Math 220B - Summer 2003 Homework 7 Solutions

1. Consider the eigenvalue problem,

$$
\begin{cases}-\Delta w=\lambda w & x \in \Omega \tag{1}\\ \frac{\partial w}{\partial n}+a(x) w=0 & x \in \partial \Omega\end{cases}
$$

Let $\left\{v_{i}\right\}$ be the eigenfunctions for this problem. Let

$$
Y_{n} \equiv\left\{w \in C^{2}: w \not \equiv 0,\left\langle w, v_{i}\right\rangle=0 \text { for } i=1, \ldots, n-1\right\} .
$$

Let

$$
J(w) \equiv\left\{\frac{\int_{\Omega}|\nabla w|^{2} d x+\int_{\partial \Omega} a(x) w^{2} d S(x)}{\int_{\Omega} w^{2} d x}\right\}
$$

Suppose there exists a function $u_{n} \in Y_{n}$ such that

$$
J\left(u_{n}\right)=\min _{w \in Y_{n}} J(w)
$$

Let $m_{n} \equiv J\left(u_{n}\right)$. Show that m_{n} is the $n^{t h}$ eigenvalue of (1) with corresponding eigenfunction u_{n}.
Answer: By assumption, $u_{n} \in Y_{n}$ is the minimizer of $J(w)$ over all $w \in Y_{n}$. Therefore,

$$
m_{n} \equiv J\left(u_{n}\right)=\frac{\int_{\Omega}\left|\nabla u_{n}\right|^{2} d x+\int_{\partial \Omega} a(x) u_{n}^{2} d S(x)}{\int_{\Omega} u_{n}^{2} d x} \leq \frac{\int_{\Omega}|\nabla w|^{2} d x+\int_{\partial \Omega} a(x) w^{2} d S(x)}{\int_{\Omega} w^{2} d x}
$$

for all $w \in Y_{n}$. Let $v \in Y_{n}$. Note that $u_{n}+\epsilon v \in Y_{n}$ for all $\epsilon \in \mathbb{R}$. Let

$$
f(\epsilon) \equiv \frac{\int_{\Omega}\left|\nabla\left(u_{n}+\epsilon v\right)\right|^{2} d x+\int_{\partial \Omega} a(x)\left(u_{n}+\epsilon v\right)^{2} d S(x)}{\int_{\Omega}\left(u_{n}+\epsilon v\right)^{2} d x} .
$$

If u_{n} is the minimizer of J, then $f^{\prime}(0)=0$. We calculate $f^{\prime}(0)$. We have

$$
f^{\prime}(0)=\frac{\left[\int_{\Omega} u_{n}^{2}\right]\left[2 \int_{\Omega} \nabla v \cdot \nabla u_{n}+2 \int_{\partial \Omega} a(x) u_{n} v\right]-\left[2 \int_{\Omega} u_{n} v\right]\left[\int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\partial \Omega} a(x) u_{n}^{2}\right]}{\left[\int u_{n}^{2}\right]^{2}}
$$

So, $f^{\prime}(0)=0 \Longrightarrow$

$$
\begin{aligned}
\int_{\Omega} \nabla u_{n} \cdot \nabla v+\int_{\partial \Omega} a(x) u_{n} v & =\frac{\int_{\Omega}\left|\nabla u_{n}\right|^{2}+\int_{\partial \Omega} a(x) u_{n}^{2}}{\int_{\Omega} u^{2}} \int_{\Omega} u_{n} v \\
& =m_{n} \int_{\Omega} u_{n} v
\end{aligned}
$$

Integrating by parts, we get

$$
-\int_{\Omega} \Delta u_{n} v+\int_{\partial \Omega} \frac{\partial u_{n}}{\partial \nu} v+\int_{\partial \Omega} a(x) u_{n} v=m_{n} \int_{\Omega} u_{n} v
$$

Therefore,

$$
\int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right] v d x=\int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] v d S(x)
$$

for all $v \in Y_{n}$.
Now let v_{j} be one of the first $n-1$ eigenfunctions for this problem. By assumption, $u_{n} \in Y_{n}$ implies that u_{n} is orthogonal to v_{j}. Therefore, we see that

$$
\begin{aligned}
\int_{\Omega}\left[\Delta u+m_{n} u_{n}\right] v_{j} d x & =\int_{\Omega} \Delta u_{n} v_{j} d x \\
& =\int_{\Omega} u_{n} \Delta v_{j} d x+\int_{\partial \Omega} \frac{\partial u_{n}}{\partial \nu} v_{j} d S(x)-\int_{\partial \Omega} u_{n} \frac{\partial v_{j}}{\partial \nu} d S(x) \\
& =-\lambda_{j} \int_{\Omega} u_{n} v_{j} d x+\int_{\partial \Omega} \frac{\partial u_{n}}{\partial \nu} v_{j} d S(x)+\int_{\partial \Omega} u_{n} a(x) v_{j} d S(x) \\
& =\int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] v_{j} d S(x) .
\end{aligned}
$$

Now let h be an arbitrary C^{2} function on Ω Define

$$
w \equiv h-\sum_{i=1}^{n-1} c_{i} v_{i}
$$

where

$$
c_{i} \equiv \frac{\left\langle h, v_{i}\right\rangle}{\left\langle v_{i}, v_{i}\right\rangle} .
$$

First, we note that

$$
\left\langle w, v_{j}\right\rangle=\left\langle h-\sum_{i=1}^{n-1} c_{i} v_{i}\right\rangle=0
$$

Therefore, we conclude that $w \in Y_{n}$.
Therefore,

$$
\begin{aligned}
\int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right] h d x= & \int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right]\left\{w+\sum_{i=1}^{n-1} c_{i} v_{i}\right\} d x \\
= & \int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right] w d x+\sum_{i=1}^{n-1} c_{i} \int_{\Omega} v_{i} d x \\
= & \int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] w d S(x) \\
& +\sum_{i=1}^{n-1} c_{i} \int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] v_{i} d S(x) \\
= & \int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] h d S(x) .
\end{aligned}
$$

To summarize, we have shown that for an arbitrary C^{2} function h on Ω,

$$
\begin{equation*}
\int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right] h d x=\int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] h d S(x) \tag{2}
\end{equation*}
$$

Now take a C^{2} function h which vanishes on $\partial \Omega$. For such an h, we have

$$
\int_{\Omega}\left[\Delta u_{n}+m_{n} u_{n}\right] h d x=0
$$

Since this is true for all $h \in C^{2}(\Omega)$ such that $h=0$ for $x \in \partial \Omega$, we conclude that

$$
\Delta u_{n}+m_{n} u_{n}=0
$$

for $x \in \Omega$.
Now we need to check that the boundary condition is satisfied. By (2) and the fact that $\Delta u_{n}+m_{n} u_{n}=0$, we conclude that

$$
\int_{\partial \Omega}\left[\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}\right] h d S(x)
$$

for all C^{2} functions h. Therefore, we conclude that

$$
\frac{\partial u_{n}}{\partial \nu}+a(x) u_{n}=0 \quad x \in \partial \Omega
$$

Therefore, we have shown that u is an eigenfunction with eigenvalue m_{n}.
Now we need to show that m_{n} is the $n^{t h}$ eigenvalue of our eigenvalue problem. First, we will show that $m_{n} \geq \lambda_{n-1} \geq \lambda_{n-2} \geq \ldots$. If λ_{i} is an eigenvalue with eigenfunction v_{i} for $i \leq n-1$, then

$$
\lambda_{i} \equiv J\left(v_{i}\right)=\min _{w \in Y_{i}} J(w)
$$

But, $Y_{n} \subset Y_{i}$ if $i \leq n-1$. Therefore,

$$
m_{n}=J\left(u_{n}\right) \geq J\left(v_{i}\right)=\lambda_{i} \quad i \leq n-1
$$

It just remains to show that $m_{n} \leq \lambda_{i}$ for $i \geq n+1$. Suppose λ_{i} is an eigenvalue with eigenfunction v_{i} for $i \geq n+1$. But $Y_{i} \subset Y_{n}$ if $i \geq n+1$. Therefore,

$$
m_{n}=J\left(u_{n}\right) \leq J\left(v_{i}\right)=\lambda_{i} \quad i \geq n+1
$$

Therefore, m_{n} is the $n^{\text {th }}$ eigenvalue as claimed.
2. Let $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+\frac{y^{2}}{4}<1\right\}$. Consider the eigenvalue problem with Dirichlet boundary conditions,

$$
\begin{cases}-\Delta u=\lambda u & (x, y) \in \Omega \tag{3}\\ u=0 & (x, y) \in \partial \Omega\end{cases}
$$

Compute the Rayleigh quotient of the trial function $w(x, y)=4-4 x^{2}-y^{2}$ to approximate the first eigenvalue of (3). (Hint: Make the substitution $x=r \cos (\theta)$, $y=2 r \sin (\theta)$.)
Answer. Making the suggested change of variable, the ellipse is defined in terms of r and θ by $\Omega=\{(r, \theta) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r<1\}$. Also, the Jacobian of this change of variable is

$$
\frac{\partial(x, y)}{\partial(r, \theta)}=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
2 \sin \theta & 2 r \cos \theta
\end{array}\right|=2 r
$$

so we have $d A=2 r d r d \theta$. Since $4-4 x^{2}-y^{2}=4-4 r^{2}$, it follows that

$$
\begin{aligned}
\|w\|_{L^{2}}^{2} & =\iint_{\Omega}\left(4-4 x^{2}-y^{2}\right)^{2} d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(4-4 r^{2}\right)^{2} 2 r d r d \theta \\
& =2 \pi \int_{0}^{1}\left(4-4 r^{2}\right)^{2} 2 r d r \\
& =2 \pi\left[\frac{\left(4-4 r^{2}\right)^{3}}{3(-4)}\right]_{0}^{1} \\
& =\frac{32 \pi}{3}
\end{aligned}
$$

Next, $\nabla w=(-8 x,-2 y)$, so

$$
\|\nabla w\|_{L^{2}}^{2}=\iint_{\Omega} 64 x^{2}+4 y^{2} d A=\int_{0}^{2 \pi} \int_{0}^{1}\left(64 r^{2} \cos ^{2} \theta+16 r^{2} \sin ^{2} \theta\right) 2 r d r d \theta
$$

Exchanging the order of integration and making use of the identities $\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2} \cos 2 \theta$ and $\sin ^{2} \theta=\frac{1}{2}-\frac{1}{2} \cos 2 \theta$, this becomes

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{2 \pi}\left(64 r^{2} \cos ^{2} \theta+16 r^{2} \sin ^{2} \theta\right) 2 r d \theta d r & =\pi \int_{0}^{1}\left(64 r^{2}+16 r^{2}\right) 2 r d r \\
& =160 \pi \int_{0}^{1} r^{3} d r \\
& =40 \pi
\end{aligned}
$$

Thus the Rayleigh quotient for w is

$$
\frac{\|\nabla w\|_{L^{2}}^{2}}{\|w\|_{L^{2}}^{2}}=\frac{15}{4}
$$

Since w is a C^{2} function and $w=0$ on $\partial \Omega$, the Minimum Principle for the first eigenvalue implies that $\lambda_{1}(\Omega) \leq \frac{15}{4}$.
3. Consider the eigenvalue problem (3). Let $w_{1}(x, y)=4-4 x^{2}-y^{2}$. Let $w_{2}(x, y)=$ $\left(4-4 x^{2}-y^{2}\right)^{2}$. Use the Rayleigh-Ritz approximation method to get an estimate on the first two eigenvalues of (3).
Answer. By calculations similar to those in the previous problem, we obtain

$$
\begin{aligned}
\left\langle\nabla w_{1}, \nabla w_{1}\right\rangle & =40 \pi \\
\left\langle\nabla w_{1}, \nabla w_{2}\right\rangle & =\frac{320 \pi}{3} \\
\left\langle\nabla w_{2}, \nabla w_{2}\right\rangle & =\frac{1280 \pi}{3} \\
\left\langle w_{1}, w_{1}\right\rangle & =\frac{32 \pi}{3} \\
\left\langle w_{1}, w_{2}\right\rangle & =32 \pi \\
\left\langle w_{2}, w_{2}\right\rangle & =\frac{512 \pi}{5}
\end{aligned}
$$

So letting

$$
A=\left[\begin{array}{cc}
40 \pi & \frac{320 \pi}{3} \\
\frac{320 \pi}{3} & \frac{1280 \pi}{3}
\end{array}\right] \quad B=\left[\begin{array}{cc}
\frac{32 \pi}{3} & 32 \pi \\
32 \pi & \frac{512 \pi}{5}
\end{array}\right]
$$

the Rayleigh-Ritz approximation for $\lambda_{1}(\Omega)$ and $\lambda_{2}(\Omega)$ is given by the roots of the quadratic

$$
\operatorname{det}(A-\lambda B)=\frac{1024}{15} \lambda^{2}-\frac{16384}{9} \lambda+\frac{51200}{9}
$$

The roots are

$$
\lambda_{1}=\frac{40-5 \sqrt{34}}{3} \approx 3.6151 \quad \lambda_{2}=\frac{40+5 \sqrt{34}}{3} \approx 23.0516
$$

4. Consider the eigenvalue problem (3).
(a) Find a lower bound on the first eigenvalue of (3) given by a rectangle containing Ω.
Answer. The rectangle $R=[-1,1] \times[-2,2]$ contains Ω. By the Comparison Principle, $\lambda_{1}(R) \leq \lambda_{1}(\Omega)$. The eigenvalues of a rectangle with side lengths a and b are

$$
\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}
$$

where m and n are positive integers. The first eigenvalue of R is therefore $\lambda_{1}(R)=$ $\left(\frac{\pi}{2}\right)^{2}+\left(\frac{\pi}{4}\right)^{2}=\frac{5}{16} \pi^{2}$, so $\lambda_{1}(\Omega) \geq \frac{5}{16} \pi^{2}$.
(b) Find the best upper bound on the first eigenvalue of (3) given by rectangles inscribed within Ω with sides parallel to the x and y axes.
Answer. Such a rectangle has one vertex at $\left(x, 2 \sqrt{1-x^{2}}\right)$ for some $x \in(0,1)$. Its dimensions are therefore $a=2 x$ by $b=4 \sqrt{1-x^{2}}$. Since the eigenvalues of a rectangle with side lengths a and b are

$$
\left(\frac{n \pi}{a}\right)^{2}+\left(\frac{m \pi}{b}\right)^{2}
$$

where m and n are positive integers, the first eigenvalue of this rectangle (call it R_{x}) is

$$
\lambda_{1}\left(R_{x}\right)=\pi^{2}\left(\frac{1}{4 x^{2}}+\frac{1}{16\left(1-x^{2}\right)}\right)
$$

and by the Comparison Principle $\lambda_{1}(\Omega) \leq \lambda_{1}\left(R_{x}\right)$. The best upper bound is obtained by minimizing the above expression over $x \in(0,1)$. Setting $y=x^{2}$, this expression becomes

$$
f(y)=\frac{\pi^{2}}{16}\left(\frac{4}{y}+\frac{1}{1-y}\right)
$$

Since

$$
f^{\prime}(y)=\frac{\pi^{2}}{16}\left(-\frac{4}{y^{2}}+\frac{1}{(1-y)^{2}}\right)
$$

f has a critical point at $y=2 / 3$, and since f goes to infinity as y approaches 0 or 1 , it follows that $f(2 / 3)=\frac{9}{16} \pi^{2}$ is the best upper bound.

5 . Let Ω be the ellipse given in problem 2. This time consider the eigenvalue problem with Neumann boundary conditions,

$$
\begin{cases}-\Delta u=\lambda u & (x, y) \in \Omega \tag{4}\\ \frac{\partial u}{\partial \nu}=0 & (x, y) \in \partial \Omega\end{cases}
$$

(a) Compute the Rayleigh quotient of $w(x, y)=y$.

Answer. Using the same change of variables as above, we find

$$
\begin{aligned}
\|w\|_{L^{2}}^{2} & =\int_{0}^{2 \pi} \int_{0}^{1}\left(4 r^{2} \sin ^{2} \theta\right) 2 r d r d \theta \\
& =\pi \int_{0}^{1} 8 r^{3} d r \\
& =2 \pi
\end{aligned}
$$

Next, since $\nabla w=(0,1)$,

$$
\|\nabla w\|_{L^{2}}^{2}=\iint_{\Omega} 1 d A=2 \pi
$$

and thus the Rayleigh quotient for w is

$$
\frac{\|\nabla w\|_{L^{2}}^{2}}{\|w\|_{L^{2}}^{2}}=1
$$

(b) Prove that the Rayleigh quotient of w is a strict upper bound for the second eigenvalue of (4).
Answer. First recall that the first Neumann eigenvalue is zero, with the constant functions as the corresponding eigenfunctions. Since w is an odd function of y and the domain Ω is symmetric in y, we have

$$
\langle w, C\rangle=C \iint_{\Omega} w d A=0
$$

for any constant C, so w is orthogonal to the constant functions. Thus by the Minimum Principle for the second Neumann eigenvalue,

$$
\tilde{\lambda}_{2}(\Omega) \leq \frac{\|\nabla w\|_{L^{2}}^{2}}{\|w\|_{L^{2}}^{2}} .
$$

Now if the inequality above were actually an equality, then the second part of the Minimum Principle implies that w would be a solution of the eigenvalue problem (4) with eigenvalue $\tilde{\lambda}_{2}(\Omega)$. But w does not satisfy the Neumann boundary condition since, for instance, $\frac{\partial w}{\partial \nu}(0,2)=1$. Hence the inequality is strict.
6. (a) Show that there does not exist a smooth function $f(x)$ with $f(0)=f(3)=0$ and $\int_{0}^{3} f^{\prime}(x)^{2} d x=1, \int_{0}^{3} f(x)^{2} d x=2$.
Answer: We know

$$
\lambda_{1}=\min \left\{\frac{\|\nabla w\|^{2}}{\|w\|^{2}}: w \in C^{2}(0,3) ; w \not \equiv 0, w(0)=0, w(3)=0\right\}
$$

is the first eigenvalue of

$$
(*)\left\{\begin{array}{l}
-w^{\prime \prime}=\lambda w \quad x \in(0,3) \\
w(0)=0=w(3)
\end{array}\right.
$$

We know the eigenvalues of this problem are given by $\lambda_{n}=\left(\frac{n \pi}{3}\right)^{2}$ for $n=1,2, \ldots$. Therefore, the first eigenvalues is given by

$$
\lambda_{1}=\left(\frac{\pi}{3}\right)^{2} \approx 1.0966>\frac{1}{2} .
$$

Therefore for all trial functions $f \in C^{2}, f(0)=0=f(3)$, their Rayleigh Quotients must be $\geq \lambda_{1}$. Therefore, there can be no function f with Rayleigh Quotient $\frac{1}{2}$.
(b) Find two linearly independent functions $f_{1}(x)$ and $f_{2}(x)$ satisfying $f_{i}(0)=f_{i}(3)=$ 0 and $\int_{0}^{3} f_{i}^{\prime}(x)^{2} d x=2$ and $\int_{0}^{3} f_{i}(x)^{2} d x=1, i=1,2$.
Answer: The eigenfunctions of $\left(^{*}\right)$ are given by

$$
v_{n}(x)=B_{n} \sin \left(\frac{n \pi}{3} x\right)
$$

For simplicity, we normalize them, in which case, we let

$$
v_{n}(x)=\sqrt{\frac{2}{3}} \sin \left(\frac{n \pi}{3} x\right)
$$

We know that the Rayleigh quotient for each of the eigenfunctions $v_{n}(x)$ is equal to the corresponding eigenvalue λ_{n}. Therefore,

$$
\begin{aligned}
& \frac{\int_{0}^{3}\left|v_{1}^{\prime}\right|^{2} d x}{\int_{0}^{3}\left|v_{1}\right|^{2} d x}=\int_{0}^{3}\left|v_{1}^{\prime}\right|^{2} d x=\left(\frac{\pi}{3}\right)^{2} \approx 1.0966 \\
& \frac{\int_{0}^{3}\left|v_{2}^{\prime}\right|^{2} d x}{\int_{0}^{3}\left|v_{2}\right|^{2} d x}=\int_{0}^{3}\left|v_{2}^{\prime}\right|^{2} d x=\left(\frac{2 \pi}{3}\right)^{2} \approx 4.3865
\end{aligned}
$$

We want functions f whose Rayleigh quotient is 2 . We look for a function as a linear combination of the first two eigenfunctions. That is, we look for a function $f(x)=\alpha v_{1}(x)+\beta v_{2}(x)$. Therefore, we want to find α, β such that

$$
\begin{aligned}
\frac{\int_{0}^{3}\left|f^{\prime}\right|^{2} d x}{\int_{0}^{3}|f|^{2} d x} & =\frac{\int_{0}^{3} \alpha^{2}\left|v_{1}^{\prime}\right|^{2}+2 \alpha \beta v_{1}^{\prime} v_{2}^{\prime}+\beta^{2}\left|v_{2}^{\prime}\right|^{2} d x}{\int_{0}^{3} \alpha^{2} v_{1}^{2}+2 \alpha \beta v_{1} v_{2}+\beta^{2} v_{2}^{2} d x} \\
& =\frac{\alpha^{2}(\pi / 3)^{2}+\beta^{2}(2 \pi / 3)^{2}}{\alpha^{2}+\beta^{2}}=2,
\end{aligned}
$$

using the fact that v_{1}, v_{2} are orthogonal and $v_{1}^{\prime}, v_{2}^{\prime}$ are orthogonal on (0,3). Take α, β such that $\alpha^{2}+\beta^{2}=1$. Then we just need

$$
\begin{aligned}
\alpha^{2}\left(\frac{\pi}{3}\right)^{2} & +\beta^{2}\left(\frac{2 \pi}{3}\right)^{2}=2 \\
& \Longrightarrow\left(1-\beta^{2}\left(\frac{\pi}{3}\right)^{2}+\beta^{2}\left(\frac{2 \pi}{3}\right)^{2}=2\right.
\end{aligned}
$$

Our solutions of this are given by

$$
\begin{aligned}
& \beta_{ \pm}= \pm \sqrt{\frac{18-\pi^{2}}{3 \pi^{2}}} \\
& \alpha_{ \pm}= \pm \sqrt{1-\frac{18-\pi^{2}}{3 \pi^{2}}}
\end{aligned}
$$

Therefore, two linearly independent solutions are given by

$$
\begin{aligned}
& f_{1}(x)=\alpha_{+} v_{1}(x)+\beta_{+} v_{2}(x) \\
& f_{2}(x)=\alpha_{+} v_{1}(x)+\beta_{-} v_{2}(x) .
\end{aligned}
$$

