Math 220B - Summer 2003
Homework 7 Solutions

1. Consider the eigenvalue problem,

—Aw = \w x € (1)
%+a(w)w:0 x € 0N0.

Let {v;} be the eigenfunctions for this problem. Let
={weC*: w#0, (wuv)=0fori=1,...,n—1}.

Let

Jo IVw?dz + [, a(x)w? dS(z)
Jw) = { fQ w62 dx }

Suppose there exists a function u,, € Y,, such that

J(u,,) = min J(w).

’wEYn
Let m,, = J(u,). Show that m,, is the n'" eigenvalue of (1) with corresponding eigen-
function wu,,.

Answer: By assumption, u,, € Y,, is the minimizer of J(w) over all w € Y,,. Therefore,

Jo IVug 2 dz + [, a(z)u? dS(z fQ|Vw| dz + [, a(z)w?® dS(x)

mn = (un) = fQ u2 dw - fQ w? dx

forallw e Y,. Let v € Y,,. Note that u,, +ev €Y, for all e € R. Let

Jo IV (un + €v)|? dz + [, a(x)(un + ev)? dS(x)

Je) = Jo (un + €v)? dx

If u,, is the minimizer of .J, then f'(0) = 0. We calculate f'(0). We have

Lo un] [2Jo V- Vun +2 [y a(@)unv] — (2 founv] [Jo [Vunl® + [oq a(z)ur]

[J 2]’

f1(0) =

So, f/(0) =0 =

V " 2 2
/ Vu, - Vv +/ a(w)unv _ le U | + f28§2 a<$)un / Uy v
Q o0 fQU 9)

=my / Up V.
Q
Integrating by parts, we get

_/Aunv+ Ot / a(x)unv—mn/unv.
Q o0 OV oQ Q




Therefore,

/Q Ay, + moun]ode = /8 ) [%“V" + a(x>un] vdS(z)

for all v € Y,,.

Now let v; be one of the first n — 1 eigenfunctions for this problem. By assumption,
u, €Y, implies that w,, is orthogonal to v;. Therefore, we see that

/[Au + myuy,|v; de = / Au,vjdx
Q Q

ou v,
- CAv.d i d _ e A
/Qu vjdx + o v v;dS(z) /mu 5 S(x)
= —)\j/unvj dx—l—/ %/Uj dS(:U)—i-/ upa(x)v; dS(z)
Q an OV o)

_ /8 ) ﬁ? + a(a:)un] v, dS(x).

Now let i be an arbitrary C? function on  Define

n—1
w=h-— g Civ;
i=1

where

First, we note that
(w,v;) = (h — Z civ;) = 0.

Therefore, we conclude that w € Y,,.

Therefore,

/[Aun + mpuy)hdr = /[Aun + My Uy,
Q Q

=

]

1

= / [Au, + myu,wde + Z ¢ | vidx
Q 7 Ja

)

n—1
w + cv; o dr
=1

_ /8 ) {%7;" + a(x)un} wdS(x)

N Sci /8 ) {%‘ZT + a(aj)un] v dS(a)

1=

_ /m {%“V" + a(x)un} hdsS(z).




To summarize, we have shown that for an arbitrary C? function h on Q,

/Q[Aun + myup|hde = /asz {% + a(x)un} hdS(z). (2)

Now take a C? function h which vanishes on 0. For such an h, we have
/[Aun + mpu,|hde = 0.
Q

Since this is true for all h € C?(2) such that h = 0 for x € 99, we conclude that
Au,, +myu, =0

for z € €.

Now we need to check that the boundary condition is satisfied. By (2) and the fact
that Au,, + m,u,, = 0, we conclude that

/m {a;/” + a(x)un} hdS(x)

for all C? functions h. Therefore, we conclude that

Ouin
ov

+ a(z)u, =0 x € 0.

Therefore, we have shown that u is an eigenfunction with eigenvalue m,,.

Now we need to show that m,, is the n'* eigenvalue of our eigenvalue problem. First,
we will show that m,, > A\,_1 > \,_o > .... If \; is an eigenvalue with eigenfunction
v; for © <n — 1, then

Ai = J(v;) = min J(w),

weY;
But, Y, C Y, if : <n — 1. Therefore,

my, = J(up) > J(v) = N\ 1 <n-—1.

It just remains to show that m, < \; for © > n + 1. Suppose \; is an eigenvalue with
eigenfunction v; for: >n+ 1. But Y; C Y, if i > n + 1. Therefore,

My = J(un) < J(v;) = N t>n+1.
Therefore, m,, is the n'" eigenvalue as claimed.

. Let Q = {(JJ, y) € R? : 2% + % < 1}. Consider the eigenvalue problem with Dirichlet
boundary conditions,
—Au=Xu (x,y) € 3)
u=0 (x,y) € O0N.



Compute the Rayleigh quotient of the trial function w(z,y) = 4 — 42% — y* to ap-
proximate the first eigenvalue of (3). (Hint: Make the substitution x = rcos(6),
y = 2rsin(6).)

Answer. Making the suggested change of variable, the ellipse is defined in terms of r
and 6 by Q = {(r,0) | 0 <8 < 27,0 <r < 1}. Also, the Jacobian of this change of
variable is

O(z,y)

cos@ —rsinf

2sinf 2rcosf| 2r

a(r,0)
so we have dA = 2rdr df. Since 4 — 42? — y? = 4 — 472, it follows that

|2 = / / (4— da? — ) dA
2 1
— / / (4 — 4r2)22r dr db
0 0

1
= 27T/ (4 — 4r*)*2r dr
0

- [5],

327
=5
Next, Vw = (—8z, —2y), so

2m 1
[Vw||3: = // 6427 + 4> dA = / / (647% cos® § + 1672 sin” 0)2r dr df
Q o Jo

Exchanging the order of integration and making use of the identities cos? § = %—i—% cos 20
and sin? 6 = % — %cos 26, this becomes

1 pon 1
/ / (6472 cos® § + 167* sin” §)2r df dr = 7T/ (647% + 167)2r dr
o Jo 0

1
= 160#/ r3dr
0

= 407.
Thus the Rayleigh quotient for w is

lwll7. 47

Since w is a C? function and w = 0 on 0f, the Minimum Principle for the first
eigenvalue implies that A\, (Q) < 12



3. Consider the eigenvalue problem (3). Let wi(z,y) = 4 — 42% — y%. Let wq(x,y) =
(4 — 422 — y*)2. Use the Rayleigh-Ritz approximation method to get an estimate on
the first two eigenvalues of (3).

Answer. By calculations similar to those in the previous problem, we obtain

(le, V@U1> = 407

So letting

320
<Vw1, Vw2> = Tﬂ—
1280
(Vws, Vws) = 3 8
32T
(w1, wy) = 3
(wy,we) = 327
5127
<’LU2,UJ2> = T
40m 2 21 32w
A=) mefg

the Rayleigh-Ritz approximation for A;(€2) and A\y(Q2) is given by the roots of the
quadratic

1024 16384 51200

The roots are

A ~ 23.0516.

40 — 5+/34
_ -5V 35\/3_%3.6151 Ao

404 5v/34
B 3

4. Consider the eigenvalue problem (3).

(a)

Find a lower bound on the first eigenvalue of (3) given by a rectangle containing
Q.

Answer. The rectangle R = [—1,1] x [—2,2] contains 2. By the Comparison
Principle, A\j(R) < A1(€2). The eigenvalues of a rectangle with side lengths a and

b are

nm 2 mi 2

(=) (%)

a b
where m and n are positive integers. The first eigenvalue of R is therefore A\;(R) =
(2)"+ (5)" = o7 so M (Q) > 272
Find the best upper bound on the first eigenvalue of (3) given by rectangles
inscribed within €2 with sides parallel to the z and y axes.
Answer. Such a rectangle has one vertex at (x,2v/1 — z2) for some z € (0,1).
Its dimensions are therefore a = 2z by b = 4v/1 — x2. Since the eigenvalues of a
rectangle with side lengths a and b are

(5 +(7)

5



where m and n are positive integers, the first eigenvalue of this rectangle (call it

R,) is
Y O
AM(fe) =7 <4x2 TS

and by the Comparison Principle A\;(©2) < Ai(R;). The best upper bound is
obtained by minimizing the above expression over z € (0,1). Setting y = 2, this

expression becomes
w2 (4 1
-5 (5 3)

Fo =T (-5 )

f has a critical point at y = 2/3, and since f goes to infinity as y approaches 0
or 1, it follows that f(2/3) = %m? is the best upper bound.

Since

5. Let © be the ellipse given in problem 2. This time consider the eigenvalue problem
with Neumann boundary conditions,

{ gAu:)\u (x,y) € Q (4)
54 =0 (x,y) € 00.
(a) Compute the Rayleigh quotient of w(z,y) = y.

Answer. Using the same change of variables as above, we find

2 1
||| :/0 /0(4rzsin29)2rdrd9
1

:7r/ 8r3dr
0

=27

||vw||22=//91dA:27r

and thus the Rayleigh quotient for w is

IVwllZ,

lwllZ2

Next, since Vw = (0, 1),

=1.

(b) Prove that the Rayleigh quotient of w is a strict upper bound for the second
eigenvalue of (4).
Answer. First recall that the first Neumann eigenvalue is zero, with the constant
functions as the corresponding eigenfunctions. Since w is an odd function of y
and the domain €2 is symmetric in y, we have

<w,C>—C//deA_O,
6



for any constant C, so w is orthogonal to the constant functions. Thus by the
Minimum Principle for the second Neumann eigenvalue,

— lwllZ

Now if the inequality above were actually an equality, then the second part of
the Minimum Principle implies that w would be a solution of the eigenvalue
problem (4) with eigenvalue Xy(€2). But w does not satisfy the Neumann boundary
condition since, for instance, g—"j((), 2) = 1. Hence the inequality is strict.

Show that there does not exist a smooth function f(z) with f(0) = f(3) = 0 and
f03 f(z)?dx =1, f03 f(x)?dw = 2.

Answer: We know

2
A1 = min { HIZUUIJIL‘ cw € C*(0,3);wE 0,w(0) = 0,w(3) = 0}

is the first eigenvalue of

)l w'=X v z€(0,3)
w(0) =0 = w(3).

We know the eigenvalues of this problem are given by A, = (%)2 forn=1,2,....
Therefore, the first eigenvalues is given by

A = (g)Q ~ 1.0966 > %

Therefore for all trial functions f € C?, f(0) = 0 = f(3), their Rayleigh Quotients
must be > A\;. Therefore, there can be no function f with Rayleigh Quotient %

Find two linearly independent functions fi(x) and fo(z) satisfying f;(0) = f;(3) =
0 and f03 fl(z)?dx = 2 and f03 fi(x)?de=1,i=1,2.
Answer: The eigenfunctions of (*) are given by

Un(z) = By sin (%Tx) :

For simplicity, we normalize them, in which case, we let

() = \/g sin (7";—”@ .

We know that the Rayleigh quotient for each of the eigenfunctions v, () is equal
to the corresponding eigenvalue A,. Therefore,

3, 2d 3 2
Jo [ de :/ of2de = (5) ~ 1.0966
0

f03 [v1]2 dw 3

3, 24 3 9 2
—f03 lval” de :/ [vy|? d = (—W> ~ 4.3865
Jy lv2l?dz Jo 3



We want functions f whose Rayleigh quotient is 2. We look for a function as a
linear combination of the first two eigenfunctions. That is, we look for a function
f(z) = avi(x) 4+ Bva(x). Therefore, we want to find a, 3 such that

Jo LFPde [F 0?02+ 2080(0h + 3|y da
f03 |f|2 dx f03 a?v? + 2aBv1vy + 3203 dx
AP (n/3)° + BP(2n/3)*

2
a? + 32 ’

using the fact that vy, ve are orthogonal and v}, v} are orthogonal on (0, 3). Take
a, 3 such that a? + 32 = 1. Then we just need

() (5) -

— (1 (g)2+ﬁ2 (%”)2 —9.

Our solutions of this are given by

Therefore, two linearly independent solutions are given by

fi(@) = ayvi(z) + Byva(z)
fo(z) = aqvi(x) + B_va(x).



