Math 220B - Summer 2003
 Homework 5
 Due Thursday, July 31, 2003

1. Let $\Omega=(0, k) \times(0, l)$. Use separation of variables to solve the following boundary-value problem for Laplace's equation on a square,

$$
\begin{cases}\Delta u=0 & (x, y) \in \Omega \\ u(0, y)=0, u_{x}(k, y)=\phi(y) & 0<y<l \\ u_{y}(x, 0)=0, u(x, l)=0 & 0<x<k\end{cases}
$$

2. Let Ω be an open, bounded subset of \mathbb{R}^{n}. Prove uniqueness of solutions of

$$
\begin{cases}\Delta u=f & x \in \Omega \\ \frac{\partial u}{\partial \nu}+\alpha u=g & x \in \partial \Omega\end{cases}
$$

for $\alpha>0$.
3. Let $\Omega \equiv\left\{(x, y): a^{2}<x^{2}+y^{2}<b^{2}\right\}$ be an annular region in \mathbb{R}^{2}. Consider

$$
\begin{cases}u_{x x}+u_{y y}=0 & (x, y) \in \Omega \\ \frac{d u}{d \nu}+\alpha u=g(\theta) & x^{2}+y^{2}=a^{2} \\ \frac{d u}{d \nu}+\beta u=h(\theta) & x^{2}+y^{2}=b^{2}\end{cases}
$$

where ν is the outer unit normal to Ω.
(a) Solve this boundary-value problem in the case when $\alpha=\beta=1, a=1, b=2$, $h(\theta)=0$ and $g(\theta)$ is an arbitrary function.
(b) From the result from the previous problem, we know the solution to part (a) is unique. Prove that uniqueness may fail if either α or β are negative, by finding two solutions of

$$
\begin{cases}u_{x x}+u_{y y}=0 & (x, y) \in \Omega \\ \frac{d u}{d \nu}+2 u=0 & x^{2}+y^{2}=1 \\ \frac{d u}{d \nu}-u=0 & x^{2}+y^{2}=4\end{cases}
$$

4. (a) Find the one-dimensional Green's function for $\Omega=(0, l)$, That is, find the function $G(x, y)$ such that for each $x \in \Omega$,

$$
\begin{cases}-\Delta_{y} G(x, y)=\delta_{x} & y \in \Omega \\ G(x, y)=0 & y \in \partial \Omega\end{cases}
$$

You may use the fact that the fundamental solution of Laplace's equation in one dimension is $\Phi(x)=-\frac{1}{2}|x|$.
(b) Use the Green's function above to solve the ODE

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)=1 \quad x \in(0,1) \\
u(0)=3 \\
u(1)=2
\end{array}\right.
$$

5. Find the Green's function for Laplace's equation on the half-ball $\Omega \equiv\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+y^{2}+z^{2}<1, z>0\right\}$.
6. Find the Green's function for Laplace's equation in the wedge $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{2}>\right.$ $\left.0, x_{1}>x_{2}\right\}$.
