
Math 220B - Summer 2003
Homework 6 Solutions

1. Consider the Neumann problem,

{ −∆u = f x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω

Assume the compatibility condition holds. That is,

−
∫

Ω

f(x) dx =

∫

∂Ω

g(x) dS(x).

Just as the Green’s function allowed us to find a representation formula for solutions
to Poisson’s equation on a bounded domain Ω, here we construct a Neumann function
to derive a representation formula for the Neumann problem. Let N(x, y) be defined
as follows. Let

N(x, y) = Φ(y − x)− h̃x(y) ∀y ∈ Ω

where h̃x(y) is a solution of

{
∆yh̃

x(y) = 0 ∀y ∈ Ω
∂ehx

∂ν
(y) = ∂Φ

∂ν
(y − x)− C ∀y ∈ ∂Ω

for some appropriately chosen constant C. (In part (b), you will determine the neces-
sary constant for a given region Ω. For now, you may assume C is arbitrary.)

(a) Use N(x, y) to write a solution formula for

{ −∆u = f x ∈ Ω
∂u
∂ν

= g x ∈ ∂Ω

in terms of f, g, and N . (Note: As we know, Poisson’s equation with Neumann
boundary conditions is only unique up to constants. Therefore, adding any con-
stant to your solution formula will also give you a solution.)

Answer: From our work in class, we know that for any u ∈ C2(Ω), u has the
following representation,

u(x) = −
∫

Ω

∆uΦ(x− y) dy +

∫

∂Ω

∂u

∂ν
Φ(x− y) dS(y)−

∫

∂Ω

u
∂Φ

∂ν
(x− y) dS(y).

If h̃x is any smooth function on Ω, we know from lecture that

∫

Ω

∆yh̃
x(y)u(y) dy =

∫

Ω

∆uh̃x(y) dy −
∫

∂Ω

∂u

∂ν
h̃x dS(y) +

∫

∂Ω

u
∂h̃x

∂ν
dS(y).
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Now assuming that h̃x is a solution of the boundary-value problem for each x ∈ Ω,
we see that

0 =

∫

Ω

∆uh̃x dy −
∫

∂Ω

∂u

∂ν
h̃x dS(y) +

∫

∂Ω

u

[
∂Φ

∂ν
(x− y)− C

]
dS(y).

Adding this equation to the first equation above, we have

u(x) = −
∫

Ω

∆u[Φ(x−y)−h̃x(y)] dy+

∫

∂Ω

∂u

∂ν
[Φ(x−y)−h̃x(y)] dS(y)−C

∫

∂Ω

u dS(y).

By definition of the Neumann function N(x, y), we have

u(x) = −
∫

Ω

∆uN(x, y) dy +

∫

∂Ω

∂u

∂ν
N(x, y) dS(y)− C

∫

∂Ω

dS(y).

Therefore, if u is a solution of Poisson’s equation on a bounded domain Ω with
Neumann boundary conditions, then u may be written as

u(x) =

∫

Ω

N(x, y)f(y) dy +

∫

∂Ω

g(y)N(x, y) dS(y)− C

∫

∂Ω

u dS(y).

(b) In the definition of h̃x, what must the constant C be? Explain.

Answer: Using the above representation formula, let u ≡ 1 on the closed,
bounded domain Ω. Therefore, ∆u = 0, ∂u/∂ν = 0 and u = 1 on the boundary.
Therefore, by the above representation formula, we have

u(x) = −C

∫

∂Ω

dS(y).

Therefore,

C = − 1∫
∂Ω

dS(y)
.

2. (a) Find the Neumann function for Rn
+.

Answer: In the case of Ω = Rn
+, C = 0. Therefore, to find the Neumann

function N(x, y), we need to find a corrector function h̃x(y) for each x ∈ Rn
+ such

that {
∆yh̃

x(y) = 0 ∀y ∈ Rn
+

∂ehx

∂ν
(y) = ∂Φ

∂ν
(y − x) ∀y ∈ ∂Rn

+.

Now on ∂Rn
+, ∂Φ

∂ν
(y − x) = − ∂Φ

∂yn
(y − x). As we know,

∂Φ

∂yn

(y − x) =
xn − yn

nα(n)|y − x|n .

For y ∈ ∂Rn, yn = 0. Therefore,

− ∂Φ

∂yn

(y − x) =
−xn

nα(n)|y − x|n .
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We know that Φ(y − x∗) is harmonic in y in Rn
+ as long as x∗ /∈ Rn

+. So, we

would like to choose our corrector function h̃x(y) = Φ(y− x∗) for some x∗. Using
the ideas for the Green’s function, we let x∗ = (x1, . . . , xn−1,−xn) (the reflection

point of x). In order to satisfy our boundary condition, we need to define h̃x(y)
as follows. Let

h̃x(y) = −Φ(y − x∗).

Therefore, h̃x is harmonic in y for all y ∈ Rn
+, and ∂hx

∂ν
= xn

nα(n)|y−x∗|n . Therefore, h̃x

defined above is the corrector function, and consequently, the Neumann function

N(x, y) = Φ(y − x) + Φ(y − x∗).

(b) Use the Neumann function for Rn
+ to find the solution formula for

{
∆u = 0 x ∈ Rn

+
∂u
∂ν

= g x ∈ ∂Rn
+.

Answer: Using the representation formula from the previous problem, we see
that u is given by

u(x) =

∫

∂Rn
+

g(y)[Φ(y − x) + Φ(y − x∗)] dS(y).

3. Let Ω be an open, bounded subset of Rn with C2 boundary. Let h be a continuous
function on ∂Ω. Let Φ be the fundamental solution of Laplace’s equation on Rn. Define
the single-layer potential with moment h as

u(x) = −
∫

∂Ω

h(y)Φ(y − x) dS(y).

(a) Show that u is defined and continuous for all x ∈ Rn.

Answer: First, for x /∈ ∂Ω, Φ(x − y) is smooth, and, ∂Ω is a closed, bounded
set. Therefore, u(x) is clearly defined.

Now, we consider x ∈ ∂Ω.

Consider the case n = 2.

|u(x)| =
∣∣∣∣

1

2π

∫

∂Ω

h(y) ln |x− y| dS(y)

∣∣∣∣

≤ C|h(y)|L∞
∣∣∣∣
∫

∂Ω

ln |x− y| dS(y)

∣∣∣∣ .

Now away from the singularity, clearly that part of the integral is finite. Therefore,
we just need to show that

(∗)
∫

B(x,δ)∩∂Ω

ln |x− y| dS(y)
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is finite. Without loss of generality, we may assume x = 0. In addition, using
the fact that ∂Ω is C2, we have a function f : R → R such that B(x, δ) ∩ ∂Ω =
{(x1, f(x1))} (assuming δ is sufficiently small). Therefore, (*) can be written as

∫ δ

−δ

ln |(y1, f(y1))|
√

1 + |f ′(y1)|2 dy1.

But f is a C2 function implies f ′ is a C1 function, which implies f ′(y1) = f ′(0) +
f ′′(C)y1. Therefore,

√
1 + |f ′(y1)|2 ≤

√
1 + |y1|2. Consequently, we have

∫ δ

−δ

ln |(y1, f(y1))|
√

1 + |f ′(y1)|2 dy1 ≤
∫ δ

−δ

ln |(y1, f(y1))|
√

1 + |y1|2 dy1

≤ C

∫ δ

−δ

|(y1, f(y1))|−ε
√

1 + |y1|2 dy1,

for any ε > 0. But,

C

∫ δ

−δ

|(y1, f(y1))|−ε
√

1 + |y1|2 dy1 ≤ C

∫ δ

−δ

|y1|−ε
√

1 + |y1|2 dy1

≤ C

∫ δ

−δ

|y1|−ε dy1 ≤ C,

as long as ε < 1.

Therefore, u(x) is defined for all x ∈ Ω ⊂ R2.

Next, we look at n ≥ 3. Then

|u(x)| =
∣∣∣∣

1

n(n− 2)α(n)

∫

∂Ω

h(y)

|x− y|n−2
dS(y)

∣∣∣∣

≤ C|h(y)|L∞(Ω)

∫

∂Ω

1

|x− y|n−2
dS(y),

using the fact that ∂Ω is an n− 1-dimensional surface in Rn.

It remains only to show that u(x) is continuous. Clearly, for x ∈ Ω or x ∈ Rn\Ω,
u(x) is continuous, because Φ(x − y) is smooth. Therefore, we only need to
consider the case when x ∈ ∂Ω.

Consider x0 ∈ ∂Ω. We need to show that for all ε > 0 there exists a δ > 0 such
that |u(x)− u(x0)| < ε for |x− x0| < δ. Let B(x0, γ) be a ball of radius γ about
x0. Let Bγ ≡ ∂Ω ∩B(x0, γ). Let A ≡ ∂Ω\{∂Ω ∩B(x0, γ)}. Write

u(x)− u(x0) = −
∫

∂Ω

h(y)[Φ(x− y)− Φ(x0 − y)] dS(y)

= −
∫

Bγ

h(y)[Φ(x− y)− Φ(x0 − y)] dS(y)

−
∫

A

h(y)[Φ(x− y)− Φ(x0 − y)] dS(y).
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As shown above, u(x) is defined for all x ∈ Rn. Therefore, the first term is defined.
We claim that it can be made arbitrarily small by choosing γ arbitrarily small.
In particular,∣∣∣∣∣

∫

Bγ

h(y)[Φ(x− y)− Φ(x0 − y)] dS(y)

∣∣∣∣∣ ≤
∫

Bγ

h(y)Φ(x− y) dS(y)

+

∫

Bγ

h(y)Φ(x0 − y) dS(y).

Now for x /∈ ∂Ω, Φ(x− y) is bounded, and, therefore we have∫

Bγ

h(y)Φ(x− y) dS(y) ≤ C

∫

Bγ

dS(y) ≤ ε

by choosing γ sufficiently small. Now for x ∈ ∂Ω, we use the fact that ∂Ω is C2,
and, therefore, can be written as a C2 function locally. Without loss of generality,
we may assume x = 0. There exists a function f : Rn−1 → R and some r > 0
such that ∂Ω ∩ B(0, r) ≡ {y = (y1, . . . , yn−1, f(y1, . . . , yn−1))}. Therefore, letting
ỹ = (y1, . . . , yn−1), we have∣∣∣∣∣

∫

Bγ

h(y)Φ(x− y) dS(y)

∣∣∣∣∣ ≤ |h(y)|L∞(Bγ)

∫

Bγ

|Φ(y)| dS(y)

≤ C

∫
eB(0,γ)

|Φ((ỹ, f(ỹ)))|
√

1 + |∇f(ỹ)|2 dỹ,

where B̃(0, γ) is the ball of radius γ in Rn−1. Using the fact that f is a C2

function, we have |∇f | ≤ C. But,∫
eB(0,γ)

|Φ((ỹ, f(ỹ)))| dỹ = O(γ)

can be made arbitrarily small by choosing γ sufficiently small. I.e. in dimensions
n ≥ 3, we have∫

eB(0,γ)

|Φ((ỹ, f(ỹ)))| dỹ = C

∫ γ

0

∫

∂ eB(0,r)

1

|(ỹ, f(ỹ))|n−2
dS(ỹ) dr

= C

∫ γ

0

∫

∂ eB(0,r)

1

(r2 + f(ỹ)2)(n−2)/2
dS(ỹ) dr

≤ C

∫ γ

0

dr = Cγ.

Then for γ chosen appropriately small, we can make the second term small by
choosing δ ≤ γ appropriately small and using the fact that Φ(x− y)− Φ(x0 − y)
is uniformly continuous in y. We have∣∣∣∣

∫

A

h(y)[Φ(x− y)− Φ(x0 − y)] dS(y)

∣∣∣∣ ≤ C|Φ(x− y)− Φ(x0 − y)|L∞(A)

≤ ε

2

for |x− x0| ≤ δ ≤ γ where δ is chosen appropriately small.
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(b) Show that ∆u(x) = 0 for x /∈ ∂Ω.

Answer: Φ(x− y) is smooth for x 6= y, and as discussed above, u(x) is defined
for all x ∈ Rn. Therefore, for x /∈ ∂Ω,

∆xu(x) = −∆x

∫

∂Ω

h(y)Φ(x− y) dS(y)

= −
∫

∂Ω

h(y)∆xΦ(x− y) dS(y) = 0.

4. Let Ω be an open, bounded set in Rn with smooth boundary. Let Ωc ≡ Rn\Ω. Consider
the exterior Neumann problem,

(∗)
{

∆u = 0 x ∈ Ωc

∂u
∂ν

= g x ∈ ∂Ωc.

Assume g satisfies the condition,
∫

∂Ω

g(x) dS(x) = 0. (∗∗)

(Note: Recall: This is not a necessary condition for solvability of the exterior Neumann
problem.) Suppose a solution u of (*) is given by the single-layer potential,

u(x) ≡ −
∫

∂Ω

h(y)Φ(x− y) dS(y)

where h satisfies the integral equation

g(x) =
1

2
h(x)−

∫

∂Ω

h(y)
∂Φ(x− y)

∂νx

dS(y).

(a) Show that if g satisfies the condition (**), then
∫

∂Ω

h(y) dS(y) = 0.

Answer: We integrate the integral equation for h with over ∂Ω. In particular,
we get

0 =

∫

∂Ω

g(x) dS(x)

=
1

2

∫

∂Ω

h(x) dS(x)−
∫

∂Ω

∫

∂Ω

h(y)
∂Φ(x− y)

∂νx

dS(y) dS(x)

=
1

2

∫

∂Ω

h(x) dS(x) +

∫

∂Ω

h(y)

[
−

∫

∂Ω

∂Φ(x− y)

∂νx

dS(x)

]
dS(y)

=
1

2

∫

∂Ω

h(x) dS(x) +

∫

∂Ω

h(y)
1

2
dS(y)

=

∫

∂Ω

h(x) dS(x),
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where we have used Gauss’ Lemma which states that for y ∈ ∂Ω,

−
∫

∂Ω

∂Φ(x− y)

∂νx

dS(x) =
1

2
.

(b) Show that the solution u will have decay rate O(|x|1−n) In particular, show
|u(x)| ≤ C|x|1−n. Hint: By (a), write u(x) = − ∫

∂Ω
h(y)[Φ(x− y)− Φ(x)] dS(y).

Answer: If g(x) satisfies the extra condition (*) above, then from (a), we know
∫

∂Ω

h(y) dS(y) = 0,

and, therefore, we can write

u(x) =

∫

∂Ω

h(y)Φ(x− y) dS(y) =

∫

∂Ω

h(y)[Φ(x− y)− Φ(x)] dS(y).

By the mean value theorem, there exists a point x∗ on the line segment between
x− y and x such that

Φ(x− y)− Φ(x) = ∇Φ(x∗) · (−y).

By calculating ∇Φ(x), we see that

∇Φ(x∗) =
C

|x∗|n−1
= O(|x|1−n),

using the fact that x∗ is between x− y and x. Therefore,

|u(x)| ≤
∫

∂Ω

|h(y)||Φ(x− y)− Φ(x)| dS(y)

≤ |h(y)|L∞
∫

∂Ω

|∇Φ(x∗)||y| dS(y)

≤ C|x|1−n.

This gives us a decay rate O(|x|1−n).

5. Let Ω be an open, bounded subset of Rn. Let Ωc ≡ Rn\Ω. Prove there exists at most
one solution u which decays to 0 as |x| → +∞ of the following

{
∆u = f x ∈ Ωc

u = g x ∈ ∂Ω.

Answer: Suppose there exist two solutions u and v. Define the set Ωc
R ≡ Ωc∩B(0, R).

Let w = u − v. Now using the fact that |u|, |v| → 0 as |x| → +∞, we see that for all
ε > 0 there exists an R > 0 such that |w(x)| < ε if |x| > R. Let ε > 0 Fix R such that
|w(x)| < ε if |x| ≥ R. Then w is a solution of





∆w = 0 x ∈ Ωc
R

w = 0 x ∈ ∂Ω
|w| < ε x ∈ ∂B(0, R).
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Therefore, by the maximum principle for harmonic functions,

max
Ω

c
R

w = max
∂Ωc

R

w < ε.

Similarly, defining w̃ = v − u, we conclude that

max
Ω

c
R

w̃ < ε.

Therefore, we conclude that |u− v| < ε on Ω
c

R. Since this is true for all ε by choosing
R sufficiently large, we conclude that u = v.
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