Math 220B - Summer 2003 Homework 5 Solutions

1. Let $\Omega=(0, k) \times(0, l)$. Use separation of variables to solve the following boundary-value problem for Laplace's equation on a square,

$$
\begin{cases}\Delta u=0 & (x, y) \in \Omega \\ u(0, y)=0, u_{x}(k, y)=\phi(y) & 0<y<l \\ u_{y}(x, 0)=0, u(x, l)=0 & 0<x<k\end{cases}
$$

Answer: Using separation of variables $(u=X Y)$ implies

$$
\frac{Y^{\prime \prime}}{Y}=-\frac{X^{\prime \prime}}{X}=-\lambda
$$

We are led to the eigenvalue problem

$$
\begin{cases}Y^{\prime \prime}=-\lambda Y & 0<y<l \\ Y^{\prime}(0)=0=Y(l) .\end{cases}
$$

First, we look for positive eigenvalues $\lambda=\beta^{2}>0$. In particular, this implies

$$
Y(y)=A \cos (\beta y)+B \sin (\beta y)
$$

The boundary condition

$$
Y^{\prime}(0)=0 \Longrightarrow B=0 .
$$

The boundary condition

$$
Y(l)=0 \Longrightarrow A \cos (\beta l)=0 \Longrightarrow B=\frac{\left(n+\frac{1}{2}\right) \pi}{l} \quad n=0,1,2, \ldots
$$

It is straightforward to check that these are all the eigenvalues.
Next, we need to solve

$$
-X^{\prime \prime}=-\lambda X
$$

Using the fact that $\lambda=\beta^{2}>0$, we see that

$$
X(x)=A \cosh (\beta x)+B \sinh (\beta x)
$$

The boundary condition

$$
X(0)=0 \Longrightarrow A=0
$$

Therefore, $X(x)=B \sinh (\beta x)$. Therefore, we look for coefficients A_{n} such that a function of the form

$$
u(x, y)=\sum_{n=0}^{\infty} A_{n} \sinh \left(\beta_{n} x\right) \cos \left(\beta_{n} y\right)
$$

will satisfy our boundary condition $u_{x}(k, y)=\phi(y)$. In particular, we need

$$
\sum_{n=0}^{\infty} A_{n} \beta_{n} \cosh \left(\beta_{n} x\right) \cos \left(\beta_{n} y\right)=\phi(y)
$$

which implies our coefficients must be given by

$$
A_{n} \beta_{n} \cosh \left(\beta_{n} k\right)=\frac{\langle\cos (\beta y), \phi\rangle}{\langle\cos (\beta y), \cos (\beta y)\rangle}
$$

To summarize, our solution is given by

$$
u(x, y)=\sum_{n=0}^{\infty} A_{n} \sinh \left(\beta_{n} x\right) \cos \left(\beta_{n} y\right)
$$

where

$$
\beta_{n}=\frac{\left(n+\frac{1}{2}\right) \pi}{l}
$$

and

$$
A_{n}=\frac{1}{\beta_{n} \cosh \left(\beta_{n} k\right)} \frac{\langle\cos (\beta y), \phi\rangle}{\langle\cos (\beta y), \cos (\beta y)\rangle} .
$$

2. Let Ω be an open, bounded subset of \mathbb{R}^{n}. Prove uniqueness of solutions of

$$
\begin{cases}\Delta u=f & x \in \Omega \\ \frac{\partial u}{\partial \nu}+\alpha u=g & x \in \partial \Omega\end{cases}
$$

for $\alpha>0$.
Answer: Suppose there are two solutions u and v. Let $w=u-v$. Then w satisfies

$$
\begin{cases}\Delta w=0 & x \in \Omega \\ \frac{\partial w}{\partial \nu}+\alpha w=0 & x \in \partial \Omega\end{cases}
$$

Therefore,

$$
\begin{aligned}
0 & =\int_{\Omega} w \Delta w d x \\
& =-\int_{\Omega}|\nabla w|^{2} d x+\int_{\partial \Omega} w \frac{\partial w}{\partial \nu} d S(x) \\
& =-\int_{\Omega}|\nabla w|^{2} d x-\alpha \int_{\Omega} w^{2} d S(x) .
\end{aligned}
$$

Since $\alpha>0$, the only way this equality can hold is if both terms on the right-hand side are identically zero. In particular, $|\nabla w| \equiv 0$ for $x \in \Omega$ and $w \equiv 0$ for $x \in \partial \Omega$. We conclude that $w \equiv 0$ throughout Ω.
3. Let $\Omega \equiv\left\{(x, y): a^{2}<x^{2}+y^{2}<b^{2}\right\}$ be an annular region in \mathbb{R}^{2}. Consider

$$
\begin{cases}u_{x x}+u_{y y}=0 & (x, y) \in \Omega \\ \frac{d u}{d \nu}+\alpha u=g(\theta) & x^{2}+y^{2}=a^{2} \\ \frac{d u}{d \nu}+\beta u=h(\theta) & x^{2}+y^{2}=b^{2}\end{cases}
$$

where ν is the outer unit normal to Ω.
(a) Solve this boundary-value problem in the case when $\alpha=\beta=1, a=1, b=2$, $f(\theta)=0$ and $g(\theta)$ is an arbitrary function.
Answer: Rewriting the equation in polar coordinates and using separation of variables, we see that

$$
\Theta_{n}(\theta)=A_{n} \cos (n \theta)+B_{n} \sin (n \theta)
$$

and

$$
R_{n}(r)=\left\{\begin{array}{rl}
C_{0}+D_{0} \ln r & n=0 \\
C_{n} r^{n}+D_{n} r^{-n} & n=1,2, \ldots
\end{array}\right.
$$

Now the boundary condition at $r=2$ is $R^{\prime}(2)+R(2)=0$. Therefore, we have

$$
R_{0}^{\prime}(2)+R_{0}(2)=\frac{D_{0}}{2}+C_{0}+D_{0} \ln 2=0 \Longrightarrow C_{0}=-D_{0}\left(\frac{1}{2}+\ln 2\right)
$$

and

$$
\begin{aligned}
R_{n}^{\prime}(2)+R_{n}(2) & =\left(n C_{n} 2^{n-1}-n D_{n} 2^{-n-1}\right)+\left(C_{n} 2^{n}+D_{n} 2^{-n}\right)=0 \\
& \Longrightarrow C_{n}=\frac{D_{n}\left(n 2^{-n-1}-2^{-n}\right)}{n 2^{n-1}+2^{n}} .
\end{aligned}
$$

Let

$$
u(r, \theta)=C_{0}+D_{0} \ln r+\sum_{n=1}^{\infty}\left(C_{n} r^{n}+D_{n} r^{-n}\right)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right)
$$

Using the above relations on C_{n} and D_{n}, we have

$$
\begin{aligned}
u(r, \theta)=- & D_{0}\left(\frac{1}{2}+\ln 2\right)+D_{0} \ln r \\
& +\sum_{n=1}^{\infty}\left(\left(\frac{n 2^{-n-1}-2^{-n}}{n 2^{n-1}+2^{n}}\right) r^{n}+r^{-n}\right)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right) .
\end{aligned}
$$

Now, we want $\partial u / \partial \nu+u=g(\theta)$ at $r=1$. This implies

$$
-u_{r}(1, \theta)+u(1, \theta)=-D_{0}\left(\frac{3}{2}+\ln 2\right)+\sum_{n=1}^{\infty} \gamma(n)\left(A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right)=g(\theta)
$$

where

$$
\gamma(n)=(1-n)\left(\frac{n 2^{-n-1}-2^{-n}}{n 2^{n-1}+2^{n}}\right)+(n+1)
$$

Using the orthogonality of eigenfunctions, we conclude that

$$
\begin{aligned}
& -D_{0}\left(\frac{3}{2}+\ln 2\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(\theta) d \theta \\
& \gamma(n) A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \cos (n \theta) g(\theta) d \theta \\
& \gamma(n) B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \sin (n \theta) g(\theta) d \theta
\end{aligned}
$$

Therefore, we conclude that our solution u is given as defined above with coefficients $D_{n}, C_{n}, A_{n}, B_{n}$ as defined above.
(b) From the result from the previous problem, we know the solution to part (a) is unique. Prove that uniqueness may fail if either α or β are negative, by finding two solutions of

$$
\begin{cases}u_{x x}+u_{y y}=0 & (x, y) \in \Omega \\ \frac{d u}{d \nu}+2 u=0 & x^{2}+y^{2}=1 \\ \frac{d u}{d \nu}-u=0 & x^{2}+y^{2}=4\end{cases}
$$

Answer: Clearly, $u=0$ is a solution. Using the same technique as in the previous problem, our equation for R_{n} is given by

$$
R_{n}=C_{n} r^{n}+D_{n} r^{-n} .
$$

The boundary condition

$$
\begin{aligned}
\frac{\partial u}{\partial \nu}-u=0 \text { at } r=2 & \Longrightarrow R_{n}^{\prime}(2)-R_{n}(2)=0 \\
& \Longrightarrow C_{n}\left(n 2^{n-1}-2^{n}\right)+D_{n}\left(-n 2^{-n-1}-2^{-n}\right)=0 .
\end{aligned}
$$

The boundary condition

$$
\begin{aligned}
\frac{\partial u}{\partial \nu}+2 u=0 \text { at } r=1 & \Longrightarrow-R_{n}^{\prime}(1)+2 R_{n}(1)=0 \\
& \Longrightarrow C_{n}\left(n 2^{n-1}-2^{n}\right)+D_{n}\left(-n 2^{-n-1}-2^{-n}\right)=0
\end{aligned}
$$

These conditions imply that if $n=2$, then C_{n} is arbitrary.
Therefore, we conclude that

$$
u(r, \theta)=r^{2}(A \cos (2 \theta)+B \sin (2 \theta))
$$

is a solution for A, B arbitrary.
4. (a) Find the one-dimensional Green's function for $\Omega=(0, l)$, That is, find the function $G(x, y)$ such that for each $x \in \Omega$,

$$
\begin{cases}-\Delta_{y} G(x, y)=\delta_{x} & y \in \Omega \\ G(x, y)=0 & y \in \partial \Omega\end{cases}
$$

You may use the fact that the fundamental solution of Laplace's equation in one dimension is $\Phi(x)=-\frac{1}{2}|x|$.
Answer: Let

$$
G(x, y)=\Phi(y-x)-h^{x}(y)
$$

where $\Phi(y)$ is the fundamental solution of Laplace's equation in \mathbb{R}; that is,

$$
\Phi(y-x)=-\frac{1}{2}|y-x| .
$$

and $h^{x}(y)$ is a solution of

$$
\begin{array}{ll}
\Delta_{y} h^{x}(y)=0 & y \in(0, l) \\
h^{x}(y)=\Phi(y-x)=-\frac{1}{2}|y-x| & y=0, l
\end{array}
$$

We first solve for $h^{x}(y)$. Fix $x \in(0, l)$.

$$
\Delta_{y} h^{x}(y)=0 \Longrightarrow h^{x}(y)=c_{1} y+c_{2}
$$

for c_{1}, c_{2} arbitrary. The boundary conditions

$$
\begin{aligned}
& h^{x}(0)=-\frac{1}{2}|-x|=-\frac{1}{2} x \\
& h^{x}(l)=-\frac{1}{2}|l-x|=-\frac{1}{2} l+\frac{1}{2} x
\end{aligned}
$$

imply

$$
\begin{aligned}
c_{1} & =-\frac{1}{2}+\frac{1}{l} x \\
c_{2} & =-\frac{1}{2} x .
\end{aligned}
$$

Therefore,

$$
h^{x}(y)=\left[-\frac{1}{2}+\frac{1}{l} x\right] y-\frac{1}{2} x
$$

Therefore,

$$
G(x, y)=-\frac{1}{2}|y-x|+\frac{1}{2} y-\frac{1}{l} x y+\frac{1}{2} x .
$$

We can rewrite this as

$$
G(x, y)= \begin{cases}x-\frac{1}{l} x y & y>x \\ y-\frac{1}{l} x y & y<x\end{cases}
$$

(b) Use the Green's function above to solve the ODE

$$
\left\{\begin{array}{l}
u^{\prime \prime}(x)=1 \quad x \in(0,1) \\
u(0)=3 \\
u(1)=2
\end{array}\right.
$$

Answer: For $l=1$, we see that

$$
G(x, y)= \begin{cases}x-x y & y>x \\ y-x y & y<x\end{cases}
$$

We recall that if u is a solution of

$$
\begin{cases}-\Delta u=f & x \in \Omega \\ u=g & x \in \partial \Omega\end{cases}
$$

then

$$
u(x)=-\int_{\partial \Omega} \frac{\partial G}{\partial \nu}(x, y) g(y) d S(y)+\int_{\Omega} G(x, y) f(y) d y
$$

Here

$$
\begin{aligned}
\frac{\partial G}{\partial \nu}(x, 0) & =-\frac{\partial G}{\partial y}(x, 0)=x-1 \\
\frac{\partial G}{\partial \nu}(x, 1) & =\frac{\partial G}{\partial y}(x, 1)=-x
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
-\int_{\partial \Omega} g(y) \frac{\partial G}{\partial \nu}(x, y) d S(y) & =-\left[3\left[-\frac{\partial G}{\partial y}(x, 0)\right]+2\left[\frac{\partial G}{\partial y}(x, 1)\right]\right] \\
& =-[3[x-1]+2[-x]] \\
& =-x+3
\end{aligned}
$$

Now, using the fact that our inhomogeneous term $f(x)=-1$, we have

$$
\begin{aligned}
\int_{\Omega} f(y) G(x, y) d y & =\int_{x}^{1} f(y) G(x, y) d y+\int_{0}^{x} f(y) G(x, y) d y \\
& =(-1) \int_{x}^{1}[x-x y] d y+(-1) \int_{0}^{x}[y-x y] d y \\
& =\frac{x^{2}}{2}-\frac{x}{2}
\end{aligned}
$$

Therefore, our solution u is given by

$$
u(x)=-x+3+\frac{x^{2}}{2}-\frac{x}{2}
$$

or

$$
u(x)=\frac{x^{2}}{2}-\frac{3 x}{2}+3
$$

5. Find the Green's function for Laplace's equation on the half-ball $\Omega \equiv\left\{(x, y, z) \in \mathbb{R}^{3}\right.$: $\left.x^{2}+y^{2}+z^{2}<1, z>0\right\}$.
Answer: We can find the Green's function by taking the Green's function for the ball and reflecting it across the $x y$-plane. Let $x=\left(x_{1}, x_{2}, x_{3}\right)$. Define $x^{*}=x /|x|^{2}$, $\widetilde{x}=\left(x_{1}, x_{2},-x_{3}\right)$, and $\widetilde{x^{*}}=\widetilde{x} /|x|^{2}$. Then, our Green's function can be written as

$$
G(x, y)=\Phi(y-x)-\Phi\left(|x|\left(y-x^{*}\right)\right)-\Phi(y-\widetilde{x})+\Phi\left(|x|\left(y-\widetilde{x}^{*}\right)\right)
$$

6. Find the Green's function for Laplace's equation in the wedge $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, x_{2}>\right.$ $\left.0, x_{1}>x_{2}\right\}$.
Answer: We will use the method of reflection. Fix $x=\left(x_{1}, x_{2}\right) \in \Omega$. Let $z_{1}=$ $\left(x_{1},-x_{2}\right)$ be the reflection of x about the the x_{1} axis. Let $z_{2}=\left(x_{2}, x_{1}\right)$ be the reflection of x about the line $x_{1}=x_{2}$.
Now, we need to continue in this way until we cancel out the boundary terms. In particular, let $z_{3}=\left(x_{2},-x_{1}\right), z_{4}=\left(-x_{2}, x_{1}\right), z_{5}=\left(-x_{2},-x_{1}\right), z_{6}=\left(-x_{1},-x_{2}\right)$, $z_{7}=\left(-x_{1}, x_{2}\right)$.
Then for $y \in \partial \Omega$ such that $y=\left(y_{1}, 0\right)$, we see that $|y-x|=\left|y-z_{1}\right|,\left|y-z_{2}\right|=\left|y-z_{3}\right|$, $\left|y-z_{4}\right|=\left|y-z_{5}\right|,\left|y-z_{6}\right|=\left|y-z_{7}\right|$.
In addition, for $y=\left(y_{1}, y_{2}\right)$ in the other part of $\partial \Omega$, we see that $|y-x|=\left|y-z_{2}\right|$, $\left|y-z_{1}\right|=\left|y-z_{4}\right|,\left|y-z_{3}\right|=\left|y-z_{7}\right|,\left|y-z_{5}\right|=\left|y-z_{6}\right|$. Therefore, we get

$$
\begin{aligned}
G(x, y)=\Phi & (y-x)-\Phi\left(y-z_{1}\right)-\Phi\left(y-z_{2}\right)+\Phi\left(y-z_{3}\right) \\
& +\Phi\left(y-z_{4}\right)-\Phi\left(y-z_{5}\right)+\Phi\left(y-z_{6}\right)-\Phi\left(y-z_{7}\right) .
\end{aligned}
$$

