta \phi d x=\int_{K-B(0, \delta)} \nabla u \cdot \nabla \phi d x+O(\delta) .
$$

Integrating by parts again, we have

$$
\begin{aligned}
-\int_{K-B(0, \delta)} u \Delta \phi d x & =-\int_{K-B(0, \delta)} \Delta u \phi d x+\int_{\partial B(0, \delta)} \frac{\partial u}{\partial \tilde{\nu}} \phi d S+O(\delta) \\
& \equiv B(1)+B(2)
\end{aligned}
$$

Now $B(1)+D=0$ by direct calculation, or using the result of problem 3. In particular, we know that $-\Delta\left(e^{-|x|} /|x|\right)+e^{-|x|} /|x|=0$ for $x \neq 0$. Finally, it remains to look at $B(2)$. By direct calculation we see that

$$
\nabla u=-\frac{1}{4 \pi}\left[\frac{e^{-|x|} x}{|x|^{2}}+\frac{e^{-|x|} x}{|x|^{3}}\right] .
$$

Further, we know that the inner unit normal on $\partial B(0, \delta)$ is given by

$$
\tilde{\nu}=\frac{-x}{|x|}
$$

Therefore, we see that

$$
\frac{\partial u}{\partial \tilde{\nu}}=\frac{1}{4 \pi}\left[\frac{e^{-|x|}}{|x|}+\frac{e^{-|x|}}{|x|^{2}}\right] .
$$

Therefore, we have two terms to look at. First, we see that

$$
\begin{aligned}
\left|\frac{1}{4 \pi} \int_{\partial B(0, \delta)} \frac{e^{-|x|}}{|x|} \phi d S\right| & =\left|\frac{e^{-\delta}}{4 \pi \delta} \int_{\partial B(0, \delta)} \phi d S\right| \\
& \leq \frac{C}{\delta} \int_{\partial B(0, \delta)} d S \\
& =\frac{C}{\delta} \delta^{2}=C \delta \rightarrow 0 \text { as } \delta \rightarrow 0^{+} .
\end{aligned}
$$

Now for the second term we have

$$
\begin{aligned}
\frac{1}{4 \pi} \int_{\partial B(0, \delta)} \frac{e^{-|x|}}{|x|^{2}} \phi d S & =\frac{e^{-\delta}}{4 \pi \delta^{2}} \int_{\partial B(0, \delta)} \phi d S \\
& =e^{-\delta} \int_{\partial B(0, \delta)} \phi d S \rightarrow e^{-0} \phi(0)=\phi(0) \text { as } \delta \rightarrow 0^{+}
\end{aligned}
$$

using the fact that ϕ is continuous. Combining all of the above estimates, we conclude that

$$
A+B+C+D \rightarrow \phi(0) \quad \text { as } \delta \rightarrow 0^{+}
$$

