
Math 220B - Summer 2003
Homework 7 Solutions

1. Consider the eigenvalue problem,

{ −∆w = λw x ∈ Ω
∂w
∂n

+ a(x)w = 0 x ∈ ∂Ω.
(1)

Let {vi} be the eigenfunctions for this problem. Let

Yn ≡ {w ∈ C2 : w 6≡ 0, 〈w, vi〉 = 0 for i = 1, . . . , n− 1}.

Let

J(w) ≡
{∫

Ω
|∇w|2 dx +

∫
∂Ω

a(x)w2 dS(x)∫
Ω

w2 dx

}
.

Suppose there exists a function un ∈ Yn such that

J(un) = min
w∈Yn

J(w).

Let mn ≡ J(un). Show that mn is the nth eigenvalue of (1) with corresponding eigen-
function un.

Answer: By assumption, un ∈ Yn is the minimizer of J(w) over all w ∈ Yn. Therefore,

mn ≡ J(un) =

∫
Ω
|∇un|2 dx +

∫
∂Ω

a(x)u2
n dS(x)∫

Ω
u2

n dx
≤

∫
Ω
|∇w|2 dx +

∫
∂Ω

a(x)w2 dS(x)∫
Ω

w2 dx

for all w ∈ Yn. Let v ∈ Yn. Note that un + εv ∈ Yn for all ε ∈ R. Let

f(ε) ≡
∫
Ω
|∇(un + εv)|2 dx +

∫
∂Ω

a(x)(un + εv)2 dS(x)∫
Ω
(un + εv)2 dx

.

If un is the minimizer of J , then f ′(0) = 0. We calculate f ′(0). We have

f ′(0) =

[∫
Ω

u2
n

] [
2
∫
Ω
∇v · ∇un + 2

∫
∂Ω

a(x)unv
]− [

2
∫

Ω
unv

] [∫
Ω
|∇un|2 +

∫
∂Ω

a(x)u2
n

]
[∫

u2
n

]2

So, f ′(0) = 0 =⇒
∫

Ω

∇un · ∇v +

∫

∂Ω

a(x)unv =

∫
Ω
|∇un|2 +

∫
∂Ω

a(x)u2
n∫

Ω
u2

∫

Ω

unv

= mn

∫

Ω

unv.

Integrating by parts, we get

−
∫

Ω

∆unv +

∫

∂Ω

∂un

∂ν
v +

∫

∂Ω

a(x)unv = mn

∫

Ω

unv.
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Therefore, ∫

Ω

[∆un + mnun]v dx =

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
v dS(x)

for all v ∈ Yn.

Now let vj be one of the first n − 1 eigenfunctions for this problem. By assumption,
un ∈ Yn implies that un is orthogonal to vj. Therefore, we see that

∫

Ω

[∆u + mnun]vj dx =

∫

Ω

∆unvj dx

=

∫

Ω

un∆vj dx +

∫

∂Ω

∂un

∂ν
vj dS(x)−

∫

∂Ω

un
∂vj

∂ν
dS(x)

= −λj

∫

Ω

unvj dx +

∫

∂Ω

∂un

∂ν
vj dS(x) +

∫

∂Ω

una(x)vj dS(x)

=

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
vj dS(x).

Now let h be an arbitrary C2 function on Ω Define

w ≡ h−
n−1∑
i=1

civi

where

ci ≡ 〈h, vi〉
〈vi, vi〉 .

First, we note that

〈w, vj〉 = 〈h−
n−1∑
i=1

civi〉 = 0.

Therefore, we conclude that w ∈ Yn.

Therefore,

∫

Ω

[∆un + mnun]h dx =

∫

Ω

[∆un + mnun]

{
w +

n−1∑
i=1

civi

}
dx

=

∫

Ω

[∆un + mnun]w dx +
n−1∑
i=1

ci

∫

Ω

vi dx

=

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
w dS(x)

+
n−1∑
i=1

ci

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
vi dS(x)

=

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
h dS(x).
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To summarize, we have shown that for an arbitrary C2 function h on Ω,

∫

Ω

[∆un + mnun]h dx =

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
h dS(x). (2)

Now take a C2 function h which vanishes on ∂Ω. For such an h, we have

∫

Ω

[∆un + mnun]h dx = 0.

Since this is true for all h ∈ C2(Ω) such that h = 0 for x ∈ ∂Ω, we conclude that

∆un + mnun = 0

for x ∈ Ω.

Now we need to check that the boundary condition is satisfied. By (2) and the fact
that ∆un + mnun = 0, we conclude that

∫

∂Ω

[
∂un

∂ν
+ a(x)un

]
h dS(x)

for all C2 functions h. Therefore, we conclude that

∂un

∂ν
+ a(x)un = 0 x ∈ ∂Ω.

Therefore, we have shown that u is an eigenfunction with eigenvalue mn.

Now we need to show that mn is the nth eigenvalue of our eigenvalue problem. First,
we will show that mn ≥ λn−1 ≥ λn−2 ≥ . . .. If λi is an eigenvalue with eigenfunction
vi for i ≤ n− 1, then

λi ≡ J(vi) = min
w∈Yi

J(w),

But, Yn ⊂ Yi if i ≤ n− 1. Therefore,

mn = J(un) ≥ J(vi) = λi i ≤ n− 1.

It just remains to show that mn ≤ λi for i ≥ n + 1. Suppose λi is an eigenvalue with
eigenfunction vi for i ≥ n + 1. But Yi ⊂ Yn if i ≥ n + 1. Therefore,

mn = J(un) ≤ J(vi) = λi i ≥ n + 1.

Therefore, mn is the nth eigenvalue as claimed.

2. Let Ω =
{

(x, y) ∈ R2 : x2 + y2

4
< 1

}
. Consider the eigenvalue problem with Dirichlet

boundary conditions, { −∆u = λu (x, y) ∈ Ω
u = 0 (x, y) ∈ ∂Ω.

(3)
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Compute the Rayleigh quotient of the trial function w(x, y) = 4 − 4x2 − y2 to ap-
proximate the first eigenvalue of (3). (Hint: Make the substitution x = r cos(θ),
y = 2r sin(θ).)

Answer. Making the suggested change of variable, the ellipse is defined in terms of r
and θ by Ω = {(r, θ) | 0 ≤ θ ≤ 2π, 0 ≤ r < 1}. Also, the Jacobian of this change of
variable is

∂(x, y)

∂(r, θ)
=

∣∣∣∣
cos θ −r sin θ
2 sin θ 2r cos θ

∣∣∣∣ = 2r

so we have dA = 2r dr dθ. Since 4− 4x2 − y2 = 4− 4r2, it follows that

‖w‖2
L2 =

∫∫

Ω

(4− 4x2 − y2)2 dA

=

∫ 2π

0

∫ 1

0

(4− 4r2)22r dr dθ

= 2π

∫ 1

0

(4− 4r2)22r dr

= 2π

[
(4− 4r2)3

3(−4)

]1

0

=
32π

3
.

Next, ∇w = (−8x,−2y), so

‖∇w‖2
L2 =

∫∫

Ω

64x2 + 4y2 dA =

∫ 2π

0

∫ 1

0

(64r2 cos2 θ + 16r2 sin2 θ)2r dr dθ

Exchanging the order of integration and making use of the identities cos2 θ = 1
2
+1

2
cos 2θ

and sin2 θ = 1
2
− 1

2
cos 2θ, this becomes

∫ 1

0

∫ 2π

0

(64r2 cos2 θ + 16r2 sin2 θ)2r dθ dr = π

∫ 1

0

(64r2 + 16r2)2r dr

= 160π

∫ 1

0

r3 dr

= 40π.

Thus the Rayleigh quotient for w is

‖∇w‖2
L2

‖w‖2
L2

=
15

4
.

Since w is a C2 function and w = 0 on ∂Ω, the Minimum Principle for the first
eigenvalue implies that λ1(Ω) ≤ 15

4
.
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3. Consider the eigenvalue problem (3). Let w1(x, y) = 4 − 4x2 − y2. Let w2(x, y) =
(4 − 4x2 − y2)2. Use the Rayleigh-Ritz approximation method to get an estimate on
the first two eigenvalues of (3).

Answer. By calculations similar to those in the previous problem, we obtain

〈∇w1,∇w1〉 = 40π

〈∇w1,∇w2〉 =
320π

3

〈∇w2,∇w2〉 =
1280π

3

〈w1, w1〉 =
32π

3
〈w1, w2〉 = 32π

〈w2, w2〉 =
512π

5
.

So letting

A =

[
40π 320π

3
320π

3
1280π

3

]
B =

[
32π
3

32π
32π 512π

5

]

the Rayleigh-Ritz approximation for λ1(Ω) and λ2(Ω) is given by the roots of the
quadratic

det(A− λB) =
1024

15
λ2 − 16384

9
λ +

51200

9
.

The roots are

λ1 =
40− 5

√
34

3
≈ 3.6151 λ2 =

40 + 5
√

34

3
≈ 23.0516.

4. Consider the eigenvalue problem (3).

(a) Find a lower bound on the first eigenvalue of (3) given by a rectangle containing
Ω.

Answer. The rectangle R = [−1, 1] × [−2, 2] contains Ω. By the Comparison
Principle, λ1(R) ≤ λ1(Ω). The eigenvalues of a rectangle with side lengths a and
b are (nπ

a

)2

+
(mπ

b

)2

where m and n are positive integers. The first eigenvalue of R is therefore λ1(R) =(
π
2

)2
+

(
π
4

)2
= 5

16
π2, so λ1(Ω) ≥ 5

16
π2.

(b) Find the best upper bound on the first eigenvalue of (3) given by rectangles
inscribed within Ω with sides parallel to the x and y axes.

Answer. Such a rectangle has one vertex at (x, 2
√

1− x2) for some x ∈ (0, 1).
Its dimensions are therefore a = 2x by b = 4

√
1− x2. Since the eigenvalues of a

rectangle with side lengths a and b are
(nπ

a

)2

+
(mπ

b

)2
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where m and n are positive integers, the first eigenvalue of this rectangle (call it
Rx) is

λ1(Rx) = π2

(
1

4x2
+

1

16(1− x2)

)

and by the Comparison Principle λ1(Ω) ≤ λ1(Rx). The best upper bound is
obtained by minimizing the above expression over x ∈ (0, 1). Setting y = x2, this
expression becomes

f(y) =
π2

16

(
4

y
+

1

1− y

)

Since

f ′(y) =
π2

16

(
− 4

y2
+

1

(1− y)2

)
,

f has a critical point at y = 2/3, and since f goes to infinity as y approaches 0
or 1, it follows that f(2/3) = 9

16
π2 is the best upper bound.

5. Let Ω be the ellipse given in problem 2. This time consider the eigenvalue problem
with Neumann boundary conditions,

{ −∆u = λu (x, y) ∈ Ω
∂u
∂ν

= 0 (x, y) ∈ ∂Ω.
(4)

(a) Compute the Rayleigh quotient of w(x, y) = y.

Answer. Using the same change of variables as above, we find

‖w‖2
L2 =

∫ 2π

0

∫ 1

0

(4r2 sin2 θ)2r dr dθ

= π

∫ 1

0

8r3 dr

= 2π

Next, since ∇w = (0, 1),

‖∇w‖2
L2 =

∫∫

Ω

1 dA = 2π

and thus the Rayleigh quotient for w is

‖∇w‖2
L2

‖w‖2
L2

= 1.

(b) Prove that the Rayleigh quotient of w is a strict upper bound for the second
eigenvalue of (4).

Answer. First recall that the first Neumann eigenvalue is zero, with the constant
functions as the corresponding eigenfunctions. Since w is an odd function of y
and the domain Ω is symmetric in y, we have

〈w, C〉 = C

∫∫

Ω

w dA = 0,
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for any constant C, so w is orthogonal to the constant functions. Thus by the
Minimum Principle for the second Neumann eigenvalue,

λ̃2(Ω) ≤ ‖∇w‖2
L2

‖w‖2
L2

.

Now if the inequality above were actually an equality, then the second part of
the Minimum Principle implies that w would be a solution of the eigenvalue
problem (4) with eigenvalue λ̃2(Ω). But w does not satisfy the Neumann boundary
condition since, for instance, ∂w

∂ν
(0, 2) = 1. Hence the inequality is strict.

6. (a) Show that there does not exist a smooth function f(x) with f(0) = f(3) = 0 and∫ 3

0
f ′(x)2 dx = 1,

∫ 3

0
f(x)2 dx = 2.

Answer: We know

λ1 = min

{ ||∇w||2
||w||2 : w ∈ C2(0, 3); w/≡ 0, w(0) = 0, w(3) = 0

}

is the first eigenvalue of

(∗)
{
− w′′ = λw x ∈ (0, 3)

w(0) = 0 = w(3).

We know the eigenvalues of this problem are given by λn =
(

nπ
3

)2
for n = 1, 2, . . ..

Therefore, the first eigenvalues is given by

λ1 =
(π

3

)2

≈ 1.0966 >
1

2
.

Therefore for all trial functions f ∈ C2, f(0) = 0 = f(3), their Rayleigh Quotients
must be ≥ λ1. Therefore, there can be no function f with Rayleigh Quotient 1

2
.

(b) Find two linearly independent functions f1(x) and f2(x) satisfying fi(0) = fi(3) =

0 and
∫ 3

0
f ′i(x)2 dx = 2 and

∫ 3

0
fi(x)2 dx = 1, i = 1, 2.

Answer: The eigenfunctions of (*) are given by

vn(x) = Bn sin
(nπ

3
x
)

.

For simplicity, we normalize them, in which case, we let

vn(x) =

√
2

3
sin

(nπ

3
x
)

.

We know that the Rayleigh quotient for each of the eigenfunctions vn(x) is equal
to the corresponding eigenvalue λn. Therefore,

∫ 3

0
|v′1|2 dx∫ 3

0
|v1|2 dx

=

∫ 3

0

|v′1|2 dx =
(π

3

)2

≈ 1.0966

∫ 3

0
|v′2|2 dx∫ 3

0
|v2|2 dx

=

∫ 3

0

|v′2|2 dx =

(
2π

3

)2

≈ 4.3865
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We want functions f whose Rayleigh quotient is 2. We look for a function as a
linear combination of the first two eigenfunctions. That is, we look for a function
f(x) = αv1(x) + βv2(x). Therefore, we want to find α, β such that

∫ 3

0
|f ′|2 dx∫ 3

0
|f |2 dx

=

∫ 3

0
α2|v′1|2 + 2αβv′1v

′
2 + β2|v′2|2 dx∫ 3

0
α2v2

1 + 2αβv1v2 + β2v2
2 dx

=
α2(π/3)2 + β2(2π/3)2

α2 + β2
= 2,

using the fact that v1, v2 are orthogonal and v′1, v
′
2 are orthogonal on (0, 3). Take

α, β such that α2 + β2 = 1. Then we just need

α2
(π

3

)2

+ β2

(
2π

3

)2

= 2

=⇒ (1− β2
(π

3

)2

+ β2

(
2π

3

)2

= 2.

Our solutions of this are given by

β± = ±
√

18− π2

3π2

α± = ±
√

1− 18− π2

3π2
.

Therefore, two linearly independent solutions are given by

f1(x) = α+v1(x) + β+v2(x)

f2(x) = α+v1(x) + β−v2(x).
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