Math 220B - Summer 2003
 Homework 7
 Due Thursday, August 14, 2003

1. Consider the eigenvalue problem,

$$
\begin{cases}-\Delta w=\lambda w & x \in \Omega \tag{1}\\ \frac{\partial w}{\partial n}+a(x) w=0 & x \in \partial \Omega\end{cases}
$$

Let $\left\{v_{i}\right\}$ be the eigenfunctions for this problem. Let

$$
Y_{n} \equiv\left\{w \in C^{2}: w \not \equiv 0,\left\langle w, v_{i}\right\rangle=0 \text { for } i=1, \ldots, n-1\right\} .
$$

Let

$$
J(w) \equiv\left\{\frac{\int_{\Omega}|\nabla w|^{2} d x+\int_{\partial \Omega} a(x) w^{2} d S(x)}{\int_{\Omega} w^{2} d x}\right\}
$$

Suppose there exists a function $u_{n} \in Y_{n}$ such that

$$
J\left(u_{n}\right)=\min _{w \in Y_{n}} J(w)
$$

Let $m_{n} \equiv J\left(u_{n}\right)$. Show that m_{n} is the $n^{\text {th }}$ eigenvalue of (1) with corresponding eigenfunction u_{n}.
2. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{y^{2}}{4}<1\right\}$. Consider the eigenvalue problem with Dirichlet boundary conditions,

$$
\begin{cases}-\Delta u=\lambda u & (x, y) \in \Omega \tag{2}\\ u=0 & (x, y) \in \partial \Omega\end{cases}
$$

Compute the Rayleigh quotient of the trial function $w(x, y)=4-4 x^{2}-y^{2}$ to approximate the first eigenvalue of (2). (Hint: Make the substitution $x=r \cos (\theta)$, $y=2 r \sin (\theta)$.)
3. Consider the eigenvalue problem (2). Let $w_{1}(x, y)=4-4 x^{2}-y^{2}$. Let $w_{2}(x, y)=$ $\left(4-4 x^{2}-y^{2}\right)^{2}$. Use the Rayleigh-Ritz approximation method to get an estimate on the first two eigenvalues of (2).
4. Consider the eigenvalue problem (2).
(a) Find a lower bound on the first eigenvalue of (2) given by a rectangle containing Ω.
(b) Find the best upper bound on the first eigenvalue of (2) given by rectangles inscribed within Ω with sides parallel to the x and y axes.
5. Let Ω be the ellipse given in problem 2. This time consider the eigenvalue problem with Neumann boundary conditions,

$$
\begin{cases}-\Delta u=\lambda u & (x, y) \in \Omega \tag{3}\\ \frac{\partial u}{\partial \nu}=0 & (x, y) \in \partial \Omega\end{cases}
$$

(a) Compute the Rayleigh quotient of $w(x, y)=y$.
(b) Prove that the Rayleigh quotient of w is a strict upper bound for the second eigenvalue of (3).
6. (a) Show that there does not exist a smooth function $f(x)$ with $f(0)=f(3)=0$ and $\int_{0}^{3} f^{\prime}(x)^{2} d x=1, \int_{0}^{3} f(x)^{2} d x=2$.
(b) Find two linearly independent functions $f_{1}(x)$ and $f_{2}(x)$ satisfying $f_{i}(0)=f_{i}(3)=$ 0 and $\int_{0}^{3} f_{i}^{\prime}(x)^{2} d x=2$ and $\int_{0}^{3} f_{i}(x)^{2} d x=1, i=1,2$.

