Math 220B - Summer 2003
 Homework 6 Solutions

1. Consider the Neumann problem,

$$
\begin{cases}-\Delta u=f & x \in \Omega \\ \frac{\partial u}{\partial \nu}=g & x \in \partial \Omega\end{cases}
$$

Assume the compatibility condition holds. That is,

$$
-\int_{\Omega} f(x) d x=\int_{\partial \Omega} g(x) d S(x)
$$

Just as the Green's function allowed us to find a representation formula for solutions to Poisson's equation on a bounded domain Ω, here we construct a Neumann function to derive a representation formula for the Neumann problem. Let $N(x, y)$ be defined as follows. Let

$$
N(x, y)=\Phi(y-x)-\widetilde{h}^{x}(y) \quad \forall y \in \bar{\Omega}
$$

where $\widetilde{h}^{x}(y)$ is a solution of

$$
\begin{cases}\Delta_{y} \widetilde{h}^{x}(y)=0 & \forall y \in \Omega \\ \frac{\partial \breve{h}^{x}}{\partial \nu}(y)=\frac{\partial \Phi}{\partial \nu}(y-x)-C & \forall y \in \partial \Omega\end{cases}
$$

for some appropriately chosen constant C. (In part (b), you will determine the necessary constant for a given region Ω. For now, you may assume C is arbitrary.)
(a) Use $N(x, y)$ to write a solution formula for

$$
\begin{cases}-\Delta u=f & x \in \Omega \\ \frac{\partial u}{\partial \nu}=g & x \in \partial \Omega\end{cases}
$$

in terms of f, g, and N. (Note: As we know, Poisson's equation with Neumann boundary conditions is only unique up to constants. Therefore, adding any constant to your solution formula will also give you a solution.)
Answer: From our work in class, we know that for any $u \in C^{2}(\Omega), u$ has the following representation,

$$
u(x)=-\int_{\Omega} \Delta u \Phi(x-y) d y+\int_{\partial \Omega} \frac{\partial u}{\partial \nu} \Phi(x-y) d S(y)-\int_{\partial \Omega} u \frac{\partial \Phi}{\partial \nu}(x-y) d S(y)
$$

If \widetilde{h}^{x} is any smooth function on Ω, we know from lecture that

$$
\int_{\Omega} \Delta_{y} \widetilde{h}^{x}(y) u(y) d y=\int_{\Omega} \Delta u \widetilde{h}^{x}(y) d y-\int_{\partial \Omega} \frac{\partial u}{\partial \nu} \widetilde{h}^{x} d S(y)+\int_{\partial \Omega} u \frac{\partial \widetilde{h}^{x}}{\partial \nu} d S(y)
$$

Now assuming that \widetilde{h}^{x} is a solution of the boundary-value problem for each $x \in \Omega$, we see that

$$
0=\int_{\Omega} \Delta u \widetilde{h}^{x} d y-\int_{\partial \Omega} \frac{\partial u}{\partial \nu} \widetilde{h}^{x} d S(y)+\int_{\partial \Omega} u\left[\frac{\partial \Phi}{\partial \nu}(x-y)-C\right] d S(y) .
$$

Adding this equation to the first equation above, we have
$u(x)=-\int_{\Omega} \Delta u\left[\Phi(x-y)-\widetilde{h}^{x}(y)\right] d y+\int_{\partial \Omega} \frac{\partial u}{\partial \nu}\left[\Phi(x-y)-\widetilde{h}^{x}(y)\right] d S(y)-C \int_{\partial \Omega} u d S(y)$.
By definition of the Neumann function $N(x, y)$, we have

$$
u(x)=-\int_{\Omega} \Delta u N(x, y) d y+\int_{\partial \Omega} \frac{\partial u}{\partial \nu} N(x, y) d S(y)-C \int_{\partial \Omega} d S(y)
$$

Therefore, if u is a solution of Poisson's equation on a bounded domain Ω with Neumann boundary conditions, then u may be written as

$$
u(x)=\int_{\Omega} N(x, y) f(y) d y+\int_{\partial \Omega} g(y) N(x, y) d S(y)-C \int_{\partial \Omega} u d S(y)
$$

(b) In the definition of \widetilde{h}^{x}, what must the constant C be? Explain.

Answer: Using the above representation formula, let $u \equiv 1$ on the closed, bounded domain $\bar{\Omega}$. Therefore, $\Delta u=0, \partial u / \partial \nu=0$ and $u=1$ on the boundary. Therefore, by the above representation formula, we have

$$
u(x)=-C \int_{\partial \Omega} d S(y)
$$

Therefore,

$$
C=-\frac{1}{\int_{\partial \Omega} d S(y)}
$$

2. (a) Find the Neumann function for \mathbb{R}_{+}^{n}.

Answer: In the case of $\Omega=\mathbb{R}_{+}^{n}, C=0$. Therefore, to find the Neumann function $N(x, y)$, we need to find a corrector function $\widetilde{h}^{x}(y)$ for each $x \in \mathbb{R}_{+}^{n}$ such that

$$
\begin{cases}\Delta_{y} \widetilde{h}^{x}(y)=0 & \forall y \in \mathbb{R}_{+}^{n} \\ \frac{\partial \widetilde{h}^{x}}{\partial \nu}(y)=\frac{\partial \Phi}{\partial \nu}(y-x) & \forall y \in \partial \mathbb{R}_{+}^{n}\end{cases}
$$

Now on $\partial \mathbb{R}_{+}^{n}, \frac{\partial \Phi}{\partial \nu}(y-x)=-\frac{\partial \Phi}{\partial y_{n}}(y-x)$. As we know,

$$
\frac{\partial \Phi}{\partial y_{n}}(y-x)=\frac{x_{n}-y_{n}}{n \alpha(n)|y-x|^{n}}
$$

For $y \in \partial \mathbb{R}^{n}, y_{n}=0$. Therefore,

$$
-\frac{\partial \Phi}{\partial y_{n}}(y-x)=\frac{-x_{n}}{n \alpha(n)|y-x|^{n}} .
$$

We know that $\Phi\left(y-x^{*}\right)$ is harmonic in y in \mathbb{R}_{+}^{n} as long as $x^{*} \notin \mathbb{R}_{+}^{n}$. So, we would like to choose our corrector function $\widetilde{h}^{x}(y)=\Phi\left(y-x^{*}\right)$ for some x^{*}. Using the ideas for the Green's function, we let $x^{*}=\left(x_{1}, \ldots, x_{n-1},-x_{n}\right)$ (the reflection point of x). In order to satisfy our boundary condition, we need to define $\widetilde{h}^{x}(y)$ as follows. Let

$$
\widetilde{h}^{x}(y)=-\Phi\left(y-x^{*}\right) .
$$

Therefore, \widetilde{h}^{x} is harmonic in y for all $y \in \mathbb{R}_{+}^{n}$, and $\frac{\partial h^{x}}{\partial \nu}=\frac{x_{n}}{n \alpha(n)\left|y-x^{*}\right|^{n}}$. Therefore, \widetilde{h}^{x} defined above is the corrector function, and consequently, the Neumann function

$$
N(x, y)=\Phi(y-x)+\Phi\left(y-x^{*}\right)
$$

(b) Use the Neumann function for \mathbb{R}_{+}^{n} to find the solution formula for

$$
\begin{cases}\Delta u=0 & x \in \mathbb{R}_{+}^{n} \\ \frac{\partial u}{\partial \nu}=g & x \in \partial \mathbb{R}_{+}^{n}\end{cases}
$$

Answer: Using the representation formula from the previous problem, we see that u is given by

$$
u(x)=\int_{\partial \mathbb{R}_{+}^{n}} g(y)\left[\Phi(y-x)+\Phi\left(y-x^{*}\right)\right] d S(y)
$$

3. Let Ω be an open, bounded subset of \mathbb{R}^{n} with C^{2} boundary. Let h be a continuous function on $\partial \Omega$. Let Φ be the fundamental solution of Laplace's equation on \mathbb{R}^{n}. Define the single-layer potential with moment h as

$$
\bar{u}(x)=-\int_{\partial \Omega} h(y) \Phi(y-x) d S(y) .
$$

(a) Show that \bar{u} is defined and continuous for all $x \in \mathbb{R}^{n}$.

Answer: First, for $x \notin \partial \Omega, \Phi(x-y)$ is smooth, and, $\partial \Omega$ is a closed, bounded set. Therefore, $\bar{u}(x)$ is clearly defined.
Now, we consider $x \in \partial \Omega$.
Consider the case $n=2$.

$$
\begin{aligned}
|\bar{u}(x)| & =\left|\frac{1}{2 \pi} \int_{\partial \Omega} h(y) \ln \right| x-y|d S(y)| \\
& \leq C|h(y)|_{L^{\infty}}\left|\int_{\partial \Omega} \ln \right| x-y|d S(y)|
\end{aligned}
$$

Now away from the singularity, clearly that part of the integral is finite. Therefore, we just need to show that

$$
(*) \quad \int_{B(x, \delta) \cap \partial \Omega} \ln |x-y| d S(y)
$$

is finite. Without loss of generality, we may assume $x=0$. In addition, using the fact that $\partial \Omega$ is C^{2}, we have a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $B(x, \delta) \cap \partial \Omega=$ $\left\{\left(x_{1}, f\left(x_{1}\right)\right)\right\}$ (assuming δ is sufficiently small). Therefore, $\left(^{*}\right)$ can be written as

$$
\int_{-\delta}^{\delta} \ln \left|\left(y_{1}, f\left(y_{1}\right)\right)\right| \sqrt{1+\left|f^{\prime}\left(y_{1}\right)\right|^{2}} d y_{1}
$$

But f is a C^{2} function implies f^{\prime} is a C^{1} function, which implies $f^{\prime}\left(y_{1}\right)=f^{\prime}(0)+$ $f^{\prime \prime}(C) y_{1}$. Therefore, $\sqrt{1+\left|f^{\prime}\left(y_{1}\right)\right|^{2}} \leq \sqrt{1+\left|y_{1}\right|^{2}}$. Consequently, we have

$$
\begin{aligned}
\int_{-\delta}^{\delta} \ln \left|\left(y_{1}, f\left(y_{1}\right)\right)\right| \sqrt{1+\left|f^{\prime}\left(y_{1}\right)\right|^{2}} d y_{1} & \leq \int_{-\delta}^{\delta} \ln \left|\left(y_{1}, f\left(y_{1}\right)\right)\right| \sqrt{1+\left|y_{1}\right|^{2}} d y_{1} \\
& \leq C \int_{-\delta}^{\delta}\left|\left(y_{1}, f\left(y_{1}\right)\right)\right|^{-\epsilon} \sqrt{1+\left|y_{1}\right|^{2}} d y_{1}
\end{aligned}
$$

for any $\epsilon>0$. But,

$$
\begin{aligned}
C \int_{-\delta}^{\delta}\left|\left(y_{1}, f\left(y_{1}\right)\right)\right|^{-\epsilon} \sqrt{1+\left|y_{1}\right|^{2}} d y_{1} & \leq C \int_{-\delta}^{\delta}\left|y_{1}\right|^{-\epsilon} \sqrt{1+\left|y_{1}\right|^{2}} d y_{1} \\
& \leq C \int_{-\delta}^{\delta}\left|y_{1}\right|^{-\epsilon} d y_{1} \leq C
\end{aligned}
$$

as long as $\epsilon<1$.
Therefore, $\bar{u}(x)$ is defined for all $x \in \Omega \subset \mathbb{R}^{2}$.
Next, we look at $n \geq 3$. Then

$$
\begin{aligned}
|\bar{u}(x)| & =\left|\frac{1}{n(n-2) \alpha(n)} \int_{\partial \Omega} \frac{h(y)}{|x-y|^{n-2}} d S(y)\right| \\
& \leq C|h(y)|_{L^{\infty}(\Omega)} \int_{\partial \Omega} \frac{1}{|x-y|^{n-2}} d S(y),
\end{aligned}
$$

using the fact that $\partial \Omega$ is an n-1-dimensional surface in \mathbb{R}^{n}.
It remains only to show that $\bar{u}(x)$ is continuous. Clearly, for $x \in \Omega$ or $x \in \mathbb{R}^{n} \backslash \bar{\Omega}$, $\bar{u}(x)$ is continuous, because $\Phi(x-y)$ is smooth. Therefore, we only need to consider the case when $x \in \partial \Omega$.
Consider $x_{0} \in \partial \Omega$. We need to show that for all $\epsilon>0$ there exists a $\delta>0$ such that $\left|u(x)-u\left(x_{0}\right)\right|<\epsilon$ for $\left|x-x_{0}\right|<\delta$. Let $B\left(x_{0}, \gamma\right)$ be a ball of radius γ about x_{0}. Let $B_{\gamma} \equiv \partial \Omega \cap B\left(x_{0}, \gamma\right)$. Let $A \equiv \partial \Omega \backslash\left\{\partial \Omega \cap B\left(x_{0}, \gamma\right)\right\}$. Write

$$
\begin{aligned}
\bar{u}(x)-\bar{u}\left(x_{0}\right)= & -\int_{\partial \Omega} h(y)\left[\Phi(x-y)-\Phi\left(x_{0}-y\right)\right] d S(y) \\
=- & -\int_{B_{\gamma}} h(y)\left[\Phi(x-y)-\Phi\left(x_{0}-y\right)\right] d S(y) \\
& -\int_{A} h(y)\left[\Phi(x-y)-\Phi\left(x_{0}-y\right)\right] d S(y) .
\end{aligned}
$$

As shown above, $\bar{u}(x)$ is defined for all $x \in \mathbb{R}^{n}$. Therefore, the first term is defined. We claim that it can be made arbitrarily small by choosing γ arbitrarily small. In particular,

$$
\begin{aligned}
\left|\int_{B_{\gamma}} h(y)\left[\Phi(x-y)-\Phi\left(x_{0}-y\right)\right] d S(y)\right| \leq & \int_{B_{\gamma}} h(y) \Phi(x-y) d S(y) \\
& +\int_{B_{\gamma}} h(y) \Phi\left(x_{0}-y\right) d S(y) .
\end{aligned}
$$

Now for $x \notin \partial \Omega, \Phi(x-y)$ is bounded, and, therefore we have

$$
\int_{B_{\gamma}} h(y) \Phi(x-y) d S(y) \leq C \int_{B_{\gamma}} d S(y) \leq \epsilon
$$

by choosing γ sufficiently small. Now for $x \in \partial \Omega$, we use the fact that $\partial \Omega$ is C^{2}, and, therefore, can be written as a C^{2} function locally. Without loss of generality, we may assume $x=0$. There exists a function $f: \mathbb{R}^{n-1} \rightarrow \mathbb{R}$ and some $r>0$ such that $\partial \Omega \cap B(0, r) \equiv\left\{y=\left(y_{1}, \ldots, y_{n-1}, f\left(y_{1}, \ldots, y_{n-1}\right)\right)\right\}$. Therefore, letting $\widetilde{y}=\left(y_{1}, \ldots, y_{n-1}\right)$, we have

$$
\begin{aligned}
\left|\int_{B_{\gamma}} h(y) \Phi(x-y) d S(y)\right| & \leq|h(y)|_{L^{\infty}\left(B_{\gamma}\right)} \int_{B_{\gamma}}|\Phi(y)| d S(y) \\
& \leq C \int_{\widetilde{B}(0, \gamma)}|\Phi((\widetilde{y}, f(\widetilde{y})))| \sqrt{1+|\nabla f(\widetilde{y})|^{2}} d \widetilde{y}
\end{aligned}
$$

where $\widetilde{B}(0, \gamma)$ is the ball of radius γ in \mathbb{R}^{n-1}. Using the fact that f is a C^{2} function, we have $|\nabla f| \leq C$. But,

$$
\int_{\widetilde{B}(0, \gamma)}|\Phi((\widetilde{y}, f(\widetilde{y})))| d \widetilde{y}=O(\gamma)
$$

can be made arbitrarily small by choosing γ sufficiently small. I.e. in dimensions $n \geq 3$, we have

$$
\begin{aligned}
\int_{\tilde{B}(0, \gamma)}|\Phi((\widetilde{y}, f(\widetilde{y})))| d \widetilde{y} & =C \int_{0}^{\gamma} \int_{\partial \widetilde{B}(0, r)} \frac{1}{|(\widetilde{y}, f(\widetilde{y}))|^{n-2}} d S(\widetilde{y}) d r \\
& =C \int_{0}^{\gamma} \int_{\partial \widetilde{B}(0, r)} \frac{1}{\left(r^{2}+f(\widetilde{y})^{2}\right)^{(n-2) / 2}} d S(\widetilde{y}) d r \\
& \leq C \int_{0}^{\gamma} d r=C \gamma .
\end{aligned}
$$

Then for γ chosen appropriately small, we can make the second term small by choosing $\delta \leq \gamma$ appropriately small and using the fact that $\Phi(x-y)-\Phi\left(x_{0}-y\right)$ is uniformly continuous in y. We have

$$
\begin{aligned}
\left|\int_{A} h(y)\left[\Phi(x-y)-\Phi\left(x_{0}-y\right)\right] d S(y)\right| & \leq C\left|\Phi(x-y)-\Phi\left(x_{0}-y\right)\right|_{L^{\infty}(A)} \\
& \leq \frac{\epsilon}{2}
\end{aligned}
$$

for $\left|x-x_{0}\right| \leq \delta \leq \gamma$ where δ is chosen appropriately small.
(b) Show that $\Delta \bar{u}(x)=0$ for $x \notin \partial \Omega$.

Answer: $\Phi(x-y)$ is smooth for $x \neq y$, and as discussed above, $\bar{u}(x)$ is defined for all $x \in \mathbb{R}^{n}$. Therefore, for $x \notin \partial \Omega$,

$$
\begin{aligned}
\Delta_{x} \bar{u}(x) & =-\Delta_{x} \int_{\partial \Omega} h(y) \Phi(x-y) d S(y) \\
& =-\int_{\partial \Omega} h(y) \Delta_{x} \Phi(x-y) d S(y)=0
\end{aligned}
$$

4. Let Ω be an open, bounded set in \mathbb{R}^{n} with smooth boundary. Let $\Omega^{c} \equiv \mathbb{R}^{n} \backslash \bar{\Omega}$. Consider the exterior Neumann problem,

$$
(*) \begin{cases}\Delta u=0 & x \in \Omega^{c} \\ \frac{\partial u}{\partial \nu}=g & x \in \partial \Omega^{c} .\end{cases}
$$

Assume g satisfies the condition,

$$
\begin{equation*}
\int_{\partial \Omega} g(x) d S(x)=0 \tag{**}
\end{equation*}
$$

(Note: Recall: This is not a necessary condition for solvability of the exterior Neumann problem.) Suppose a solution u of $\left(^{*}\right)$ is given by the single-layer potential,

$$
u(x) \equiv-\int_{\partial \Omega} h(y) \Phi(x-y) d S(y)
$$

where h satisfies the integral equation

$$
g(x)=\frac{1}{2} h(x)-\int_{\partial \Omega} h(y) \frac{\partial \Phi(x-y)}{\partial \nu_{x}} d S(y)
$$

(a) Show that if g satisfies the condition $\left({ }^{* *}\right)$, then

$$
\int_{\partial \Omega} h(y) d S(y)=0
$$

Answer: We integrate the integral equation for h with over $\partial \Omega$. In particular, we get

$$
\begin{aligned}
0 & =\int_{\partial \Omega} g(x) d S(x) \\
& =\frac{1}{2} \int_{\partial \Omega} h(x) d S(x)-\int_{\partial \Omega} \int_{\partial \Omega} h(y) \frac{\partial \Phi(x-y)}{\partial \nu_{x}} d S(y) d S(x) \\
& =\frac{1}{2} \int_{\partial \Omega} h(x) d S(x)+\int_{\partial \Omega} h(y)\left[-\int_{\partial \Omega} \frac{\partial \Phi(x-y)}{\partial \nu_{x}} d S(x)\right] d S(y) \\
& =\frac{1}{2} \int_{\partial \Omega} h(x) d S(x)+\int_{\partial \Omega} h(y) \frac{1}{2} d S(y) \\
& =\int_{\partial \Omega} h(x) d S(x)
\end{aligned}
$$

where we have used Gauss' Lemma which states that for $y \in \partial \Omega$,

$$
-\int_{\partial \Omega} \frac{\partial \Phi(x-y)}{\partial \nu_{x}} d S(x)=\frac{1}{2} .
$$

(b) Show that the solution u will have decay rate $O\left(|x|^{1-n}\right)$ In particular, show $|u(x)| \leq C|x|^{1-n}$. Hint: By (a), write $u(x)=-\int_{\partial \Omega} h(y)[\Phi(x-y)-\Phi(x)] d S(y)$.
Answer: If $g(x)$ satisfies the extra condition $\left(^{*}\right)$ above, then from (a), we know

$$
\int_{\partial \Omega} h(y) d S(y)=0
$$

and, therefore, we can write

$$
u(x)=\int_{\partial \Omega} h(y) \Phi(x-y) d S(y)=\int_{\partial \Omega} h(y)[\Phi(x-y)-\Phi(x)] d S(y)
$$

By the mean value theorem, there exists a point x^{*} on the line segment between $x-y$ and x such that

$$
\Phi(x-y)-\Phi(x)=\nabla \Phi\left(x^{*}\right) \cdot(-y) .
$$

By calculating $\nabla \Phi(x)$, we see that

$$
\nabla \Phi\left(x^{*}\right)=\frac{C}{\left|x^{*}\right|^{n-1}}=O\left(|x|^{1-n}\right)
$$

using the fact that x^{*} is between $x-y$ and x. Therefore,

$$
\begin{aligned}
|u(x)| & \leq \int_{\partial \Omega}|h(y)||\Phi(x-y)-\Phi(x)| d S(y) \\
& \leq|h(y)|_{L^{\infty}} \int_{\partial \Omega}\left|\nabla \Phi\left(x^{*}\right)\right||y| d S(y) \\
& \leq C|x|^{1-n} .
\end{aligned}
$$

This gives us a decay rate $O\left(|x|^{1-n}\right)$.
5. Let Ω be an open, bounded subset of \mathbb{R}^{n}. Let $\Omega^{c} \equiv \mathbb{R}^{n} \backslash \bar{\Omega}$. Prove there exists at most one solution u which decays to 0 as $|x| \rightarrow+\infty$ of the following

$$
\begin{cases}\Delta u=f & x \in \Omega^{c} \\ u=g & x \in \partial \Omega .\end{cases}
$$

Answer: Suppose there exist two solutions u and v. Define the set $\Omega_{R}^{c} \equiv \Omega^{c} \cap B(0, R)$. Let $w=u-v$. Now using the fact that $|u|,|v| \rightarrow 0$ as $|x| \rightarrow+\infty$, we see that for all $\epsilon>0$ there exists an $R>0$ such that $|w(x)|<\epsilon$ if $|x|>R$. Let $\epsilon>0$ Fix R such that $|w(x)|<\epsilon$ if $|x| \geq R$. Then w is a solution of

$$
\begin{cases}\Delta w=0 & x \in \Omega_{R}^{c} \\ w=0 & x \in \partial \Omega \\ |w|<\epsilon & x \in \partial B(0, R)\end{cases}
$$

Therefore, by the maximum principle for harmonic functions,

$$
\max _{\bar{\Omega}_{R}^{c}} w=\max _{\partial \Omega_{R}^{c}} w<\epsilon .
$$

Similarly, defining $\widetilde{w}=v-u$, we conclude that

$$
\max _{\bar{\Omega}_{R}^{c}} \widetilde{w}<\epsilon .
$$

Therefore, we conclude that $|u-v|<\epsilon$ on $\bar{\Omega}_{R}^{c}$. Since this is true for all ϵ by choosing R sufficiently large, we conclude that $u=v$.

