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Preface to the Tsinghua Lectures 2014

The present text is a revision and updating of the author’s 1983 “Lectures on Ge-
ometric Measure Theory,” and is meant to provide an introduction to the subject
at beginning/intermediate graduate level. The present draft is still in rather rough
form, with a generous scattering of (hopefully not serious, mainly expository) er-
rors. During the Tsinghua lectures (February-April 2014) the notes will be further
revised, with the ultimate aim of providing a useful and accessible introduction to
the subject at the appropriate level.

The author would greatly appreciate feedback about errors and other deficiencies.

Leon Simon
Beijing, China, February 2014
Isimon@stanford.edu

Last updated: Wed Dec 3 at 3:05pm

Notation

A = closure of A, assuming A is a subset of some topological space X
B\A={xecB:x¢A

X4 = indicator function of 4 (= 1 at points of A and = 0 and points not in A)
I4 = identity map A — 4

L£" = Lebesgue outer measure in R”

B, (y) = closed ball with center y radius p (more specifically denoted Bj (y) if we
wish to emphasize that we are working in R”). Thus B,(y) = {x e R" : |[x — y| <
p}, or more generally, in any metric space X, B,(y) = {x € X : d(x,y) < p}.

B,(y) = openball = {x e R" : |x — y| < p};
k/2

o = i y fork >0 (sowp = LF({x eR¥ : x| <1}) ifk € {1,2,...}).

I tkl2e=t dt
Ny R" = R"” (for A > 0, y € R") is defined by 7, 5 (x) = A7 (x — y); thus 7, ; is
translation x — x — y, and 7 5 is homothety x > A71x

Ck(U,V) (U, V open subsets of Euclidean spaces R” and R respectively) denotes
the space of C¥ maps from U into V

For f € CY(U,V), D f is the derivative matrix with entries D; f; and the i-th row
and j-th column, and D f|* = Y7/ X272, (D f)*.

For f € CY(U,R) with U open inR", we write Vf = (D1 f,..., D, f) (= (Df)T).
Ck(U,V)={p e CK(U,V) : ¢ has compact support}

For an abstract set X, 2% denotes the collection of all subsets of X

@ = the empty set.

For any set A in a metric space X with metric d, diam A denotes the diameter of
the set 4, i.e. sup, . d(x,y), interpreted to be zero if A is empty and oo if A is
not bounded.

For @ C R” open, W12(Q) will denote the Sobolev space of functions f : @ — R
such that £,V f € L?(Q).

If W C U, U open in R", W CC U means W is a compact subset of U.
8;; = Kronecker delta (= 11fi = j,0if i # j).



Chapter 1

Preliminary Measure Theory

§1 BasiC NOTIOMS ..t uttettt ettt e e e e 1
§2 Hausdorff Measure ........vvnininereinniieieieineaeieeneanns 9
83  DEISITIES &t vt ettee et et et et et et e e e e 13
§4 Radon Measures, Representation Theorem .............c..c...... 27

In this chapter we briefly review the basic theory of outer measure, which is based
on Caratheodory’s definition of measurability. Hausdorff (outer) measure is dis-
cussed, including the main results concerning n-dimensional densities and the way
in which they relate more general measures to Hausdorff measures. The final two
sections of the chapter give the basic theory of Radon (outer) measures including
the Riesz representation theorem and the standard differentiation theory for Radon
measures.

For the first section of the chapter X will denote an abstract space, and later we
impose further restrictions on X as appropriate. For example in the second and
third sections X is a metric space and in the last section of the chapter we shall
assume that X is a locally compact, separable metric space.

1 Basic Notions

Recall that an outer measure (sometimes simply called a measure if no confusion
is likely to arise) on X is a monotone subadditive function u : 2X — [0, 00] with
w(@) = 0. Thus u(@) = 0, and

1.1 w(A) <352, u(A;) whenever A C U A,
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with A, Al, A2,
particular implies £(A4) < u(B) whenever A C B C X.

any countable collection of subsets of X. Of course this in

We adopt Caratheodory’s notion of measurability:

1.2 Definition: A subset A C X is said to be p-measurable if
1(S) = p(S\ A) + (S N A)

for each subset S C X. (Thus, roughly speaking, 4 is u-measurable if it “cuts every
other set S additively with respect to u1.”)

Since X\(X\A4) = A we see that -measurability of A4 is equivalent to pu-measurability
of X \ Aforanyset A C X.

1.3 Remark: Then the set A is u-measurable if and only if
w(S) = pu(S\A4)+un(SnA

for each subset S € X with u(S) < oo, because this is trivially true when p(S) =
00, and the reverse inequality also holds in both cases 11(S) < 0o and p(S) = oo by
the subadditivity 1.1 of p.

Notice that the empty set @ is u-measurable, as is any set of pu-measure zero since
in this case the term (S N A) on the right side of the inequality in Remark 1.3 is
zero.

A key lemma, due to Caratheodory, asserts that such p-measurable sets form a
o-algebra, where the terminology is as follows:

1.4 Definition: A collection S of subsets of X is a -algebra if

1) D.Xes

2) AeS=X\A4€eS

(3) A1, A4,,...eS=> U]?“;IA]- I
1.5 Remarks: (1) Observe that then
A1, Az, ... €8, by (2),(3).

(2) In the context of a fixed space X, it is easily checked that the intersection of

N2, 4, =X\ (X\ (U?;IA,')) € S whenever

any non-empty family of o-algebras is again a o-algebra, so there is always a smallest
o-algebra which contains a given collection of subsets of X —namely just take the in-
tersection of all o-algebras which contain the given collection of sets (this collection
is non-empty because the collection of all subsets of X is a o-algebra). In particular
if X is a topological space then there is a smallest o-algebra containing all the open
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sets (same as the smallest o-algebra containing all the closed sets since o-algebras are
closed under complementation), referred to as “the Borel sets in X.”

As mentioned above, we have the following lemma:

1.6 Lemma. The collection M of all ji-measurable subsets is a o-algebra which includes
all subsets of X of w-measure zero.

1.7 Remark: In the course of the proof we shall establish the important additional
fact that for u-measurable sets 4;, j =1,2,...,

Ay, Ay, ... pairwise disjoint = p(S N (U2, 4;)) = D72, 1(S N Aj)

for each subset S C X.

Proof of Lemma 1.6 and Remark 1.7: We already noted above that Properties 1.4 (1)
and 1.4(2) are trivially checked direct from the definition of measurability.

Checking 1.4(3) involves several steps:

Stepl: A1, A2 € M = A, \ Ay € M (which is just 1.4(2) in case 4, = X). To
check this we first use Definition 1.2 with A = A; and with S N A, in place of §
and p(S) < oo to give

p(S N (A2\ A1) = u(SNAz) —pu(SN AN 4)

and then use Definition 1.2 with A = A, on the right side to give

WS N (A \ A1) = u(S) — u(S\ A2) — u(S N Az N A7)
<pu(S)—p((S\A42) U (SN AN A4y))
= u(S) = pn((S\A42) U (SN Ay))
=u(S) —u(S\ (42\ 41))

so A, \ A; is u-measurable by Remark 1.3.

step2: A1, 42 € M = A; U A, € M. To check this we simply observe that
(X\ A1) N (X \ A2) € M by using Step 1 with X \ 4,(e M) in place of 4,. Then
A1 UA; = X\ ((X\41)N(X\ Az)) € M, so Step2 is proved. Notice that
if Ay, A, are disjoint then we also have the additional additivity conclusion that
w(S N (A1 U Az)) = u(S N Ay) + (S N Ay) which is proved by simply using
Definition 1.2 with A4; in place of A and S N (A U A») in place of S.

Step3: Foreach N =1,2,..., A1, 42,..., Ay e M = U 1A;j € M, which follows
from Step 2 by induction on N Using the additional add1t1v1ty conclusion of Step2
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we also conclude the additivity u(S N (UN,4;)) = Z;vzl w(S N A;) provided
A1, Ay, ..., AN are pairwise disjoint.
Step4: If Ay, As,.. . are pairwise disjoint sets in M then U2, 4; € M and further-

more u(S N (UL A4;)) = 3272, (S N Aj) for each S C X. To check this we use

the conclusions of Step 3 to observe

n(S) = u(S N (UL, 47)) +u(S\ (UL4)))
> 1(S N (UL 45)) + 1(S\ (UF2,4)))
= YN n(S N A) +p(S\ (U,4))).
Since Y/, n(S N A;) = 352, u(SNA;) = u(S N (UR, 4;)), in view of Remark

1.3 this completes the proof of Step4, and also establishes the additivity property
of Remark 1.7.

Step5: A1, 4z,... € M = U A4; € M (ie. we do indeed have that M has
property 1.4(3)). To check this, observe that U2 4; = U;‘;I/Tj, where 4; =
A\ (U/Z3 Ay), with Ag = @. Then A; € M by Step 1 and Step3. Since the A; are
pairwise disjoint we can then apply Step4 to complete the proof. O

Observe that by 1.7 we have
1.8 A; p-measurable, A; C Aj 1 Vj>1 :>jli>ngou(Aj) = (U2, 4;).
because we can write US| A; = U2, (A4, \ Aj—1) with Ag = @, and hence, by 1.7,
(U Aj) = D72 (A \ Aj—r) = lim 37 (A \ Aj-1)
— lim (U, (4 \ A1) = lim a(4,),
where at the last step we used U7_,(4; \ 4;-1) = An.

If Ay D A5 D ... then, for each i, 4; \ N2, 4 = U;";I(Ai \ 4;), and hence 1.8
implies lim; o0 1t (A; \ A7) = (A: \N%2 A7), and if u(A;) < oo this gives u(4;) -
lim; u(A4;) = pu(A;) — (N2, 4;), and hence

1.9  Aj p-measurable and 4j 4, C A; foreach j =1,2,...
= lim pu(4;) = n(N$2,4;). provided u(4;) < oo for some i.
j—00
An outer measure p on X is said to be regular if for each subset A C X there is a
p-measurable subset B D A with u(B) = u(A).

1.10 Remark: If A; C A;4+1 Vi and p is regular, then the identity in 1.8 is valid, i.e.

lim pu(A4;) = p (U2, 40),
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even if the A; are not assumed to be j-measurable, because for each i we can select
a pu-measurable set A; D A; with u(4;) = u(4;), and then A; = ﬁ;?‘;izzlvj(D A;)
is increasing with uu(4;) = u(4;) and lim pu(4;) < w(U, 4;) < M(U;?ilfﬂ) =
lim 1 (A4;) (by 1.8) = lim uu(A4;).

In case X is a topological space, an outer measure y on X is said to be Borel-regular
if all Borel sets (see Remark 1.5(2)) are pu-measurable and if for each subset 4 C X
there is a Borel set B D A such that u(B) = (A4). (Notice that this does 7ot imply
w(B\ A) = 0 unless A4 is -measurable and 1 (A4) < o0.)

1.11 Remark: There is a close relationship between Borel regular outer measures
on a topological space X and abstract Borel measures 1o on X. (Recall that a Borel
measure (o on X is a map po : {all Borel sets} — [0, 00] such that (i) ©o(®) =
0, and (ii) po (U2, B;) = > 72, o(B;) whenever By, B, ... are pairwise disjoint
Borel sets in X.) In fact if ug is such a Borel measure on X then
wd) =, Boicrll:fBDA Ho(B)

defines a Borel regular outer measure on X which agrees with 1o on the Borel sets;
to check p-measurability of any Borel set B we just check the inequality in 1.3 by
first choosing a Borel set C > S with u(C) = w(S). Conversely, if 4 is a Borel
regular outer measure on X then the restriction of u to the Borel sets gives us a
Borel measure p on X.

Given any subset ¥ C X and any outer measure 1 on X, we can define a new outer
measure LY on X by

1.12 (WYY Z)=w(YNnZ), ZcX.

One readily checks (by using S N'Y in place of S in Definition 1.2) that all u-
measurable subsets are also (u L Y )-measurable (even if Y is not u-measurable). It
is also easy to check that LY is Borel regular whenever u is, provided Y is u-
measurable with 11(Y) < co. To check this, first use Borel regularity of u to pick
a Borel set By with By D Y and u(B; \ Y) = 0 and a Borel set B, > By \ Y with
p(B2) = 0. Then given an arbitrary set A C X we have
A=(ANY)Uu(A\Y)C(ANnY)U(X\Y)
=(ANY)U(X\B)U(B1\Y)C(ANnY)U (X \ B;) U B,.

Finally select a Borel set B3 > ANY with u(B3) = n(ANY) and observe that then
A C (X \ By) U B, U B3 (which is a Borel set) and (u_ Y )((X \ B1) U B, U B;) =
(LLY)(A).

The following theorem, due to Caratheodory and applicable in case X is a metric
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space with metric d, is particularly useful. In the statement we use the notation
dist(A, B) = inf{d(a,b) :a € A,b € B},
interpreted as oo if 4 or B is empty.
1.13 Theorem (Caratheodory’s Criterion.) If X is a metric space with metric d
and if ju is an outer measure on X with the property
w(AU B) = u(A) + n(B) forall sets A, B C X with dist(A, B) > 0,
then all Bovel sets are p-measurable.
Proof: Since the measurable sets form a o-algebra, it is enough to prove that all
closed sets are p-measurable (because by definition the Borel sets are the smallest o-

algebra containing all the closed sets), so that by Remark 1.3 we have only to check
that

(*) mw(S) = p(S\C)+u(SNC)

for all sets S € X with u(S) < oo and for all closed sets C C X.
Let C; = {x € X : dist(x,C) <1/j}. Then dist(S\ C;,S N C) > 0, hence

n(S) = n((S\NCHU(SNC)) =pu(S\C) +p(SNC),

and we will have (*) if we can show lim; 0o (S \ C;) = u(S \ C). To check this,
note that since C is closed we can write

S\C ={xe X :dist(x,C) >0} = (S\Cj)u(uz‘;ij), j=12,...,

where R = {x € § : .57 < dist(x,C) < ¢ }. But then by subadditivity of u we

have

w(S\Cj) =u(S\C) = u(S\Cj) + 72, i(Re).
and hence we will have lim; o u(S \ C;) = (S \ C) as required, provided only
that Y32, u(Ry) < oo.

To check this we note that dist(R;, R;) > 0if j > i +2, and hence by the hypothesis
of the theorem and induction on N we have, for each N > 1,

S0 (Rat) = (U, Rax) < u(S) < o0
and N
Y k=1 (Rok—1) = 1 (URZ; Rog—r) = u(S) <00, O

We next prove some important regularity properties for Borel regular measures
which have a suitable o-finiteness property:

§1 or CHAPTER 1: Basic NoTions 7

1.14 Definition: We say a Borel regular measure w on a topological space X is
“open o-finite” if X = U;V; where V; is open in X and u(V;) < oo for each
=12, ...

Of course p automatically satisfies such a condition if X is a separable metric space
and p is locally finite (i.e. x € X = u(B,(x)) < oo for some p > 0).

1.15 Theorem. Suppose X is a topological space with the property that every closed
subset of X is the countable intersection of open sets (this trivially holds e.g. if X is a

metric space), suppose  is an open o-finite (as in 1.14 above) Borel-regular measure on
X. Then

(1) n(A) = UopeingDAu(U)

for each subset A C X, and

(2) w(A)=sup  p(C)
C closed, CCA

for each p-measurable subser A C X.

1.16 Remark: In case X is a Hausdorfl space (so compact sets in X are closed)
which is o-compact (i.e. X = U; K; with K; compact for each j), then the conclu-
sion (2) in the above theorem guarantees that

p(d)= sup  p(K)
K compact, KCA

for each p-measurable subset A € X with u(A4) < oo, because under the above
conditions on X any closed set C can be written as the union of an increasing
sequence of compact sets.

Proof of 1.15: We assume first that u(X) < oo. First note that in this case (2) can
be proved by applying (1) to the complement X \ 4. Also, by Borel regularity of
the measure p, it is enough to prove (1) in case 4 is a Borel set. Then let

A = { Borel sets A C X : (1) holds}.

Trivially A contains all open sets, and we claim that A is closed under both count-
able unions and intersections, which we check as follows:

If Ay, Az, ... € Athen for any given ¢ > 0 there are open Uy, U,, ... with U; D A;
and (U \ 4;) =277e. Then (U;U;) \ (UrAx) = U; (U; \ (U Ak)) € U;(U; \ 4;)
and (N;Uj) \ (MeAk) = N0, (U; \ (M A)) = 0 (U (Uj \ Ak)) € Uk (U \ Ak ) so by
subadditivity we have (U2 U;\ (Ux Ax)) < e and limy oo (NN, Uj\ (Nk A)) =
(N2, U; \ (N Ax)) < &, so both Ug Ay and Ng Ay are in A as claimed.
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In particular A must also contain the closed sets, because any closed set in X can
be written as a countable intersection of open sets. Notice however that at this
point it is not clear that A is a o-algebra since it is not clear that A is closed under
X \ A € A}, which
we claim s a o-algebra, since it clearly has properties (1),(2) of o-algebra, and if
Ay, Ay, ... € Athen X\ A;. X\ 4,.... € Aand hence U2 4; and X \ (U2, 4;)(=
N%2, (X \ 4;)) are both in A (because A is closed under countable unions and
intersections); thus U2, A4; € A and indeed A is a o-algebra as claimed. Thus A is

complementation. For this reason, we let A = {4 € A :

a o-algebra containing all the closed sets, and hence A contains all the Borel sets.
Thus A contains all the Borel sets (so actually we conclude that A is equal to the
collection of all Borel subsets of X) and (1), (2) are both proved in case u(X) < oc.

In the case u(X) = oo it still suffices to prove (1) when A is a Borel set. For each
j =1.2,...apply the previous case u(X) < oo to the measure u LV}, j = 1,2,....
Then for each ¢ > 0 we can select an open U; D A such that
&

wU; NV 4) < £

and hence (summing over j)
M(U_/Qil(Uj n V/) \ A) <é.

Since U2, (U; N'V;) is open and contains 4, this completes the proof of (1).

(2) for the case when p(X) = oo also follows by applying (2) in the finite measure
case to the measure u L V;, thus giving, for each ¢ > 0 and each j = 1,2,..,
aclosed C; ¢ A with u(ANV;\ Cj) < 277 Since (U2, ;) \ (U2, Cy) =
Us2, (W \ (UR2 Ck)) € U2, (V5 \ C;), this gives, by countable subadditivity of
t, (AN (U2 Cr)) < e. Thus either u(A4) = oo and pu(UN_,C;) — oo or else
(A) < ooand u(A\ (UL,C;)) < 2¢ for sufficiently large N. In either case this
completes the proof of (2). O

Using the above theorem, we can now prove Lusin’s Theorem:

1.17 Theorem (Lusin’s Theorem.) Ler p be a Borel regular outer measure on a
topological space X having the property that every closed subset can be expressed as the
countable intersection of open sets (e.g. X is a metric space), let A be any u-measurable
subset of X with u(A) < oo, and let f : A — R be p-measurable. Then for each e > 0
there is a closed set C C X with C C A, u(A\ C) < &, and f|C continuous.

Proof: Foreachi =1,2,...and j =0, £1,£2,... let
Aij = T D),

i

so that 4;;, j = 0,£1,£2,..., are pairwise disjoint sets in A and U _Adij = A4
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for eachi = 1,2,.... By the remarks following 1.12, we know that L 4 is Borel
regular, and since it is finite we can apply Theorem 1.15, so for each given ¢ > 0
there are closed sets Cj; in X with C;; C A;j and u(4;;\Cij) = (L A)(A;;\Cij) <
271717172¢, hence (A \ (UR2_o Cie)) < 277711726, hence (A4 \ (US2_ Cij)) <
27¢. So for each i = 1,2,... there is an integer J (i) with u(A\ (U};j<s)Cij)) <
27¢. Since A\ (N2, (Uj1<s()Cij)) = U2, (A\ (Ujj1<si)Cij)) this implies (A \
C) <&, where C =N, (U}|<s(i)Cij), which is a closed set in X.

Finally, define g; : Uj;j<s()Ci; — R by setting g;(x) = L2 on G, |j| < J(i).
Then, since the Cj1. ..., C; ;) are pairwise disjoint closed sets, g; is clearly contin-
uous and its restriction to C is continuous for each i. Furthermore by construction
0< f(x)—gi(x) <1/iforeachx € C and eachi = 1,2,..., so g;|C converges
uniformly to f|C on C, and hence f|C is continuous. O

2 Hausdorff Measure

In this section we suppose X is a metric space with metric d, and we let

where I is the Gamma Function I'(¢) = [,

ular wy, is the volume (Lebesgue measure) of the unit ball B/*(0) in R™ in case m

197 Ye~? dt for ¢ > 0, so that in partic-

happens to be a positive integer.

For any m > 0 we define the m-dimensional Hausdorff (outer) measure

2.1 () =lim M (4), AC X,
0

where, for each § > 0, H'(A) (called the “size § approximation to H™”) is defined
by taking H§' (@) = 0 and, for any non-empty 4 C X,

diam C; ) m

> :

2.2 HI(A) = o infz;?‘;l(

where the inf is taken over all countable collections Cy, C,, . .. of subsets of X such
that diam C; < § and A C U2, C;; the right side is to be interpreted as oo in case
there is no such collection Cy, C, .. .. (Of course in a separable metric space X there
are always such collections Cy, Cs, ... for each § > 0.) The limit in 2.1 of course
always exists (although it may be +00) because Hj' (A) is a decreasing function of §;
thus %" (A) = supy., 1§ (A) for each m > 0. It is left as an exercise to check that
Hg' and H™ are indeed outer measures on X.
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Notice also that H° is just “counting measure”: H° (@) = 0, H°(A) = the number
of elements in the set A if 4 is finite, and H°(A) = oo if 4 is not finite.

2.3 Remarks: (1) Since diam C; = diam C; we can add the additional requirement
in the identity 2.2 that the C; be closed without changing the value of #™(A); indeed
since for any & > 0 we can find an open set U; D C; with diam U; < diam C; +¢/2/,
we could also take the C; to be open.

(2) Evidently H'(A) < oo Vm > 0,8 > 0 in case 4 is a totally bounded subset of
the metric space X.

One easily checks from the definition of HJ' that

1
2.4 Hy' (AU B) = H3'(A) + My (B) V6 < Sd (4. B),
hence
2.5 H"(AUB) =H"(A) +H"(B) whenever d(A,B) >0,

and therefore all Borel sets are H™-measurable by the Caratheodory Criterion (The-
orem 1.13). It follows from this and Remark 2.3 (1) that

2.6 H™ is Borel-regular for each m > 0.

Note: It is not true in general that the Borel sets are Hj'-measurable for § > 0; for
instance if n = 2 then one easily checks that the half-space H = {x = (x!,x?) €
R" : x2 > 0} is not Hj-measurable, because for example it does not cut the set
Se = ([0.1)x{0}) U ([0, 1) x {e}) additively for sufficiently small ¢. Indeed one can
directly use the definition of #j to check that #;(S.) | 1 ase | 0 (and in particular
Hj(Se) < 2 for sufficiently small &), whereas #;(S: N H) = Hz(S: \ H) = 1.

We will later show that, for each integer n > 1, H" agrees with the usual definition
of n-dimensional volume measure on an n-dimensional C! submanifold of R*+k,
k > 0. As a first step we want to prove that H" and £" (n-dimensional Lebesgue
measure) agree on R”.

First recall the standard definition of Lebesgue outer measure £" in R":

If K denotes the collection of all n-dimensional intervals I of the form I = (ay,b1)x
(az,b2) x -+ x (an,bn), where a;,b; € R and b; —a; > 0, and if |/| = volume of
I(=(bi—ay)--(bp —an)), then

2.7 L£"(A) = inf Y111
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where the inf is taken over all countable (or finite) collections {I, I5,...} C K
with A C U;I;. One easily checks that £" is uniguely characterized among outer
measures on R” by the properties

2.8 i) =1Vl ek, L£'(A)=  inf

LM(U) YA CR".
UDA, U open

We claim that, on R”, the outer measures £, 1", 1} all coincide (for each § > 0):

2.9 Theorem.
L"(A) = H"(A) = H (A) for every A C R" and every § > 0.

Proof of 2.9: We first show
(1) Hi(A) < L"(A) V8§ >0

as follows: Choose any collection Iy, I, ... € K so that A C Ui Ix. Now for each
bounded open set U C R” and each § > 0 we can select a pairwise disjoint family of
closed balls By, By, ... with U2 B; C U, diam B; < 8, and £" (U \ US| B;) = 0.
(To see this first decompose U as a union U2, C; of closed cubes C; of diameter < §
and with pairwise disjoint interiors, and for each j > 1 select a ball B; C interior
C; with diam B; > 1 edge-length of C;. Then £"(C; \ B;) < (1 —6,)L"(C;),
On = wp /4", and hence £" (U\US2, B;) = L" (U2, (C;\B)) < (1-6,)L"(U). Thus
LM (U\UIL B;) < (1-6,)L" (U) for suitably large N. Since U \UN_, B; is open, we
can repeat the argument inductively to obtain the required collection of balls.) Then
take U = Ij and such a collection of balls {B;}. Since £"(Z) =0 = H3(Z) =0
for each subset Z C X (by Definitions 2.2, 2.7) we then have (writing p; = radius

Bj)

) Hy (1) = H (U521 B;) < 252 0n0)
and hence
(3) My (A) < Hy (Uiede) < 2 H5 (Ie) = Xl Ikl-

The proof of (1) is then completed by taking inf over all such collections {I}. O

To prove the reverse inequality we first need a geometric result concerning Lebesgue
measure, known as the isodiametric inequality:

2.10 Theorem (Isodiametric Inequality.)
diam A4

L'(A) < wn( )n for every set A C R”.
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Remark: Thus among all sets A C R” with a given diameter p, the ball with diam-
eter p has the largest £" measure.

Proof of 2.10: Observe that it suffices to prove this for compact sets because A has
the same diameter as A and the inequality is trivial if diam A = co. For a compact
set A we proceed to use Steiner symmetrization: The Steiner symmetrization S (A)
of the compact set 4 with respect to the j-th coordinate plane x/ = 0 is defined
as follows: For £ in the coordinate plane x/ = 0 let £; = {§ + te; : t € R} and
let 7 is the projection & + te; +> ¢, taking the line €;(§) = {&§ +te; : 1 € R}
onto the real line R, and let 0; (4, §) denote the closed line segment {& + z¢; : |t]| <
LL1(n(A014;(£)))}. Then

Sj(A) = Uggang; (6)#0} 07(A.§).

(Thus S;j(A) is obtained by replacing AN¢; (&) with the segment o; (4, §) for each &
such that AN¢;(¢§) # @.) This process gives a new compact set (see the note below)
S;j(A) with the diameter not larger than the diameter of the original set A and, by
Fubini, the same Lebesgue measure. Further if i # j and if A4 is already invariant
under reflection in the i-th coordinate plane x’ = 0, then by definition S;(A4) is
invariant under reflection in both the i-th and the j-th coordinate planes. Thus
by applying Steiner symmetrization successively with respect to coordinate planes
x!'=0,x2=0,...,x" = 0, we get a new compact set A with diameter < diam A4,
having the same Lebesgue measure as A, and being invariant with respect to the
transformation x — —x. In particular this means that A is contained in the closed
ball with radius 1 diam 4 and center 0, whence

1 ..
LM(A) =L"(A) < wn(z diam A4)"
as required. O

Note: In the above we used the fact that S;(A) is compact if 4 is compact. That is
clearly true because £' (7 (A N ¢;(£))) (where £;(£), 7 are as in the above proof) is
an upper semi-continuous function of ¢ if ¢ is restricted to lie in the j-th coordinate
hyperplane x/ = 0. To check this upper semi-continuity, observe that if ¢ > 0 we
can select open U C Rwith (A N¢;(£)) CU and LY (U) < LY (7 (ANL;(§))) +e.
Since A is closed and 77! (U) is an open set containing the compact set AN¢; (£), we
then see that for any sequence & — £ in the plane x/ = 0 we must have AN¢; (&) C
7~ Y(U) for sufficiently large i, and hence 7(4 N ¢;(&)) C U for sufficiently large
i, thus giving £ (7 (AN ¢€;(&))) < L' (m(ANE;(£))) + & for all sufficiently large i.

Completion of the proof of 2.9: We have to prove
(%) LM(A) <HI(A) V8§ >0, ACR".
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Suppose § > 0, A C R”, and let Cy, C», ... be any countable collection with 4 C
U;C; and diam C; < §. Then

LM(A) < L"(U;Cp) < X2, LM(Cy)
< ijn(dlar;c")" by 2.10.

Taking the inf over all such collections {C; } we have (f) as required. O

3 Densities

Throughout this section X will denote a metric space with metric d. We first we
want to introduce the notion of n-dimensional density of a measure 1 on X, where
X continues to denote a metric space with metric d. For any outer measure 1 on
X, any subset A C X, and any point x € X, we define the n-dimensional upper and
lower densities ®*" (i, A, x), ©%(u, A, x) by

O*"(un, A, x) = limsup M

3.1 o onp”
o ANB

®1 (/’L,A,X) = liminf w
,0»1«0 a)npn

In case A = X we simply write ©*"(u, x) and ©%(u, x) to denote these quantities
so that @*"(u, A, x) = O*"(uL A,x), 0" (u, A, x) = O"(uL A, x).

3.2 Remark: One readily checks that if all Borel sets are j-measurable and 11(B,(x))
is finite on each ball B,(x) C X, then u(AN By (x)) > limsup, , u(ANB,(y)) for
each fixed p > 0 (i.e. (0, 0") 't (AN B,(x)) is an upper semi-continuous function of
x for each p), hence info<p<s(@np") " (A N By(x)) is also upper semi-continuous
and hence Borel measurable. Thus
O%(n. A, x) = lim inf )T (AN B
sl A x) = lim - inf - (on ") 1(4 0 By(x))
= lim inf (w,0")"'u(4 N By(x))
Jj—000<p<l1/j

is also Borel measurable. Similarly since (4 N B,(x)) is lower semi-continuous
(where B,(x) denotes the open ball of radius p and center x) and ©*" (u, A, x) can
be written lim; o0 supy_ -y /; (@np™") ' t(AN B,(x)), we also have ©*" (1, A, x) is
Borel measurable.

Subsequently we use the notation that if ®*"(u, A, x) = ©%(u, A, x) then the com-
mon value will be denoted ©" (, A4, x).
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Appropriate information about the upper density gives connections between p and
H". Specifically, we have the following comparison theorem:

3.3 Theorem. Let p be a Borel-regular measure on the metric space X, t > 0, and
Ay Cc A, C X. Then

O (n, Az, x) >t Vx € Ay = tH" (A1) < u(A4z),

An important special case of this theorem is the case A; = A4,. Notice that we do
not need to assume Ay, A, are p-measurable here.

The proof of 3.3 will make use of the following important “5-times covering lemma,”
in which we use the notation that if B is a ball B,(x) C X, then B = Bs,(x).

3.4 Lemma (5-times Covering Lemma). If B is any family of closed balls in X with
R = sup{diam B : B € B} < oo, then there is a pairwise disjoint subcollection B' C B
such that

UpesB C Upep'B;

in fact we can arrange the stronger property

BeB=3B eB withB' N B # D and

(%) 1

diam(B’) > = diam(B), hence B’ > B.

N |

Proof: For j = 1,2,...let B; = {B € B: R/2/ < diam B < R/2/7'}, so that
B = U2, B;, and this is a pairwise disjoint union. Proceed to define B; C B; as
follows:

(1) Let B be any maximal pairwise disjoint subcollection of By. Such Bj exist by
applying Zorn’s lemma to C = {A : A s a pairwise disjoint subcollection of By },
which is partially ordered by inclusion; notice for any totally ordered subcollection
T C C we clearly have U 4e7A € C, so Zorn’s lemma is indeed applicable. Notice
also that in a general metric space the collection B] could be uncountable, but of
course in a separable metric space (i.e. a metric space with a countable dense subset)
all pairwise disjoint collections of balls must be countable.

(i) Assuming j > 2 and that B C By,....Bj_; C Bj_; are defined, let B; be a

maximal pairwise disjoint subcollection of {B € B; : BN B’ = @ whenever B’ €
U/Z1B/}. Again, Zorn’s lemma guarantees such a maximal collection exists.

Now if j > 1 and B € B; we must have

BN B’ # @ for some B' € U/_,B!
(otherwise we contradict maximality of B;), and for such a pair B, B’ we have
diam B < R/2/~! = 2R/2/ < 2diam B/, so that (%) holds; in particular B ¢ B’. O
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In the following corollary we use the terminology that a subset A C X is covered
finely by a collection B of balls, meaning that for each x € 4 and each ¢ > 0, there
isaball B € Bwith x € Band diam B < e.

3.5 Corollary. If B is as in Theorem 3.4, if A is a subset of X covered finely by B, and
if B' C B is any pairwise disjoint subcollection of B satisfying 3.4 (%), then

N .
A\Uj=1Bj C UBenn{Bi,..By}

for each finite subcollection { By, . . ., By} C B

Proof: Let x € A\ UN_, B;. Since B covers A finely and since X \ UM, B; is open,
we can then find B € B with BN (Ul B;) = @ and x € B, and (by 3.4(})) find
B’ € B'with BPN B # @ and B’ O B. Evidently B’ # B; Vj = 1,...,N, so

e UB’GB’\{BI ..... BN}B/' O

Proof of 3.3: We can assume u(A,) < oo and ¢ > 0 otherwise the result is trivial.
Take 7 € (0,1), so that then

©*"(u, Az, x) > tfor x € Ay.
For § > 0, let B (depending on §) be defined by
B = {closed balls B,(x) : x € A1, 0 < p <8/2,u(A2 N By(x)) = twnp" }.

Evidently B covers A; finely and hence there is a disjoint subcollection B’ C B so
that 3.4 (1) holds. Since u(A2 N B) > 0 for each B € B and since By,....By €
B = Zf;l (A2 N Bj) = p(A; N (UN; B;)) < u(A42) < oo it follows that B’ is a
countable collection {B,, (x1), By, (x2), ...} and hence 3.5 implies

AL\ UM By, (x5) C U2y Bsp, (xj) VN > 1.

and also © 3372 wnpf = 372 u(A2 N By, (x))) = w(A2 N (U, By, (x)))) <
(Az) < oo. Thus Ay C (UM By, (x;)) U (U2, Bsp; (x;)) and hence by the
definition 2.2 of Hj we have

N
Hss (A1) = 2510np] + 5" 52 N1 @npf -

Hence letting N — oo we deduce
Aty (A1) = u(4o)

Letting § | 0 and then t 1 ¢, we then have the required result. O
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As a corollary to 3.3 we can prove the following

3.6 Theorem (Upper Density Theorem.) If i is Borel regular on X and if A is a
w-measurable subset of X with 1(A) < oo, then

O*"(n, A, x) =0 for H"-a.e. x € X \ A.

3.7 Remarks: (1) Of course 1 = H" is an important special case.

(2) It X = U, V; with V; open and u(V;) < oo for each j = 1,2,..., then one
can drop the hypothesis that 1(A4) < oo, because we can apply the theorem with
p L V; in place of u to conclude that

O (1, A,x) = 0" (u,ANV;,x) =0for H"-ae.x e V;\ A, j =1,2,...,
and hence ©*"(u, A,x) = 0 for H"-a.e. x € X \ A.

Proof of 3.6: Let7 > 0and S; = {x € X \ 4 : ©*"(u,A.x) = t}, and let C be
any closed subset of A. Since X \ C is open and S; € X \ A C X \ C we have
O*"(u, AN (X \C),x) = 0*"(u,A,x) >t for x € S;. Thus we can apply 3.3
with L A4, S;, X \ C in place of u, Ay, Az to give 1" (S;) < u(A\ C) for each
closed set C C A. But according to 1.15(2) we can choose closed C = C; C A with
n(A\ Cj) — 0, so we have H"(S;) = 0. Taking ¢t = 1/i,i = 1,2,..., we thus
conclude H"({x e X \ A: ©*"(un,A,x) >0}) =0. O

Notice that we have the following important corollary to the above theorem:

3.8 Corollary. If A C R" is L" -measurable then the density ©" (L", A, x) exists L"-a.e.
onR", and O"(L", A, x) =0 L"-ae. onR"\ Aand =1 L"-a.e. on A.

Proof: Indeed (w,p")™1L"(A N By(x)) + (wnp™) L™ (By(x) \ A) = 1 for each
p > 0, and, by the Upper Density Theorem, the first term on the left — 0 asp | 0
for £"-a.e. x € R" \ A while the second term on the left — 0 as p | 0 for £"-a.e.
xeA. O

We next want to discuss the possibility of extending the Comparison and Upper
Density Theorems 3.3, 3.6 (and hence the above corollary) to the situation when
we consider the upper density of a Borel regular measure p with respect to another
Borel regular measure po. In this case we always assume g is locally finite, so that
for each x € X there is p > 0 with 119(B,(x)) < co. We note that this is automatic if
Mo is open o-finite as in 1.14. Then the upper density ®*#0 (u, x) of u with respect

§3 oF CHAPTER 1: DENSITIES 17
to wo at the point x € X is defined by

)
imsup ——+
pbo Ho(By(x))

00 for x € Uy \ Vo

0 for x € Vj,

forx € X \ (Up U Vp)
3.9 O*H0 (1, x) =

where Uy is the open set consisting of all points x € X with uo(B,y(x)) = 0 for
some p > 0 and Vj is the open set consisting of all points x € X with u(B,(x)) =0
for some p > 0. Notice @*#0(p, x) = ©*"(u, x) in the special case when X = R”
and po = L".

To prove a useful analogue to the Upper Density Theorem 3.6 in this situation
we need to assume that o has the “Symmetric Vitali” property according to the
following definition:

3.10 Definition (Symmetric Vitali Property): An outer measure o on the met-
ric space X is said to have the Symmetric Vitali Property if, given any 4 C X with
po(A) < oo and and any collection B of closed balls with centers in A which cover A
finely (i.e. inf{p : B,(x) € B} = 0 for each x € A), there is a countable pairwise dis-
joint collection B" = { By, (x;) : j = 1,2,...} C Bwith j1o(A\ (U2, B, (x;))) = 0.

Before proceeding, we make some important notes concerning the open set Uy
in 3.9 and the Symmetric Vitali Property:

3.11 Remarks: (1) First note that there are various scenarios which guarantee
that the open set Uy in the definition 3.9 of the density ©*#0(u, x) has j1o-measure
zero. For example if X is separable (i.e. X has a countable dense subset) then any
open set, including Uy, can be written as a countable union of balls B,(x) c U,
and hence Uy certainly has j1o-measure zero in this case. Also, if 1o is o-finite and
has the Symmetric Vitali Property, then (because Uy is trivially covered finely by
the balls B,(x) C Up) then there is a countable collection of balls contained in Uy
covering po-almost all of Up), so again 1o(Up) = 0.

(2) Observe also that in case X is a separable this Symmetric Vitali Property is
satisfied by any Borel regular measure o with 110(X) < oo which has the “doubling
property” that there is a fixed constant C such that

(%) po(Bap(x)) < Cuo(Bp(x)) V¥ closed ball B,(x) C X.

Indeed in this case, given A C X with (A4) < oo and a collection B of closed balls
which cover A finely, by the Corollary 3.5 of the 5-times Covering Lemma we can
select a pairwise disjoint subcollection B’ (which is countable by the separability of
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X, hence expressible B = {B,, (x;) : j = 1.2,...}) with
ANABp (x1), - Boy (xn)} C UFZy 41 Bsp; ()
and hence, since o(Bsp(x)) < po(Bsp(x)) < C3uo(B,(x)) by (1),
po(AN{ By, (x1)..... Bpy (xn)}) = CP3 72y 4 110(By; (x)) = 0as N — o0

because Y o(By, (x;)) = po(U; By, (x;)) < co. Thus

po(AN\ (UFZ, By, (x/))) = 0,
as claimed.
(3) A very important fact is that any Borel regular measure 1o on R” which is finite

on each compact subset automatically has the Symmetric Vitali Property. In order
to check this we’ll need the following famous covering lemma due to Besicovitch:

3.12 Lemma (Besicovitch Covering Lemma.) Suppose B is a collection of closed
balls in R", let A be the set of centers, and suppose the set of all radii of balls in B is
a bounded set. Then there are sub-collections By, . . ., By C B(N = N(n)) such that
each B; is a pairwise disjoint (or empty) collection, and UN_, B; still covers A : A C
ujl.":1 (Upes; B).

We emphasize that N is a certain fixed constant depending only on n. For the proof
of this lemma we refer for example to [EG92] or [Fed69].

Proof of Remark 3.11(3): Let u be a Radon measure on R”, A C R" with
u(A) < oo, B acollection of closed balls with centers in A covering A finely. By the
Besicovitch lemma we can choose By, ..., By C {B € B: diam B < 1} such that
Uj\;ll’)’j covers A. Then for at least one j € {1,..., N} we get

1(A\ Upes, B) = (1 - %)/L(A)

and hence taking a suitable finite subcollection {By...., Bg} C B;,
1
Q
(AN U Br) < (1- W)M(A)

Since B covers A finely, and since Ug=lBk is closed, the collection B = {BeB:
BN (U;?lek) = @} covers A\ nglek finely, so with 4\ U;‘?lek in place of A

the same argument says that we can select new balls Bo 41, ..., B, € B such that
1
WA\ UL Be) = (1 Syl A\ U2, B
1 |2
<(1-=— A).
= (1= 55) w(4)

Continuing (inductively) in this way, we conclude that there is a pairwise disjoint
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sequence By, Ba, ... of balls in B such that
p(A\ U, By) = 0.
Thus Remark 3.11(3) is established. O

We now want to prove an analogue of the Comparison Theorem 3.3 in case we use
@*#0(u, x) of 3.9 in place of the upper density ©@*" (p, x).

3.13 Theorem. Suppose . jro are open o-finite (as in 1.14) Borel regular measures on
X, po and has the Symmetric Vitali Property, and A C X, t > 0. Then

O (u,x) >t forall x € A = u(A) > tpo(A).
Note: A4 is not assumed to be measurable.

Proof: The proof is similar to the proof of Theorem 3.3, except that we use the
Symmetric Vitali Property for o in place of the 5 times Covering Lemma: First
let Uy be the open set of 1o measure zero as in the definition 3.9. As observed in
Remark 3.11(1) we have po(Up) = 0. We can assume without loss of generality
that 7 > 0. Let U D A be open, T € (0,7), and consider the collection B of all
closed balls B,(x) c U with x € AN X \ Up such that u(NB,(x)) > teo(Bp(x)).
Evidently B covers A N (X \ Up) finely, so by the Symmetric Vitali Property for o
there is a countable pairwise disjoint subcollection B, (x;), j = 1.2,..., of B with
po(A\ (UjBy; (x;))) = 0. Then u(A N By, (x;)) = tpo(By, (x;)) for each j, and
hence by summing we obtain

tio(A4) = (U By, (%)) = w(U).
Since j1(A) = infy open ,u>4 #(U) by Theorem 1.15, we thus have the stated result
by letting t 1 ¢. O
Observe that in particular the above comparison lemma gives

3.14 Corollary. If u, juo are as in Theorem 3.13 above then ©*"0(ju,x) < oo for
Ho-a.e. x € X.

Proof: We are given open V; with X = U;V; and uo(V;) < oo for each j. Let
wi =pLV,j=1.2,... Theorem3.13, with A, = {x € V;\Up : @*#0(u,x) >t}
in place of A and y; in place of u, implies

ol Ar) < 13 (Ar) < (V) V1 >0,
so uo({x € V; : ®*#o(p,x) = oo}) <t~ 1u(V;) for each 7 > 0, hence po({x € V; :
O@*H0(u,x) =o0}) =0foreach j; O
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As a second corollary we state the following general Upper Density Theorem:

3.15 Theorem (General Upper Density Th.) If u, o are Borel regular on X, if
o open o-finite (as in 1.14) and has the Symmetric Vitali Property, and if A is a -
measurable subset of X with u(A) < oo, then

"o (L A, x) =0 for po-a.e. x € X \ A.

Proof: XXX The proof is essentially the same as the proof of Theorem 3.6, except
that we use the general comparison theorem 3.13 in place of 3.3. The details are left
as an exercise. [

Using the above theorem we can now prove the general density theorem:

3.16 Theorem. If 11 is open o-finite (as in 1.14) Borel regular measure on X, if ju has
the Symmetric Vitali Property, and if A is a ji-measurable subset of X, then

[ AANBy(x)) { 1 paexeAd

pdo j(Bp(x)) 0 paexecX\A
Proof: Since X = U;V; with V; open and (V;) < oo for each j, we can assume
without loss of generality that u(X) < co. As in Remark 3.11(1) we see that the set
of x € X such that u(B,(x)) = 0 for some p > 0 is an open set Uy with u(Up) = 0.
For x € X \ Uy we have

AN B,y(x))  u(Bp(x)\A)
1(Bp(x)) 1(Bp(x))

and the first term on the left — 0 for p-a.e. x € X \ A by the Upper Density
Theorem 3.15 with uy = u, whereas the second term on the left — 0 for p-a.e.

=1 foreachp>0,

x € A by the same theorem with yo = 1 and X \ 4 in place of A. O

The following Lebesgue differentiation theorem is an easy corollary:

3.17 Corollary. If X.p are as in Theorem 3.16 and if f : X — R is locally p-
integrable on X (v.e. f is p-measurable and x € X = [, B, | fldin < 00 for some
p > 0), then

lim (B, (x)) " |, =S for peae x e X

Proof: Since f = max{ f,0} —max{— f,0} we can assume without loss of generality
that f > 0. Let vo(A) = [, f du for each Borel set A C X, and let v be the
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associated Borel regular outer measure on X as described in Remark 1.11. For each

i,j=12,...lecA;; = f~'[j —1)/i, j/i) and observe that
w(Bo(r) N 45 (G = 1)/i < [ fdp = v(Ay 0 By(x))

(%) A;jNBp(x)

=/, (x)f dp—v(By(x)\ Aij) < u(Bo(x) N Aij) j/i.

By Theorem 3.16,

lim((B(x))) ™ 1(Bo(x) 1 Ayy) = 1 and lim(u(B,(x))) ™ 1(Bo(x) \ A1) =0

for p-a.e. x € A;;, and by the Upper Density Theorem 3.15 (with v, u in place of
W, jo respectively), we also have

lim (1 (B, (1)) (By () \ ) =0
for p-a.e. x € A;j. Since (j —1)/i < f(x) < j/i on Ajj, (*) then implies
f(x)=1/i <liminf(u(B,(x)))™" fdu
pl0 By(

o(x)

< limsup(u(B,(x))) ™" fdp< f(x)+1/i
o0 Bp(x)

for p-ae.x e X,i =1,2,.... O

Of course we can also take the lower density ®4°(u,x) of u with respect to o
which we define analogously to the upper density in 3.9, by

B
liminfM forx e X \ (Uy U Vp)
3.18 OL°(p.x) = e (Bl
) X = 00 forx e Up \ Vy
0 for x € 1,

with Up, Vo as in 3.9. Then there is an analogue of the Comparison Theorem 3.13
for the lower density. Preparatory to that we need the following lemma:

3.19 Lemma. If u, juo is any pair of Borel regular measures on X with u o-finite, then
there is a Borel set B C X with juo(B) = 0and L (X \ B) absolutely continnous with
respect to o (L.e. jo(S) =0= u(S\ B)=0VS C X).

Proof: Case 1: u(X) < oo. In this case let A = {Borel sets 4 C X with po(A) =
0}, @ = sup{u(A4) : A € A}, and choose a sequence 4; € A with lim u(4;) = a.
Then B =U;Aj € Aand if S C X with uo(S) = 0 then, by Borel regularity of o,
we can select A € Awith S C Aand u(S\B) < u(A\B) = u(BU(A\B))—u(B) <
o —a = 0, so B has the required property.
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Case 2: The general case when p is o-finite. In this case we can select an increasing
sequence A; of Borel sets with X = U;A4; and u(A4;) < oo for each j. Apply-
ing Case 1 to L Aj, there is a Borel set B; with po(Bj) = 0and uL (4; \ B))
absolutely continuous with respect to pg. So we can take B = U; B;. O

3.20 Remark: The set B is evidently unique up to a set of y-measure zero, so the
Borel regular measure 1 L (X \ B) is uniquely determined; it is called the absolutely
continuous part of p relative to .

We can now prove an analogue of the Comparison Theorem 3.13 for the lower
density:

3.21 Theorem. Suppose ., jro are open o-finite (as in 1.14) Borel regular measures on
X,t>0,and A C X with ®°(u,x) <t forall x € A.
(1) If w has the Symmetric Vitali Property then ju(A) < tpo(A).

(i1) If wo has the Symmetric Vitali Property then (A \ B) < tjuo(A), where B
(with jo(B) = 0) is as in 3.19.

Proof: The proof is similar to the proof of Theorem 3.13. In view of the open o-
finiteness property we can suppose without loss of generality that both u(X) < oo
and po(X) < oo.

Proof of (i): First observe that A € X \Uj (because, by Definition 3.18, ®4°(u, x) =
oo on Up). Let © > t. By Theorem 1.15(1) we can select an open U D A with
wo(U) < pmo(A) +1 —1t.

Define

B={B,(x) CU:x€Aand u(By(x)) < tio(By(x))}.
B evidently covers A finely, so by the Symmetric Vitali Property for p there is a

pairwise disjoint collection By, (x;) with n(A\(U; B, (x;))) = 0and u(B,, (x;))
tio(By; (x;)) for each j. By summing on j we then have u(A4) < tuo(U)

IAIA

t(po(A) + 7 —1), so letting T | 0 gives the required result.

Proof of (i1): With B be as in Lemma 3.19, & = p L (X \ B) is absolutely contin-
uous with respect to uo, hence the Symmetric Vitali Property for po implies the
Symmetric Vitali Property for f, so we can apply part (i) with 4 \ B in place of A
and [ in place of u. This gives the required result. O

We define the density ®#0 (1, x) to be the common value of ®*#0(u, x) and O4° (., x)
at points where these quantities are equal. Thus if Uy, V, are the open sets in 3.9
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and 3.18, then
B,(x
lim M if x € X \ (Up U Vp) and this limit exists
p0 f1o(Bp(x))
3.22 OM(u,x) = .
00 at pomnts x € Up \ Vp
0 at points x € Vp,

and ©#0(u, x) is undefined at points where ©4° (, x) < @*40(u, x).

3.23 Theorem (Differentiation Theorem.) Suppose ., jo are open o-finite (as in 1.14)
Borel regular measures on X .

(1) If w has the Symmetric Vitali Property, then there is a Borel set S of ju-measure
zero such that @0 (w, x) (as in 3.22) exists forall x € X \ S.

(11) If po has the Symmetric Vitali Property, then there is a Borel set S of juo-measure
zero such ©10 (u, x) exists and is finite forall x € X \ S.

In either case ©"0 (1, x) is a Borel measurable function of x € X \ S.

Proof: First assume j1o(X), (X) < oo and let A C X be any Borel set.
To prove (i) first note that by the Comparison Theorems 3.13 and 3.21(i), for any
given a,b > 0,
(1) Ot (u,x) <aand @0 (u,x) > bforallx € A
= u(A) < apo(A) and buo(A4) < p(A).

In particular if 0 < a < b and

Egp={xeX\Uy: 0L (u,x)<a<b<O"(ux)}
then a 'w(E,p) < o(Eap) < b 'u(E,p), which implies that

(2) po(Eap) = (Eap) = 0.

Since {x : O (1, x) < O (1, x)} = Uy p rational, a<b Ea,p We deduce from (2) that
AL (i, x) = ©**0(u, x) for po-a.e. x € X \ Uy, so indeed ®H0 (u, x) exists and is
in [0, 00] for p-a.e. x € X \ Up. O®H0(pu, x) is also defined in Uy by Definition 3.22.

Thus ©#0(u, x) is well-defined p-a.e., so by Borel regularity of i there is a Borel set
S with pu(S) = 0 such that ®#0(u, x) is well-defined for all x € X \ S.

The measurability of ©#0(u,x) as a function of x € X \ S is proved as follows:
For each fixed p > 0, (B, (x)) and po(B,(x)) are positive upper semi-continuous
functions of x € X \ (S U Vo U Up), hence are Borel measurable functions on
X \ (S U Vo UUy), and hence so is the quotient wu(By(x))/po(By(x)). Hence
OHM0(p,x) = limjoo it(Biyi(x))/mo(B1yi(x)) is Borel measurable on X \ (S U
Vo UUy). Finally, by Definition 3.22, ©#0(u, x) = oo on Uy \ Vo and ©#0(u, x) =0
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on Vy. Since Uy, Vy are open we then conclude that indeed ®#0(u,x) is Borel
measurable in case , (o are finite measures. In the general open o-finite case, when
there are open sets V; with U;V; = X and u(V}), uo(V;) < oo, we apply the above
with L Vj, o L V; in place of i, po respectively.

To prove (ii), note first that by Corollary 3.14 we have
(3) @**0(u, x) < oo for po-a.e. x € X.

As in 3.19, let B be a Borel set of po-measure zero such that it = u L (X \ B) is ab-
solutely continuous with respect to wo. Then & has the Symmetric Vitali Property,
and hence the argument of (1) above applies with & in place of x to give

(4) /LO(Ea,b) = V“(Ea,b \ B) =0,

in place of (2). Hence ©*0(u, x) exists for po-a.e. x € X, and by (3) it is also finite
for po-a.e. x € X, hence there is a Borel set S with 1o(S) = 0 such that ®#0(pu, x)
exists and 1s finite forall x € X \ S.

The measurability of ©#0(u, x) follows similarly to case (i) above. O

Next, recall the abstract Radon-Nikodym theorem, which says that if u, uo are
abstract o-finite measures on a o-algebra A of subsets of an abstract space X, and
if w is absolutely continuous with respect to o (i.e. A € A with uo(4) = 0 =
wu(A) = 0), then there is a non-negative A—measurable function 6 on X such that

w(A) :/AGd,uo, Ae A

In these circumstances the function 6 is called “the Radon-Nikodym derivative” of
p with respect to o, denoted ddﬁ or Dy, .

We show here that in case 1, o are Borel regular open o-finite (as in 1.14) on the

metric space X with po having the Symmetric Vitali Property, then the Radon-
w(Bp(x)) .
o (B ())°

3.24 Theorem (Radon-Nikodym.) Suppose ., po are open o-finite (as in 1.14) Borel
regular measures on X, and jvo has the Symmetric Vitali Property.

Nikodym derivative D, (x) is just the density ©#0(u,x) = lim, o

(1) If p is absolutely continuous with respect to po (i.e. E C X with juo(E) = 0 =
w(E) = 0 and hence y also has the Symmetric Vitali Property), then

(%) n(A) = /AGMO(M,x) duo(x) for every Borel set A C X.

(11) If we drop the condition that  is absolutely continuous with respect to o, then
in place of () we can still conclude that there is a Borel set Z with po(Z) = 0 and

®) p(A) = [ (%) duo(x) + (L Z)(4),
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for each Borel set A C X.
(i1) Finally, if  also has the Symmetric Vitali Property, then we get (%) with
Z={xeX:0M"(ux)=o0}
(which is a set of jLo-measure zero by 3.23(ii)).

3.25 Remarks: (1) By Remark 3.11(3) we always have the conclusion of 3.23(iii)
if X =R".
(2) wL Z is called the singular part of  with respect to po.

Proof of Theorem 3.24: Since u, ;o are open o-finite, we can assume pu(X) <
00, o(X) < oco. Let S be a Borel set of po-measure zero as in Theorem 3.23. For
any Borel set A € X \ S let

v(d) = [ 0" (u.x) dpto(x)

and for any subset A C X \ S let v(A) = infg5 4 B Borel V(B). By Remark 1.11, v is
a Radon measure and, with0 <a < b, 4, = {x € A1a < ©®"*(pu,x) <b} and A
any Borel set, we have

apo(Aap) <v(Aap) < bpo(Aap).

On the other hand the Comparison Theorems 3.13, 3.21 (i) imply

ao (Aa,b) =< /’L(Aa,b) = bl'LO (Aa,b),

and so

b
gMO(Aa,b) <v(Aap) < ZMO(Aa,b)

and it follows that v(A) = p(A4). Thus (*) is proved.

In the general case (when we allow the possibility that there are sets A with po(A) =
0and u(A) > 0), we can apply the previous argument to the Borel regular measure
= wpl (X \ B), where B is the set of pio-measure zero of Lemma 3.19. This gives

w(A\ B) = /@“O(M,x)duo V Borel set A C X.
4

Thus 3.23 (1) holds with Z = B.

Finally, in case u also has the Symmetric Vitali Property, Theorem 3.23(i) estab-
lishes that ®#0 (u, x) exists p-almost everywhere (as well as p1o-almost everywhere)
in X. On the other hand if X = X \Upand 4 C {x € X : ©*0(u,x) < oo} (=
U {x € X :©"0(u,x) <n}) then by Theorem 3.21(i)

fo(A) =0= p(4) =0,
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and we can therefore apply (x) with L (X \ Z), Z = {x : ®"0(pu,x) = oo}, in
place of u. Hence (iii) is proved. O

We conclude this section with two important bounds for densities with respect to
Hausdorff measure.

3.26 Theorem. For any H"-measurable subset of A of X :
(1) If 1" (A) < oo, then ©*" (H", A, x) < 1 for H"-a.e. x € A.
(2) If H§(A) < oo for each § > 0 (note this is automatic if A is a totally bounded
subset of X), then ©*" (H2,, A, x) > 27" for H"-a.e. x € A.
3.27 Remark: Since H" > H} > H% (by Definitions 2.1, 2.2) this theorem implies
27" <O (H", A, x) < lfor H"-ae. x € A,
provided H"(A) < occ.
Proof of 3.26: To prove (1), let &, > 0,let A, = {x € A: ©*"(H", A, x) >t} and
(using 1.15(1) with u = H" L A), choose an open set U D A, such that
HH(U N A) <H"(A) +e.
Since U is open and since A; C U we have ©*" (7—[”, AN U,x) >t for each x € 4,.
Hence 3.3 (with H" L 4, A;, AN U in place of u, A1, A2) implies that
M (A:) <H'(ANU) <H"(A;) + -

We thus have H"(A;) = 0 for each t > 1. Since {x : ©*"(H". A, x) > 1} =
U2, 4y, for any decreasing sequence {7; } with limz; = 1, we thus have #"{x :
©*"(H", A, x) > 1} =0, as required.

To prove (2), suppose for contradiction that ©*" (Ha L A,x) <2" foreach x ina
set By C A with H" (By) > 0. Then for each x € By select 8, € (0,1) such that

HA (AN By(x)) < Sxa),,p”, 0<p <éx.

21’1

Therefore, since By = U;?‘;l{x € By : 8x > 1/j} and since Hj (A N B,y(x)) =
H2 (A N By(x)) for any p < /2 (by Definition 2.2), we can select § > 0 and
B C By with H"(B) > 0 and

1—
(1) H5 (AN By(x)) SZTSwnp”, 0<p<§/2, x €B.

XXX Now using 2.2 again, we can choose sets C1, Ca, ... with B C US2,C;, C; N
B # @,diamC; <§Vj, and

1 :
(2) >.@np; < mHE(B) p; = diam C; /2
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Now take x; € C; N B, so that B C AN (U2, By, (x;)), and we conclude from
(1), (2) that H§(B) = 0, hence H"(B) = 0, contradicting our choice of B. O

4 Radon Measures, Representation Theorem

In this section we work mainly in locally compact Hausdorfl spaces, and for the
reader’s convenience we recall some basic definitions and preliminary topological
results for such spaces.

Recall that a topological space is said to be Hausdorft if it has the property that for
every pair of distinct points x,y € X there are open sets U,V withx e U,y € V
and U NV = @. In such a space all compact sets are antomatically closed, the proof of
which is as follows: observe that if x ¢ K then for each y € K we can (by definition
of Hausdorft space) pick open U, V, with x € U,, y € V, and U, NV, = @. By
compactness of K there is a finite set y;,...,yy € K with K C Ujvleyj. But
then N_, U, is an open set containing x which is disjoint from U; ¥, and hence
disjoint from K, so that K is closed as claimed. In fact we proved a bit more: that
for each x ¢ K there are disjoint open sets U,V with x € U and K C V. Then
if L is another compact set disjoint from K we can repeat this for each x € L thus
obtaining disjoint open Uy, Vy with x € U, and K C V, and then compactness of L
implies 3xy,...,xp € Lsuchthat L C U}"’:IUXJ. and then Uj-”:Iij and ﬂ;"’:Iij are
disjoint open sets containing L and K respectively. By a simple inductive argument
(left as an exercise) we can extend this to finite pairwise disjoint unions of compact
subsets:

4.1 Lemma. Let X be a Hausdor[f space and K, . . ., Kn be pairwise disjoint compact
subsets of X. Then there are pairwise disjoint open subsets Uy, ..., Uy with K; C U;
foreach j =1,..., N.

Notice in particular that we have the following corollary of Lemma 4.1:

4.2 Corollary. A compact Hausdor[f space is normal: i.e. given closed disjoint subsets
K1, K> of a compact Hausdorff space, we can find disjoint open Uy, U, with K; C U,
forj =1.2.

Most of the rest of the discussion here takes place in locally compact Hausdorft

space: A space X is said to be locally compact if for each x € X there is a neighbor-
hood Uy of x such that the closure U, of Uy is compact.

An important preliminary lemma in such spaces is:

4.3 Lemma. If X is a locally compact Hausdorff space and V is a neighborhood of a
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point x, then there is a neighborhood Uy of x such that Uy is a compact subset of V.

Proof: First pick a neighborhood Wy of x such that W, is compact and define
W = Won V. Then W is compact and hence, with the subspace topology, is
normal by Corollary 1 above. Hence since W \ W and {x} are disjoint closed sets
in this space, and since open sets in the subspace W can by definition be expressed
as the intersection of open sets from X with the subset W, we can find open Uy, U,
in the space X with x € U, W\ W C Uy and U; N U, N W = @. The last identity
says Uy N W C W\ Us, whence x e Uy N W € W\ U, € W C V, and since W \ U,
is a closed set, we then have x e UyNn W c Uy N W c W\ U, C V, so the lemma is
proved with Uy = Uy nW. O

Remark: In locally compact Hausdorfl space, using Lemmas 4.1 and 4.3 it is easy
to check that we can select the U; in Lemma 4.1 above to have compact pairwise
disjoint closures.

The following lemma is a version of the Urysohn lemma valid in locally compact
Hausdorft space:

4.4 Lemma. Let X be a locally compact Hausdorff space, K C X compact,and K C V,
V open. Then there isan open U D K withU C V, U compact, andan f : X — [0,1]
with f = 1 in a neighborhood of K and f = 0on X \ U.

Proof: By Lemma 4.3 each x € K has a neighborhood U, with U, C V. Then
by compactness of K we have K ¢ U = U Uy, for some finite collection
X1,...,xy € Kand U = Uj\;lij C V. Now U is compact, so by Corollary 1
it is a normal space and the Urysohn lemma can be applied to give fo : U — [0, 1]
with fo = 1 on K and and fo = 0 on U \ U. Then of course the function f;
defined by f1 = fo on U and f; = 0 on X \ U is continuous (check!) because f|U
is continuous and f is identically zero (the value of f|X \ U) on the overlap set
U\U=Un(X\U). Finally we let f =2min{f;, 1} and observe that f is then
identically 1 in the set where fi > 1, which is an open set containing K, and f

evidently has all the remaining stated properties. O

The following corollary of Lemma 4.4 is important:

4.5 Corollary (Partition of Unity.) If X isa locally compact Hausdorff space, K C X
is compact, and if Uy, . .., Uy is any open cover for K, then there exist continunous ¢; :
X — [0, 1] such that support ¢; is a compact subset of U; for each j, and Zj-vzﬁpj =1
in a neighborhood of K.
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Proof: By Lemma 4.3, for each x € K thereisa j € {1,..., N} and a neighborhood
U, of x such that Uy is a compact subset of this U;. By compactness of K we have
finitely many of these neighborhoods, say Uy, ..., Uy with K c UX_ Uy,. Then
foreach j =1,..., N we define V; to be the union of all Uy, such that Uy, C U;.
Then the V; is a compact subset of U; for each j, and the V; cover K. So by
Lemma 4.4 for each j = 1,...,N we can select ¥; : X — [0,1] with y; = 1
on V; and ¥; = 0 on X \ W; for some open W; with W; a compact subset of U;
and W; D V;. We can also use Lemma 4.4 to select fo : X — [0,1] with fo = 1
in the neighborhood UY_, V; of K and fo = 0 on {x : Zj\;le (x) = 0}. (This
latter set is closed and has (open) complement which is a neighborhood of the
compact set U, V; and so we can indeed construct such fo by Lemma 4.4.) Then
set Yo = 1 — fo and observe that by construction Zf-vzolﬁi > 0 everywhere on X, so
we can define continuous functions ¢; by

(2]
Zfiol/fi

Evidently these functions have the required properties. O

Qi = ]=1,,N

We now give the definition of Radon measure. Radon measures are typically used
only in locally compact Hausdorff space, but the definition and the first two lemmas
following it are valid in arbitrary Hausdorff space:

4.6 Definition: Given a Hausdorff space X, a “Radon measure” on X is an outer
measure © on X having the 3 properties:

w is Borel regular and 1(K) < oo V compact K C X (R1)

w(A)= inf p(U)foreach subset 4 C X (R2)
U open,UDA

w(U) = sup w(K) for each open U C X. (R3)

K compact, KCU

Such measures automatically have a property like (R3) with an arbitrary u-measurable
subset of finite measure:

4.7 Lemma. Let X be a Hausdorff space and u a Radon measure on X. Then
antomatically has the property

w(d)=  sup = p(K)
KCA, K compact

for every p-measurable set A C X with u(A) < oc.

Proof: Let ¢ > 0. By definition of Radon measure we can choose an open U
containing A with u(U \ A) < ¢, and then a compact K ¢ U with (U \ K) < ¢
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and finally an open W containing U \ A with u(W \ (U \ A)) < ¢ (so that u(W) <
e+ u(U\ A) < 2¢). Then we have that K\ W is a compact subset of U \ W, which
1s a subset of 4, and also

WA\ (K\W)) < w(U\ (K\W)) < u(U\K) + u(W) < 3.

which completes the proof. O

The following lemma asserts that the defining property (R1) of Radon measures
follows automatically from the remaining two properties ((R2) and (R3)) in case u
is finite and additive on finite disjoint unions of compact sets.

4.8 Lemma. Let X be a Hausdor[f space and assume that w is an outer measure on X
satisfying the properties (R2), (R3) above, and in addition assume that

w(Ky1 U Ky) = u(Ky) + u(Kz) < oo whenever Ky, Ky are compact and disjoint.
Then (R1) holds and hence ju is a Radon measure.

Proof: Note that (R2) implies that for every set A C X we can find open sets
U; such that A € N;U; and u(A) = n(N;U;). So to complete the proof of (R1)
we just have to check that all Borel sets are u-measurable; since the u-measurable
sets form a o-algebra and the Borel sets form the smallest o-algebra of subsets of X
which contains all the open sets, we thus need only to check that all open sets are
pu-measurable.

Let ¢ > 0 be arbitrary, Y an arbitrary subset of X with u(Y) < oo and let U
be an arbitrary open subset of X. By (R2) we can pick an open set V > Y with
w(V) < n(Y) + & and by (R3) we can pick a compact set Ky C V N U with
w(VNU) < u(Ky) + ¢, and then a compact set K, C V' \ K; with u(V \ K;) <
pn(Kz) + e Then

w(VAU) +p(VNU) < pu(V\Ky) + p(Ky) + e
< w(Kz) + n(Kq) +2¢
= n(K2 U Ky) + 2¢ (by (1))
<u(VNK))UKy) +2e=pu(V)+2e < pu(Y) + 3e,

hence u(Y \U) + w(Y NU) < u(V\U)+ pn(VNU) < u(Y) + 3¢ which by
arbitrariness of ¢ gives u(Y \ U) + n(Y N U) < u(Y), which establishes the u-
measurability of U. Thus all open sets are p-measurable, and hence all Borel sets
are u-measurable, and so (R1) is established. O

The following lemma guarantees the convenient fact that, in a locally compact space
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such that all open subsets are o-compact, all locally finite Borel regular outer mea-
sures are in fact Radon measures.

4.9 Lemma. Let X be a locally compact Hausdorff space and suppose that each open set
is the countable union of compact subsets. Then any Borel regular outer measure on X
which is finite on each compact set is automatically a Radon measure.

Proof: First observe that in a Hausdorff space X the statement “each open set
is the countable union of compact subsets” is equivalent to the statement “X is
o-compact (i.e. the countable union of compact sets) and every closed set is the
countable intersection of open sets” as one readily checks by using De Morgan’s
laws and the fact that a set is open if and only if its complement is closed. Thus we
have at our disposal the facts that X is o-compact and every closed set is a countable
intersection of open sets. The latter fact enables us to apply the Theorem 1.15 on
Borel regular outer measures, and we can therefore assert that

(1) p(4)= v ian UM(U) whenever A C X has the property
open, AC
3 open V; with A C U;V; and u(V;) <oo Vj
and
(2) w(A)= sup wu(C), provided A = U; A; with

€ closed, €A Aj is p-measurable and p(4;) < 0o Vj.

Now observe that in a locally compact Hausdorfl space it is true that for each
compact K C X we can always find an open set V O K such that V (the closure
of V) is compact. (This easily follows from the definition of compactness and the
fact that each point of K has an open neighborhood with compact closure.) If
X = U, K;, where each K is compact, that we can apply this with K in place
of K, and we deduce that there are open sets V; in X such that U;V; = X and
(V) < oo for each j, and so in this case (when X is o-compact) the identity in (1)
holds for every subset A C X; that is

w(A) = UopéngcU,u(U) forevery A C X,

which is the property (R2). Next we note that if A C X is p-measurable, then
we can write A = U;jA;, where A; = AN K; (because X = U; K;) and u(A4;) <
w(K;) < oo for each j, so (2) actually holds for every u-measurable 4 in case
X is o-compact (i.e. in case X = U2, K; with K; compact), and for any closed
set C we can write C = U;C; where C; is the increasing sequence of compact
sets given by C; = C N (U/_,K;) and so u(C) = lim; u(C;) and hence u(C) =



32 CHAPTER 1: PRELIMINARY MEASURE THEORY

SUPk ., K compact (K )- Thus in the o-compact case (2) actually tells us that ;(4) =
SUPg 4, K compact #(K) for any p-measurable set A. This in particular holds for 4 =
an open set, which is the remaining property (R3) we needed. O

Next we have the following important density result:

4.10 Theorem. Let X be a locally compact Hausdorff space, i a Radon measure on
X and 1 < p < co. Then C.(X) is dense in LP (w); that is, for each ¢ > 0 and each
feLPthereisag e Co(X) suchthat |g — [, <e.

In view of Remark 1.11 and Lemma 4.9 we see that Theorem 4.10 directly implies
the following:

4.11 Corollary. If X isa locally compact Hausdorff space such that every open set in X
is the countable union of compact sets, and if i is any Borel measure on X which is finite
on each compact set, then the space C.(X) is dense in L' (w) and p is the restriction to
the Borel sets of a Radon measure .

Proof of Theorem 4.10: Let f : X — R be pu-measurable with | /|, < oo and
let ¢ > 0. Observe that the simple functions are dense in L? (1) (which one can
check using the dominated convergence theorem and the fact that both f and f-
can be expressed as the pointwise limits of increasing sequences of non-negative
simple functions), so we can pick a simple function ¢ = Zjvzla jx4;, where the
a; are distinct non-zero reals and A; are pairwise disjoint u-measurable subsets of
X, such that || f — ¢|, < e. Since |l¢|, < ll¢ — flp, + | /], < oo we must then
have u(A;) < oo for each j. Pick M > max{la|,..., lay|} and use Lemma 4.7
to select compact K; C A; with u(4; \ K;) < &?/(2P"'MPN). Also, using
the definition of Radon measure, we can find open U; D K; with u(U; \ K;) <
e?/(2PTIMPN) and by Lemma 4.7 we can assume without loss of generality that
these open sets Uy, .. ., Uy are pairwise disjoint (otherwise replace U; by U; N U?,
where U, ..., Uy are pairwise disjoint open sets with K; C U?). By Lemma 4.4
we have g; € C.(X) with g; = a; on K, {x : g;(x) # 0} contained in a compact
subset of U;, and sup |g;| < |a;|, and hence by the pairwise disjointness of the U; we
have that g = Zjl-vzlgj agrees with ¢ on each K; and sup |g| = sup |¢| < M. Then
¢ — g vanishes off the set U; ((U; \ K;) U (4, \ K;)) and we have [y [¢ —g|? du <
> f(Uj\Kj)U(Aj—Kj) lo—gl?dpn = 2M )P (n(A4; \ Kj) + n(Uj \ K;)) < &P, and
hence || f —gll, < .f —¢llp + ¢ — gllp < 26, as required.

We now state the Riesz representation theorem for non-negative functionals on
the space K4, where, here and subsequently, K denotes the set of non-negative
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C.(X,R) functions, i.e. the set of continuous functions f : X — [0,00) with
compact support.

4.12 Theorem (Riesz for non-negative functionals.) Suppose X is a locally compact
Hausdorff space, A : K4 — [0, 00) with A(cf) = cA(f), A(f + g) = A(f) + A(g)
whenever ¢ > 0 and f, g € K4, where K is the set of all non-negative continuons
functions f on X with compact support. Then there is a Radon measure p on X such

that \(f) = [y fduforall f € K.

Before we begin the proof of 4.12 we observe the following 2 facts about the func-
tional A:

4.13 Remarks (1): Observe that if f,g € K4 with f < g then g — f € K4 and
hence A(g) = A(f + (g — 1)) =A(f) +A(g = f) = A(f).

(2) I K is compact, support f C K and if g € K4 with g = 1 on K then we have
f < (sup f)gand f g = f, so by Remark (1) above we have

(*) A(f) = (sup f)A(g), f €Ky, support f C K.

Notice in particular that if U is an arbitrary neighborhood of K then we can by
Lemma 4.4 select neighborhood W of K with W a compact subset of U and a
g € K4 with g = 1 in a neighborhood of W, g < 1 everywhere, and support
g C U, whence the above inequality with W in place of K implies

() sup Af) < inf Ag).
feK4,f<1,support fCW g€Kt,g<1,g=1inanhd. of W, support gCcU

Proof of Theorem 4.12: For U C X open, we define

(1) n(U) = sup ACS)

feKy, f<l,supportfCU

and for arbitrary A C X we define

(2) wa) = inf ).

Notice that these definitions are consistent when A is itself open. Notice also that
by (xx) we have u(K) < oo for each compact K; indeed (%) and the definitions (1),
(2) evidently imply

(3) n(K) = inf

A(g) for each compact K C X,
geK,g<l,g=linanhd. of K
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Next we prove that u is an outer measure. To see this, first let Uy, Us, ... be open
and U = U;Uj, then for any f € K4 with sup f < 1 and support f C U we have,
by compactness of support f, that support f C UN_, U; for some integer N, and by
using a partition of unity ¢y,..., @n for support f subordinate to Uy, ..., Uy (see
the Corollary to Lemma 4.4 above), we have A(f) = Zjvzlk(wjf) < ZNzlﬂ/(Uj).
Taking sup over all such f we then have u(U) < Y~ u(U;). It then easily follows
that p1(U;4;) < 3°;u(A;) for each j. Since we trivially also have 1 (@) = 0 and
A C B = u(A) < u(B) we thus have that p is an outer measure on X.

Finally we want to show that x is a Radon measure. For this we are going to use
Lemma 4.8, so we have to check (R2), (R3) and the additivity property u(K; U
K>) = u(K1) + u(Kz) whenever K, K, are disjoint compact sets. But hypoth-
esis (R2), (R3) are true by the definitions (1), (2), so we only have to check the
the additivity on disjoint compact sets. In fact if Ky and K, are disjoint compact
subsets then for ¢ > 0 we can use (3) to find g € K4 with g < 1, g = 1 in a neigh-
borhood W of K U K3, and with A(g) < u(K; U K3) + ¢. By Lemma 4.1 we can
then select disjoint open Uy, U, with Ky C Uy and K, C Uy, and by Lemma 4.4
we can select f1, f» € K4 with f; = 1 in a neighborhood of K; such that sup-
port fj is a compact subset of U; and f; < 1 everywhere, j = 1,2. Then by (3)
(K1) +u(K2) <A(fi-8) +A(fa-8) = A((fi+ f2)-8) = A(g) = u(K1UK2) +e.
Thus u(K1) + n(K2) < n(Ky U K3), and of course the reverse inequality holds by
subadditivity of u, hence the hypotheses of Lemma 4.8 are all established and p is a
Radon measure.

Next observe that by (x) we have A(h) < u(supporth) suph, h € K4, and hence
(observing that 7 is the uniform limit of max{h — 1/n,0} in X) we have

(4) A(h) < p({x :h(x) > 0}) suph, h e K.

For f € K4 and ¢ > 0, we can select points 0 = tg < 11 < fr < ... < ty_1 <
sup f <ty witht; —1;_1 < eforeach j = 1,...,N and with u({f~'{z;}}) =0
for each j = 1,..., N. Notice that the latter requirement is no problem because
w({f~{t}}) = 0 for all but a countable set of # > 0, by virtue of the fact that
u{x e X : f(x) >0} < oo.

Now let U; = f~Y{(tj-1, 1)}, j =1,..., N. (Notice that then the U; are pairwise
disjoint and each U; C K, where K, compact, is the support of f.) Now by
the definition (1) we can find g; € K4 such that g; < 1, supportg; C Uj, and
A(g;) = n(U;) —¢e/N. Also for any compact K; C U; we can construct a function
hj € K4 with h; = 1 in a neighborhood of K; U support g;, support h; C U;, and
hj <1 everywhere. Then h; > g;, hj < 1 everywhere and support /; is a compact
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subset of U; and so
() w(Uj) —e/N < Mgj) < A(hy;) =pn(Uj), Jj=1,....N.

Since p is a Radon measure, we can in fact choose the compact K; C U; such that
w(U; \ K;j) < ¢/N. Then, because {x : (f — fZ_;V:lhj)(x) >0} Cc U(U; \ Kj),
by (4) we have

(6) AMf—f X hj) <esup f.

Then by using (5), (6) and the linearity of A (together with the fact 7;_1h; < fh; <
tjhj)foreach j =1,..., N), we see that

YN tin(Us) —esup f < A(FY k) < A(f) S A(FY;h)) +esup f
< Y Lit1(Uj) + esup f.
Since trivially
S itn(U) = [ fdu s S5 6uU)),

we then have

—e(u(K) +sup f) < =371, (7 — t;-1)u(U;) —esup f
< [ S du=2(f)
< 371t = tj-1)u(Uy) + esup f < e(u(K) +sup f),
where K = support f. This completes the proof of 4.12. O

We can now state the Riesz Representation Theorem. In the statement, C. (X, H)
will denote the set of vector functions f : X — H which are continuous and which
have compact support, where H is a given finite dimensional real Hilbert space
with inner product (, ) and inner product norm | |.

4.14 Theorem (Riesz Representation Theorem.) Suppose X is a locally compact
Hausdorff space, and L : C.(X, H) — R is linear with

sup L(f) < co whenever K C X is compact.
feCe(X,H),|f|<1,support f CK

Then there is a Radon measure p on X and p-measurable v : X — H with |v| = 1
w-a.e.on X, and

L(f) = [ {f.v)duforany f < Cc(X . H).
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Proof: By using an orthonormal basis for H, it suffices to prove the theorem with
H =TR". We first define

AMf) = sup L(w)
weCc (X R"), lo|<f
forany f € K4. We claim that A has the linearity properties of the lemma. Indeed
it is clear that A(cf) = cA(f) for any constant ¢ > 0 and any f € K4. Now let
f, g € K4, and notice that if w1, w, € C.(X,R") with |o1| < f and |w,| < g, then
|1 + w2] < f + gand hence A(f + g) > L(w1) + L(w2). Taking sup over all such
w1, wy we then have A(f + g) > A(f) + A(g). To prove the reverse inequality we
let w € C.(X,R") with |w| < f + g, and define

S if g :
o 1f+g>0 o iff+g>0
. Fizg f g . Fig f g

0 if f+g=0, 0 if f+g=0.

Then w; + w2 = w, 01| < f, |w2| < g and it is readily checked that w;, w» €
Co(X,R"). Then L(w) = L(w1) + L(w2) < A(f) + A(g), and hence taking sup
over all such  we have A(f + g) < A(f) + A(g). Therefore we have A(f + g) =
A(f) + A(g) as claimed. Thus A satisfies the conditions of the lemma, hence there
is a Radon measure p on X such that

Mfy5éfmh feky j=1... ..

That is, we have

() sup

weCe (X R"), lw|<f

Lw)= [ fdu. [eks.

Thus if j € {1,...,n} we have in particular (since |fe;| = |f| € K4+ for any
f € C.(X,R)) that

IL(fe;)l E/lelduz 1ALy VS € Ce(X.R).

Thus L;(f) = L(fe;) extends to a bounded linear functional on L! (), and hence
by the Riesz representation theorem for L' (1) we know that there is a bounded
p-measurable function v; such that

L(fe)) = [ fojdp. [ eCo(X.R).

Since any f = (f1,..., fn) can be expressed as f = Y_7_, fje;, we thus deduce

() L(f) = [ fvdu. feClx.R),
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where v = (v1,...,v,). Then it only remains to check that [v| = 1 p-a.e. To see
this, first note that by using the Cauchy-Schwarz inequality in the integral on the

right of (%) we have for any f € K that

(1) sup
lg|<f.geCe(X,RM)

L@l = [ fIv]du.

On the other hand, we know (since C.(X,R") is dense in L'(u)), we can find a
sequence gx € Cc(X,R") such that lim [} |gx — V| = 0, where ¥ is [v|~!v at points
where v # 0 and v = 0 at all other points. Then of course lim [y gk — V| = 0
with |gx| < 1, provided we define g = R(gx), with R(y) = |y|7ly if [y| > 1
and R(y) = y if |y| < 1, because |R(y) —v| < |y — v| for any y,v € R” with
lv| = 1. Thus we deduce that actually equality holds in (i). On the other hand
by (f) for any f € K4 we have that the left side of (i) is [y f du. Thus finally
Jx fdu = [y flvldp, and this evidently implies [v| = 1 p-a.e., again using the
density of C.(X,R) in L(p). O

4.15 Remark: Notice that L extends as a continuous linear functional on L*(u).

Using the Riesz Theorem 4.12 we can deduce the following compactness theorem
for Radon measures:

4.16 Theorem (Compactness Theorem for Radon Measures.) Suppose {pr} is a
sequence of Radon measures on the locally compact, o-compact Haunsdor[f space X with
the property sup, i (K) < oo for each compact K C X. Then there is a subsequence
{1k} which converges to a Radon measure u on X in the sense that

lim () = p(f) for each f € K(X).

where K(X ) denotes the set of continuous functions [ : X — R with compact support
on X and where we use the notation

w(f) = [ Fan. ferx).

Proof: Let Ki, K>, ... be an increasing sequence of compact sets with X = U; K;
and let Fjy : C(K;) — R be defined by Fji(f) = [¢, f dpr, k = 1.2..... By the
Alaoglu theorem there is a subsequence F} ;- and a non-negative bounded functional
F; : C(Kj) » R with Fjx/(f) - F;(f) for each f € C(K;). By choosing the
subsequences successively and taking a diagonal sequence, we then get a subsequence
pir and a non-negative linear F : K(X) — R with [y fdux — F(f) for each
f € K(X), where F(f) = F;j(f|K;) whenever spt f C K;. (Notice that this is
unambiguous because if spt f C K; and £ > j then Fy(f|K;) = F;j(f|K;) by
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construction.) Then by applying Theorem 4.12 we have a Radon measure 1 on X
such that F(f) = [y fdu for each f € K(X), and so [y fdux — [y f du for
each f e K(X). O

Chapter 2

Some Further Preliminaries
from Analysis

§1 Lipschitz Functions ........c.oeeuniiiiiiiiin i, 39
§2 BV FUNCHIONS « 'ttt e e e e e e 48
§3 TheAreaFormula ........coooiiiiiii e 53
§4 Submanifolds of RPTE . .. . ... 55
§5 First and Second Variation Formulae ............................. 61
§6 Co-Area Formula and C1 Sard Theorem ......................... 65

Here we develop the necessary further analytical background material needed for
later developments. In particular we prove some basic results about Lipschitz and
BV functions, and we also present the basic facts concerning C*¥ submanifolds of
Euclidean space. There is also a brief treatment of the area and co-area formulae and
a discussion of first and second variation formulae for C? submanifolds of Euclidean
space. These latter topics will be discussed in a much more general context later.

1 Lipschitz Functions

If X is a metric space with metric d, recall that a function f : X — R is said to be
Lipschitz if there is L < oo such that

1.1 |f(x) = f() < Ld(x,y) Vx,y € X.

Lip f denotes the least such constant L.
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First we have the following basic extension theorem.

1.2 Theorem. If A is a non-empty subset of X and f : A — R is Lipschitz, then
3f:X >RuwithLip f =Lip f,and f = f|A.

Proof: With L = Lip f, we claim that

fx) = inf(f(2) + Ld(x.2)), x € X,
has the required properties. Indeed if x € A then trivially f(x) < f(x) and also
J ()= f(x) = infrea(f ()= f (x) + Ld (x.2)) 2 infrea(~Ld (x.2) + Ld (x.2)) =
0,s0 f(x) = f(x).

Also for any x1,x € X

f(x1)— f(x2) = sup inf (f(zl) + Ld(x1,21) —f(Zz) —Ld(x2,22))

ZzEAzlEA
< sup (Ld(x1,22) — Ld(x2.22)) < Ld(x1,x2)

22 €A

and the reverse inequality holds by interchanging x1,x,. O

1.3 Remark: Observe that the above proof has a geometric interpretation: the
graph of the extension f is obtained by taking the “lower envelope” (inf) of all the
half-cones C; = {(x,y) € X xR : y = f(z) + Ld(x,z)}; notice that C; is a
half-cone of slope L with vertex on the graph of the original function f.

Next we need the theorem of Rademacher concerning differentiability of Lipschitz
functions on R”. (The proof given here is due to C.B. Morrey.)

1.4 Theorem (Rademacher’s theorem.) If f is Lipschitz on R", then f is differen-
tiable L"-almost everywhere; that is, the gradient V f (x) = (D1 f(x),.... D, f(x))
exists and

yo>x ly — x|

=0

for L"-a.e. x € R".

Proof: Let v € S"7!, and whenever it exists let D, f(x) denote the directional
derivative %f(x + tv)|t=0. Since }%’ < Lip f for y # x (so |Dyf]| <
Lip f whenever it exists) and we see that D,, f (x) exists precisely when the bounded
functions

oy LEF) =S () f ) S ()

t—0 t t—>0 t

§1 or CHAPTER 2: LirscHrTz FUNCTIONS 41
coincide. Now limsup,_, M = lim; 00 SUP,_ /< -1 M which
is Borel measurable because sup_ ;- ;-1 Slettv)=/ (%) §s Jower semi-continuous, and

t

hence Borel measurable, for each j. Similarly lim inf,_,o %) is Borel mea-

S (x+11;)—f (

surable, so the set 4, = {x € R" : D, f does not exist} is Borel measurable and
hence £"-measurable. However ¢ (1) = f (x +tv) is an absolutely continuous func-
tion of 7 € R for any fixed x and v, and hence is differentiable for almost all z. Thus
A, intersects every line L which is parallel to v in a set of H' measure zero and
hence by Fubini’s theorem the Borel set A, has £"-measure zero for each v. That

is, for each v € §"71,
(1) D, f(x) exists L"-a.e. x € R".
Now take any C2°(R") function ¢ and note that for any 7 > 0

Rnf(x—i_hl;l)_f(x){(x)dﬁn(x) - _ y é‘(X)_g‘h(x_hv)

(2) f(x)dL"(x)

(by the change of variable z = x + hv in the first part of the integral on the left).
Using the dominated convergence theorem and (1) we then have

@) [Dust==[rDt==fv-v¢
= _Z;’zlvf/fD,-z = +Z§’:1vf/§Djf = /&v-Vﬁ

where V f is the gradient of f (i.e. Vf = (D1 f...., D, f)0 all integrals are with
respect to Lebesgue measure on R”, and where we have used Fubini’s theorem and
the absolute continuity of f on lines to justify the integration by parts. Since ¢ is
arbitrary in (3) we have, for £"-a.e. x € R,

(4) Dyf(x)=v-Vf(x)VveS"
Of course at such points x we have

(5) IVf(x)] = sup Dy f(x) < L.

lv]=1
Now let vy, v,, ... be a countable dense subset of S*~!, and let
Ak = {x : Vf(x), Dy, f(x) exist and Dy, f(x) = v - Vf(x)}.
Then A = NY2_ | Ay we have by (4) that

(6) LPR"\A) =0, Dy, f(x) =v-Vf(x)Vxe A k=12,....
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Using this, we are now going to prove that f is differentiable at each point x of 4.
To see this, for any x € A, v € S" 1 and h > 0 define

fx+hv) = f(x)

) 0(x v = LIy g,
so by (6)
(8) }llirréQ(x,vj,h)zO, xeAd j=12,....

Now for any given ¢ > 0, select P large enough so that

9) §* 1 c UL B(v),

and foreachi = 1,..., P use (8) to choose §; > 0 so that

(10) 0<lh <8 = |0(x,vi,h)| <e.

By (9), for any v € S"~! we can select i € {1,..., P} with |[v — v;| < &, and hence
by (10)

1Q(x.h.v)] = 1Q(x.v.h) = Q(x,vi. k)| + [ Q(x,vi. )]
< RS (x + o) = f (x4 hv) [+ [o = v [V ()] + [Q (x, vi, h)]|
< (2L + 1)eforall 0 < |h] < § = min{§y,..., Sp}

by (5). Thusv € S" 'and 0 < || < 8§ = |Q(x,h,v)| < (2L + 1)e, hence f is
differentiable at x. O

We shall need the following C'! approximation theorem for Lipschitz functions in
our discussion of rectifiable sets in the next chapter.

1.5 Theorem. (C! Approximation Theorem.) Suppose f : R" — R is Lipschitz.
Then for each & > 0 there isa C'(R") function g with

LM({x: fx) #g(x)U{x:Vf(x)#Vgx)}) <e.

Before we begin the proof of 1.5 we need to recall Whitney’s extension theorem for
C! functions:

1.6 Theorem (Whitney Extension Theorem.) If A C R”" is closed and if h : A — R
and v : A — R" are continuous, and if for each compact K C A

(1) lim  R(x,y) =0 wuniformly for x € K,
y—>x,y€A

where
h(y) —h(x) —v(x)-(y —x)

Rixy) = =]

)
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then there is a C' function g : R" — R such that g = hand Vg = v on A.

(For the proof see for example [EG92] or [Fed69]; for the case n = 1, see Re-
mark 1.7(2) below.)

1.7 Remarks: (1) The hypothesis 1.6 (1) above cannot be weakened to the require-
ment that
lim R(x,y)=0, xe€A.

y—x,y€A
For instance we have the example (for n = 1) when 4 = {0} U (U2 {1/k})
and 7(0) = 0, h(1/k) = (=1)¥/k*2, v = 0. Evidently in this case we do have
limy_,x, yea R(x,y) =0 Vx € A, but there is no C! extension because
(1K) = h(1/ (K + 1))
(1/k=1/(k +1))
In fact the condition 1.6 (}) is equivalent to the existence of a C! extension g of f

— o0 as k — oo.

with Vg = v on A. Indeed if g is such an extension and if K C A is compact then
for x,y € K we have

R(x,y)=f(y)=f(x)=v(x) - (y—x) =g(y) —g(x) = Vg(x)- (y —x)

= [[ e+ 1 =) di = Ve (=)

1
= [ (el + 1y =) = V(@) - (v — ) dr
and, since Vg is uniformly continuous on the convex hull of K, we do indeed have

1.6 (%).

(2) In the case n = 1, the Whitney Extension Theorem 1.6 above has a simple direct
proof. Namely in this case define

h(y) = h(x)

R(x.y) = Y x

—v(x)

and note that the hypothesis 1.6 (1) guarantees that for each compact subset C of A
we have a function ec with ec(¢) | 0Oast | 0, and

|IR(x,y)l <ec(lx—y|) Vx,y e C.
In particular this implies

(1) v(x) —v(y)| <2ec(lx—y|) Vx,y € C.

Also R\ 4 is a countable disjoint union of open intervals Iy, I»,.... If I; = (a,b),
we then select g; € C!([a, b]) as follows

gj(a) =h(a). gj(b) = h(b), gj(a) = v(a), g;j(b) = v(b)
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and

sup g/ (x) —v(a)| <3ec(b—a). C =[a—1.b+1]NA.

XEI}
This is possible by (i), with (x,y) = (a,b). One now defines g(x) = g;(x)
Vxelj,j=12,..,and g(x) = h(x) Vx € A. It is then easy to check g € C'(R)
and g’ = v on A.

Proof of Theorem 1.5: By Rademacher’s Theorem f is differentiable on a set
B C R" with £" (R" \ B) = 0. By Lusin’s theorem (which applies to sets of infinite
measure for £") there is a closed set C C B such that Vf|C is continuous and
L"(R*\ C) < g/2. On C we define h(x) = f(x), v(x) = Vf(x) and R(x, y) for
x,y € C is as defined in 1.6 (1). Evidently (since C C B) we have

lim R(x,y)=0 VxeC,
y—x,yeC

but 7ot necessarily uniformly with respect to x on compact subsets of C asin 1.6 (}).
We therefore proceed as follows. For each k = 1,2, ... let

M (x) = sup{|R(x.y)| 1y € C N (Byie(x) \ {x})}.

Then nx | 0 pointwise in C, and hence by Egoroff’s Theorem (applied to the finite
measure sets C N B;(0), j = 1,2,...) there is an £"-measurable set 49 C C such
that £"(C \ Ap) < &/4 and 5 converges uniformly to zero on each bounded subset
of Ay. Since we can take a closed set A C Ag with £"(A4p \ A) < &/4 we thus have
L"(R"\ A) < e and 1.6 (f) holds. Hence we can apply the Whitney Theorem 1.6,
and the proof is complete. O

Next we establish some basic facts about Hausdorff measure of Lipschitz images:

1.8 Theorem. Suppose X.Y metric spaces with X o-compact (i.e. there are compact
Ki,Ks,... with X = U;K;), A C X with A H"-measurable and H™(A) < oo,
f A — Y Lipschitz, and let N(f,y) = H°(f~'y) (i.e. N(f.y) is the multiplicity
function, counting the number of points, possibly oo, in the preimage f~1y). Then

(1) f(A) is H™ -measurable with H™ (f (A)) < (Lip f)"H™(A),
(1) N'(f. y) is an H™ -measurable function of y € Y with
| N )dHm < (Lip )" H"(4).
Proof: (i) Observe first that if § > 0 and if Cy, C,,... are chosen with 4 C U;C;

and diam C; < § for each j, then f(A4) Cc U; f(C;) and diam(f(C;)) < (Lip f) <
(14 Lip f)8. Hence

H{1ip 118 (f (4)) < 32 0m(diam f(C;)/2)™ < (Lip )" Y 0m(diam C;/2)™,
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and taking inf over all such collections {C;} and then letting § | 0 we obtain
H™(f(A)) < (Lip f)™H™(A). Notice this part of the argument is valid even if
A is not H™-measurable and did not depend on the o-compactness of X .

Next suppose that A is #"-measurable (e.g. A is Borel) and observe that the regu-
larity property 1.15(2) of Ch.1 together with the o-compactness of X implies that
we can take a sequence K7, K>, ... of compact sets in X with K; C A for each j and
H™(A\ (U;K;)) = 0. By the first part above we then have H™" (f(A\ (U;K;))) =0
and hence f(A4) = f(A\ (U;K;)) U (U; f(K;)). Now f(K;) is compact, hence
Borel, for each j, and, by the first part of the discussion above, H™ ( f (A\(U;K;))) <

(Lip /)™ H™(A\(U;K;)) = 0so f(A) is H™-measurable as claimed. This completes
the proof of (i).

To prove (ii) observe that, by the o-compactness of X, for eachi = 1,2,... we
can partition 4 into a disjoint union U%2, 4;; where each A;; is H"-measurable and
diam(A4;;) < 1/i; furthermore we can do this successively, partitioning each A4;4 to
give the new sets 4,41/, so that each of the sets 4;41; is contained in one of the 4.
Observe that then Y~ x7(4;,) is a non-negative function which is #"-measurable
by (i) above and which increases pointwise (at every point) to N(f,y), and so
N (f.y) is H™-measurable and by the monotone convergence theorem

J NGy anm(v) = lim [ 5550, dH" = lim $,07(f (4,).
and
2 H"(f(Aij)) = (Lip f)" 221" (Aij) = (Lip /)" H™ (A4)
by part (1) above. O

Next we want to extend the inequality of Theorem 1.8(ii) to the case when the
k-dimensional Hausdorff measure of f~'y (instead of #°(f~'y)) appears on the
left. For this we assume for convenience that ¥ = R™ (more general cases, e.g.
when Y is a metric space such that each closed ball is compact, are discussed in
[Fed69, 10.2.25], but the case Y = R™ is adequate for the subsequent development
here, and furthermore the proof is relatively elementary in this case).

1.9 Theorem. Suppose X is a o-compact metric space, m € {1,2,...},k > 0 (k need

not be an integer), A C X is H™*-measurable and H" T (A) < oo, and f : A — R™

is Lipschitz. Then H* (f~'y) is an L™ -measurable function of y € R™ and
/RMH"(J"‘y) dLr(y) =

Wy Wi

(Lip £)" 1" (4).

Wm+k

1.10 Remark: At one step in the proof below we are going to use the upper Lebesgue

integral [ f dL™ of a not necessarily measurable function f : R — [0, co]. This
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is defined by

*
fdcm = inf / acr.
RM ¥> f,% measurable J R™

Observe that then there is always a measurable function ¥ which attains the inf;

thatis, ¥y > f and
rdce =/ U dLm,
R R

and if [, £ dL™ < oo the function ¥ is unique up to change on a set of measure
zero. Notice also that if { f; } is an increasing sequence of maps R” — [0, o] and if
f = lim; 00 fi, then lim; f]gmfi dLm = fﬂgmf acm.
Proof of 1.9: For eachi = 1,2,... pick closed subsets C;1, C;», ... with diam C;; <
1/i A CU;Cy and
(1) Y Omii (diam Cjj /2)" < HPTE(A) + 1/,
and let g; be the Borel measurable simple functions defined by

gi = Zja)k (dlam Cij/Z)ka(c,;,-)-
Notice that, by o-compactness of X, each C;; is a countable union of compact sets

and hence indeed f(C;;) is a Borel set and g; is Borel measurable as claimed. Also
notice that

(2) gi(y) =2 ;o (diam Cij/2)ka(ci,)(Y) = 2 )i f-1yncy, 20 @k (diam Cij/2)
> My, (A0 f7y),
and hence by integrating each side with respect to H™-measure on R™ we then have,

by (1) and (2),

/R:H'f/i(fl Nfy)dLem(y) < /ngi(y) dL"(y)

= ¥ ox (diam Ci;/2) L™ (£ (Ciy)) < X 0x0m(Lip )™ (diam Ci;/2)
= (2 (Lip £)" (1< (4) +1/1).

Wm+k

m+k

where the notation /™ is as in Remark 1.10 above and where we used £ ( f (C;;))
m(w)m (by the isodiametric inequality 2.10) < o, (Lip f )m(dlanécfj )
Letting i — oo, we conclude

Lot an sy aen(v) = (228) (Lip 1) mn (4).

m Om+k

CFIA

It remains to check that H¥ (A N f~'y) is an H™-measurable function of y € R™
(which will enable us to replace the upper integral on the left of the above inequality
with the standard integral). This is left as an exercise (Q.5 of hw2). O
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We conclude this section with a discussion of Lipschitz domains in R”.

1.11 Definition: A bounded open set 2 C R” is said to be a Lipschitz domain if
there are constants 0 < 0 < 7 such that V y € 9Q there isav € S"~! and a Lipschitz
function u : B;(0) N vt — (-7, 1) such that

U NQ={y+x+1v:xe B, (0)Nvt ¢ <u(x)}
U NdQ={y+x+rtv:xeB,(0)Nvt t=u(x)}
where U, is the open neighborhood of y given by
Uy ={y+x+1v:xeBs(0)nvt, -t <r <t}

Thus, roughly speaking, Q is Lipschitz means that locally, near each of its points,
02 can be expressed as the graph of a Lipschitz function.

Of course the bounded open convex subsets of R” are automatically Lipschitz do-

mains; more precisely, we have the following lemma:

1.12 Lemma. Suppose that Q@ C R" is an open and convex with 0 € Q, and let
R > 0,8 € (0,1) be such that Bsr(0) C Q C Bg(0). Then Q is Lipschitz; in fact for
each y € 02 there is a Lipschitz function

u: Bsjr(0) Nyt — (0,00) withu(0) € (8,1], Lipu < 2/8,

and
UFNnQ={x+1ty:x e Bsg(0) Nyt 0<r<u(x)}

UrnoQ={x+1y:xe Bsr2(0) Nyt 1 =u(x)},

where Ut is the open neighborhood of y defined by
UyJr ={x+1ty:xe é,gR/z(O) Nyt t>0}.

Proof: By scaling we can assume without loss of generality that R = 1, so Bs(0) C
Q C B1(0). Let y € 9Q. By applying a suitable rotation we can also assume that
y = pey withp € (8,1]. If p : R" = R 1 x R — R""! is the projection (x,7) > x
and if U = ég'/—zl(o) x (0, 00) then evidently
(1) p(UN3Q) = B}, (0).
Let (x1,11), (x2,22) € U N 9K be arbitrary with #, > #1, and let 7 be a supporting
hyperplane for Q at (x1, 1), so that there is an open half space H with

7 =0H, Bs(0) CQC H, (x1,11) € 7.
Then 7 N Bs(0) = @, so 7 is not a vertical hyperplane and we can write

mn={(x,t):t=t1+a-(x—x1)tand H ={(x,t):t <ty +a-(x—x1)},
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where a € R*™!. We must also then have |a| < 2/8, since otherwise there is a
point x € Bf~1(0) with a - (x — x;) = —t; which would imply (x,0) € = N B5(0),
contradicting = N Bs(0) = @.

Finally (x2,1,) € H,500 <t —t; < a- (x2 — x1) and hence
(2) 0<th—1 528_1|XQ—X1|.

The existence of u : Bg/_zl(O) — (0,00) with Lipu < 2/§ and Bg’/_zl (0) x (0,00) N
92 = graphu is now a direct consequence of (1),(2). O

2 BV Functions

In this section we gather together the basic facts about locally BV (i.e. bounded
variation) functions which will be needed later.

First recall that if U is open in R” and if u € L} (U), then u is said to be in

BV (U) if for each W cC U there is a constant ¢ (W) < oo such that
2.1 / wdivg dL" < c(W)sup|g|
w

for all vector functions g = (g'..... g"), g’ € CX(W). Notice that this means that
the functional / u div g extends uniquely to give a (real-valued) linear functional
on K(U,R") = {continuous g = (g',....g") : U — R" with spt|g| compact}
which is bounded on

Kw(U.R") = {g e K(U,R") : sptig| C W}

for every W cC U. Then, by the Riesz Representation Theorem 4.14 of Ch.1,
there is a Radon measure x4 on U and a p-measurable function v = (vl, e v”),
|v| = 1 a.e., such that

2.2 /udivgdﬁ”:/g-vdu.
U U

Thus, in the language of distribution theory, the generalized derivatives Dju of u
are represented by the signed measures v; du, j = 1,...,n. For this reason we often
denote the total variation measure 1 of Ch.1) by |Dul. In fact if u € Wl(l)él(U ) we
evidently do have du = |Du|d £" and

Diu .
2.3 v = {|D’u| if | Du| # 0

0 if |Du| = 0.
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Thus for u € BVjy,.(U), |Du| will henceforth denote the Radon measure on U
which is uniquely characterized by

2.4 |Dul(W) = sup

lg|<1,spt|g|CCW, g Lipschitz

/udivgdﬁ", W open C U.

The left side here is more usually denoted [, |[Du|. Indeed if f is any non-negative
Borel measurable function function on U, then [ f d|Du| is more usually denoted
simply by [f|Du| (= [f|Du|dL" in case u € W' (U)). We shall henceforth

loc
adopt this notation.

There are a number of important results about BV functions which can be obtained
by mollification. We let ¢ (x) = 07"¢(x/0), where ¢ is a symmetric mollifier ( so
that ¢ € CZ(R"), ¢ = 0, spte C B1(0), [pn @ = 1, and ¢(x) = ¢(—x)), and for
u e Ll (U)letul® = g5 * i be the mollified functions, where we set 1 = u on
Us, i = 0 outside Uy, Uy = {x € U : dist(x,0U) > o }. A key result concerning
mollification is then as follows:

2.5 Lemma. Ifu € BViy(U), then u'®) — u in L .(U)and |Dul®)| — |Dul in the
sense of Radon measures in U (see 4.16 of Ch.1)aso | 0.

The convergence of u®) to w in L} (U) is standard. Thus it remains to prove

(1) 1im/f|Du<U>| _ /_f|Du|

al0

foreach f € CX(U), f > 0. In fact by definition of | Du| it is rather easy to prove
that

(2) /f|Du| < li{‘niionf/ﬂDu(")\,
so we only have to check
(3) liT¢iOnf/f|Du(°)| < /f|Du|

foreach f € CX(U), f > 0.

This is achieved as follows: First note that

(4) /f}Du(0)| = sup

|g|<f, & smooth

/g VUl dcr,

On the other hand for fixed g with g smooth and |g| < f, and foro < dist{spt f,0U },
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we have
/g Vul® drr = —/um divgd/l"
= —/@U xudivgd ("
= —/u(gog xdivg)dL"

= —/.u diV(qu * g) dﬁn.
On the other hand by definition of | Du|, the right side here is

= [ (/+e@)IDu
Wo
where e(0) | 0, where W = spt f, W, = {x € U : distx, W < 0}, because

|<pg*giz|(¢0*gl ..... 9o % 8")|
<o |8l = g0 * f

and because ¢, * f — f uniformly in Wy, as o | 0, where oy < dist(W,dU). Thus
(3) follows from (4). O

2.6 Theorem (Compactness Theorem for BV Functions.) If {uy } is a sequence of
BVio.(U) functions satisfying

sup (lhuellew) + [ [Dugl) < o0
k>1 w

foreach W CC U, then there is a subsequence {uy '} C {ux} and a BVio.(U) function
u such thatugr — win L} (U) and

/. 1pul < timint [ Dy

Proof: By virtue of the previous lemma, in order to prove ugs — u in L} (U) for

YW ccU.

some subsequence {uy}, it is enough to prove that the sets
fueC®U): / (Jul + |Dul) dL" < c(W)}. W cc U,
W

(for given constants ¢ (W) < oo) are precompact in L] (U). For the simple proof
of this (involving mollification and Arzela’s theorem) see for example [GTO01, The-
orem 7.22].

Finally the fact that [, [Du| < liminf [}, | Duy
definition of | Dul, |Duy/|. O

is a direct consequence of the
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Next we have the Poincaré inequality for BV functions.

2.7 Lemma. Suppose U is bounded, open and convex, let § € (0,1) be such that there
is R>0and§ € U with Bsg(§) C U C Bg(£), and letu € BV (U). Then for any
0 € (0,1) and any B € R with

(%) min{L"{x e U :u(x) =B}, L"{x €U :u(x)<B}}=6L"U).
we have

/ u—pldL" < CR/ Dul,
JU U

where C = C(0,8,n).

Proof: By rescaling x — R™!(x—&) we can without loss of generality assume R = 1
and £ = 0.
Let B, 6 be as in 2.7 (%) and choose convex W C U such that

() Ju=placr =1 [ u—plac

and such that 2.7 (x) holds with W in place of U and 6/2 in place 6. (For example
we may take W = {x € U : dist(x,9U) > n} with n small.)

Letting u, denote the mollified functions corresponding to u, note that for suffi-
ciently small 0 we must have 2.7 (%) with u, in place of u, 6/4 in place of 6, and
W in place of U. Hence by the usual Poincaré inequality for smooth functions (see
e.g. [GTO01]) we have, with suitable 8(°) — B in place of 8,

| o =B acr < [ [Dug|acr,
w w

¢ =c¢(n,0,8), for all sufficiently small 0. The required inequality now follows by
letting o | 0 and using (%) above together with 2.5. O

2.8 Lemma. Suppose U, 8,£, R areas in 2.7, u € BV (R") with sptu C U. Then
_ -1 n
/RnlDul (= /ﬁ|Du|> < c(/U|Du| R /U|u|d.c ).
where C = C(8,n).

2.9 Remark: Note that by combining this with the Poincaré inequality in 2.7, we
conclude

R_l/Rn|” —Brul| + /Rn\D(u —Bru)| < C/U|Du|,
C = C(0.8), whenever B is as in 2.7 (x).
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Proof of 2.8: As in the proof of 2.7, we can assume without loss of generality that
R=1and&=0.

Let d be the distance function d (x) = dist(x, dU). First note that since U is convex,
we must have U, = {x : dist(x,dU) > o} is convex for each 0 > 0. Indeed
if & € 9U,, if y is any point of U with |§ — y| = o, and if 7 is a supporting
hyperplane for U at y, so that y € 7 and there is a half-space H with 0H = =
and U c H, then y — ¢ is normal to dH and, with H, defined to be the half
space {x — (y — &) : x € H}, we have Uy, C Hy and € € 9H,, so Uy is convex as
claimed. Then 0 < d(x) <d(y) = d(x +t(y —x)) > d(x) V¢ € [0,1] (otherwise
mingejo, ] d (x +1(y—x)) < min{d (x).d(y)} which contracts the convexity of Uy,
where o = min;ep1d(x +t(y — x))). Thus (y —x)-Dd(x) = 4d(x +t(y —
x))|¢=0 > 0 for all x € U such that d is differentiable at x and d(x) < d(y). In
particular since Bs(0) C U (recall we assume Bsgr(§) C U C Bgr(§) with R = 1
and § = 0) and |Dd (x)| = 1 at all points x € U where d is differentiable, we can
take y = —8Dd(x), hence (—x —§Dd(x)) - Dd(x) > 0, and so

(1) —x-Dd(x) =6, ae. x € U with d(x) < dist(Bs(0),0U).

Then we let y, : R — [0, 1] be an increasing C'! function with y, (1) = 0 forz < /2
and y(t) = 1 for ¢t > o0, and set

(2) Yo =Yood
Then by (1) and (2) we have, for o < dist(Bs(0), U ),

(3) 8| Dgo(x)| < —x-Dgs(x), xeU.
Now by definition of | Dw| for BV}, (R") functions w, we have
(4) / | D (¢ou)] 5/ |Dgo|uldL” +/ ¢o| Dul
Rn Rn Rﬂ
and by (3)
() 5[ |Deo|luldc” == [x-Dgsluldc”
Rn
= —/|u| div(xgs) dL" + n/|u|goo ac
§/U|D|u||+n/ luld " (by definition of |Dlu|l)
Rn

5/ |Du|+n/ uld "
U Rll

(because | D|u|| < |Du| by virtue of 2.5 and the fact that | D|u|| < liminfgo|Dus||).
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Finally, to complete the proof of 2.8, we note that (using the definition of |Dw|
for the BV, (R") functions w = u, @ou, together with the fact that g;u — u in
L'(R"))

/ |Du| < 1I?¢bnf./mr1|D(¢gu)"

R”

Then 2.8 follows from (4), (5). O

3 The Area Formula

Recall that if A is a linear map R” — R” and A C R”, then £"(A(A4)) = |det A|L"(A).
More generally if A : R* — R™, m = n + k with k > 0, then A1(R") C F where
F is a n-dimensional subspace of R"**  and hence choosing an orthogonal trans-
formation ¢ of R"** such that ¢(F) = R” x {0} and letting p(x,y) = x for
(x,y) € R"xR*¥ = R™, we see that pogol : R" — R” and hence £L" ((pogoA)(A)) =
|det(pogoA)|L"(A) for A C R". Letting £* : F, — F; denote the adjoint of a
linear map ¢ between subspaces Fy, F», we then have (pogoA)*(pogod) =
A*ogq* o (p*op)ogol,andsince p* o p is the identity on R” x {0} thisis A* o A.
Thus |det(p og o )| = v/det A* o A, and since ¢ is an isometry of R™ we also have
H"(q(B)) = H"(B) for any B C R™, and so finally we obtain the area formula

3.1 H'(A(A)) = Jdet(A* o A) H"(4), A CR",

whenever 1 is a linear map R” — Rk k> 0.

More generally given a 1:1, Lipschitz map f : 4 — R™ (A C R" Lebesgue measur-
able and m > n) we have, by an approximation argument based on the linear case
3.1 (see [Har79] or [Fed69] for details) that

3.2 W' (f(A)) = /AJf dH".

where J is the Jacobian of f (or area magnification factor of /) defined by

33 Jr(y) = \/det(dfy>* o (dfy)

Here dfy, : R" — R™ is the induced linear map described in §4, so df, is represented

Observe that in fact then

Jp(y) = \Jdet(Di f () - D £ (1))
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If f is not 1:1 we have the general area formula (which actually follows quite easily
from the formula 3.2)

3.4 /RmHO(f (y) N A)dH"(y /de,c"

where H° is 0-dimensional Hausdorff measure i.e. “counting measure,” so the term
HO (S~ (y) N A) is the multiplicity function N'(f,y) as in Theorem 1.8 of the
present chapter.

More generally still, if i is a non-negative H"-measurable function on 4, then

3.5 Yoves-1(pmh(x)dH" (¥

4

/ hdpdH.
This follows directly from 3.4 if we approximate 4 by simple functions.

3.6 Examples: (1) Space curves: Using the above area formula we first check that
H'-measure agrees with the usual arc-length measure for C! curves in R”. In fact if
y @ la,b] - R" is a 1:1 C! map then the Jacobian is just /|y|?> = ||, so that 3.2

gives
= [ pac!
4
as required.

(2) Submanifolds of R"*%: If M is any n-dimensional C! manifold of R"*¢ (see
next section for a systematic discussion of submanifolds of R”*¢), we want to check
that H" L M (where H" is n-dimensional Hausdorff measure in R"*+*) agrees with
the usual n-dimensional volume measure on M, i.e. that if vol denotes the volume
measure (in the usual sense of Riemannian geometry) on the submanifold M, and
if H" is Hausdorff measure on the ambient space R"*+¢, then for Borel sets 4 ¢ M
(or more generally for H"-measurable sets A C M) we have

(1) vol(A) = H"(A).

It is enough to check this in a region where a local coordinate representation (see
the discussion in §4 below) applies, because we can decompose the Borel set A into
a countable pairwise disjoint union of Borel sets A;, each of which is contained in
the image of a local coordinate chart. Thus we suppose U is open in R"*¢ and that
there is a local representation ¥ for M such that

v W S>RPSCL y(W)=MnUandAcMNU,

and let A9 = Y1 (A) C W be the preimage (of course Ay is then also Borel). By
the area formula
WA= [ J,dcn,
Ao
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where Jy, = /det(D;y - D;y). Now notice on the other hand that g;; = D;v -

D; is the metric for M (relative to the local coordinates in W) in the usual sense

= [4, VEAL", where g = det(gi)),

and the right side here is indeed the usual deﬁmtlon of vol(A) in the sense of Rie-

of Riemannian geometry, so this says H" (

mannian geometry, so () is established.

(3) n-dimensional graphs in R"+1: If Q is a domain in R” and if M = graph u, where
u € C1(Q), then M is globally represented by the map ¥ : x — (x,u(x)); in this
case

31# YN _ _
(555 - 37 ) = y/det(8s + DuDju) = V1 +DuP.

so H" (M / V14 |Du|?dx (by (2) above).

4 Submanifolds of R*t¢

Let M denote an n-dimensional C” submanifold of R**¢, 0 < ¢, r > 1. By this we
mean M is a subset of R"*¢ such that for each y € M there are open sets V C R",
W cR** withy e W,anda 1:1 C" map ¢ : V — W with

4.1 y(V)=WwnM

and such that v is proper (i.e. K C W compact = ¢~ 'K is compact in V) and
Dy (x) has rank n (i.e. maximal rank) at each point x € V. The condition that ¥
is proper includes examples like M = {(x,sin1/x : x > 0)} C R? but eliminates
examples such as M = ({0} x (—1,1)) U {(x,sin1/x : x > 0)}. Indeed the above
definition ensures the local representation v is a homeomorphism of V onto the
image M N W and hence ¥ is an open map onto its image; that is

4.2 Vo CV, Voopen = Fan open Wy C W with y(Vy) = M N W,.

The tangent space T, M of M at y is the subspace of R"** consisting of those t €
R”"*+¢ such that r = y(0) for some C' curve y : (—1,1) — R"* y(—-1,1) c M,
y(0) = y. One readily checks that

4.3 Ty M is a linear subspace of R" ¢ with basis D1/ (x),... Dy (x),

where ¥ is any local representation as in 4.1 above with ¥ (x) = y.

A function f : M — R** (k > 0) is said to be C* (£ < r) on M if f is the
restriction to M of a C* function f : U — R"*¢, where U is an open set in R+
such that M Cc U.
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4.4 Remark (Local graphical representations for M): If v : V — W is the
local representation for a C” submanifold M as above, and if yo € M N W and
xo = ¥ Y(yo) € V, then, since rank Dy (xo) = n, there must be indices 1 < k; <
ky < -+ <kyn <n+ £ with det(Dy, ¥ (x0)) # 0. Hence supposing for the moment
that ky = 1,ka = 2,...,k, = n and letting U= (¥1,...,Vn), the inverse function
theorem implies that there are open Vo, U C R” with xq € Vo C V such that ¢|Vj is
a C" diffecomorphism of Vy onto U. Observe that then G = yo (¥|V)™' : U — W
has the form
G(x) = (x,u(x)), xeU,

where u : U — R is defined by u = (Vni1.....¥nse) o (¥|Vo)~!. That is G
is the “graph map” x + (x,u(x)) corresponding to the C” functionn u, and by
construction

G(U) = graphu =y (Vo) = M N W,

where yo € Wy € R**¢ and W, is open by 4.2. Without the assumption k; =i, i =
1,...,n, this of course remains true modulo composition with a permutation map
(permuting the coordinates xy, ..., x,+¢ in R?*¢ so that the coordinates x, , . . . , X,
are moved to the first n slots) so for each yo € M there is an open Wy with yo € W)
and

(%) M 0 W = Q(graphu)

for some orthogonal transformation Q (where Q is in fact just a permutation of
coordinates in R”**) and for some C” vector function u = (uy,...,uy) defined on
an open set U C R". Thus M is a C” submanifold of R"*¢ if and only if M is
locally representable, near each of its points, as the graph of a C” function u; i.e.
each yg € M lies on some open W, such that (f) holds, with u = (uy,...,ug) aC”
vector function on some open U C R".

We next want to discuss some differentiability properties for locally Lipschitz maps
f M — RP with P > 1 and also the area formula in case P > n. Thus f : M —
R? and for each x € M we assume there are p, L > 0 with

4.5 lf(y)=f(2)<Lly—zl y.zeMnB,(x).

First we discuss directional derivatives of such an f: For given t € T, M the direc-
tional derivative D, f € R is defined by

4.6 Drf: % ()/(t))|l=()

for any C! curve y : (-1,1) - M with y(0) = y, y(0) = 7, whenever this
derivative exists. Of course it is easy to see that existence and the actual value is
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independent of the particular curve y we use to represent t because if y is another
such curve then, by 4.5,

47 lim 17 ((0)) = £ (P(0)] < Llime () = 7(0) = 0

because y(0) = ¥(0)(= y) and y’(0) = y'(0)(= 7).
We claim that in fact there is a set E of H"-measure zero such that Vx € M \ E

4.8 D, f(x) exists and the map t > D, f(x) is a linear map Tx M — RP.

Indeed this follows directly from the Rademacher theorem in R” proved in 1.4, as
follows: Let y € M andlet ¢ : U N M — V be a local coordinate transformation;
thus the inverse ¥ : V — R"*¢ is C! with ¥/ (V) = M N U. Then according to 1.4
there is Eg C V with #"(Eo) = 0 such that f oy is differentiable at every point of
V' \ Eo and in particular for every n € R” and x € V' \ Eg we have D, (f oy)(x) =
%f(w(x + t1))|r=0 exists and is linear in 7. But y(¢) = ¥ (x + n) is a curve as
in 4.6 with © = Y7_, n; D;¥(x), so in fact this says that the directional derivatives

4.9 Dyn_ 0.0y f () exist and = D, (f o) (x)

and are linear in n forall x € V\ Egand y = v(x) € U N M \ ¥ (Eop). Hence,
since D1y (x), ..., Dy, (x) is a basis for Ty ()M, this just says that indeed 4.8 does
hold at points of U N M \ ¢ (Ey), and of course ¥ (Ep) is a set of H"-measure zero
because v is locally Lipschitz on V.

Notice also that if in fact f is the restriction of a locally Lipschitz function f
defined in an open set W > M then (by the same argument as in 4.7 with y(7) =
x +t7) we have

4.10 Ve Ty,M: D.f(y)exists < £f(x+11)|i= exists,

and in that case the two quantities are equal.

Taking the particular choice n = ¢;, y = ¥ (x) e U N M \ ¢(Ep) in 4.9, and letting
T1,...,Tn be an orthonormal basis for 73, M, so that then

Diy(x) =Y 1= Divr(x) - e,

we have
Di(foy)(x) =k Do f(¥)Divy(x) - e,

whence

Di(foy)(x)-Dj(fovr)(x) = 3% m=1 (Dit¥ (x)-7) (D; ¥ (x)Tm) Dey f (¥)-Dr, S (¥)
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Since det AB = det A det B for square matrices A, B, and
k=1 Div(x) - Dy (x) - v = Diyr(x) - Dy (x)
because D; v (x) € span{ty,..., 1.}, this implies
4.11 Jroy (x) = Jy (x) J7 (¥),
where we define

4.12 Jr(y) = y/det T (x),

where J(y) = the n x n matrix with (D, f(y) - Dz, f(y)) in the k-th row and
m-th column. Now in case P > n we conclude that the area formula holds for f;
thus if £ is 1:1 and A C M is H"-measurable then

HF(A) = [ gy an.

and more generally, for any non-negative H"-measurable function 4 : M — [0, 00)
we have

4.13 / ho f~'dH" =/ hdpdH",
£ ) M

If f is not assumed to be 1:1 then we still have

4.14 / N(A, f)dH" = / Iy dH",
£(A) Ja

where N'(A, ) = HO(f~{y} N A).
We can of course now (for any P > 1) define the induced linear map df,¥ : T,M —
RP just as it is in R by

4.15 dfM(t)=D.f(y). t1e€T,M.

In case f is real-valued (i.e. P = 1) then we define the gradient V™ f of f by

4.16 VMf(Y) = Z?:l(DF/f(y>)Tj’ yeEM,

where 71,...,1, is any orthonormal basis for T, M. If we let VM f = ¢; - VM f
(e; = j-th standard basis vector in R+ j =1,....,n +£) then

4.17 V) =15V Mf(3)e;.

If £ is the restriction to M of a C'(U) function f, where U is an open subset of
R"** containing M, then

VM f(y) = (Vanre F(3) . y € M,
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where Vi te f is the usual R"+¢ gradient (D1 f,.... Dyiyf) on U, and where ()T
means orthogonal projection of R"*¢ onto T, M.

Now given a vector function (“vector field”) X = (X!,..., X" : M — R+
with X/ € CY(M), j = 1,...,n + £, we define

4.18 divay X = Y 1E VM X/
on M. (Notice that we do not require Xy, € T, M.) Then, at y € M, we have
4.19 divir X = Yj21e; - (VM X7)

= ;l:fej : (Z?:l(Df_/Xj)Ti)’

so that (since X = ;ifXjej)
4.20 divig X = Y% - D, X,
where 11, ..., 7, is any orthonormal basis for 7, M .

The divergence theorem states that if the closure M of M is a smooth compact
manifold with boundary dM = M \ M, and if X, € TyM ¥y € M, then

421 / divay X dH" = —/ X - pdHr!
JM oM

where 7 is the inward pointing unit co-normal of dM; that is, |n| = 1, 7 is normal
to dM, tangent to M, and points into M at each point of IM.

4.22 Remarks: (1) M need not be orientable here.

(2) In general the closure M of M will not be a nice manifold with boundary;
indeed it can certainly happen that #" (M \ M) > 0. (For example consider the
case when M = {(x,y) e R? : x > 0,y = sin(l/x)}. M isa C*® l-dimensional
submanifold of R? in the sense of the above definitions, but M \ M is the interval
{0} x[—1,1] on the y-coordinate axis.) Nevertheless in the general case we still have
(in place of 4.21)

(i) / diviy X =0
M
provided support X N M is a compact subset of M and X, € T,M Yy € M.

In case M is at least C? we define the second fundamental form of M at y to be the
bilinear form

4.23 By : Ty,M x T,M — (T,M)"
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such that

4.24 By(t,n) = _Z]é:l (r/ . D,vo‘)v“}y ,t,neTyM,

where v, ..., vk are (locally defined, near y) vector fields with v¥(z) - V8 (2) = 848
and v*(z) € (T:M )J' for every z in some neighborhood of y. Notice that if
M.....n¢ are vectors in R*T¢ such that Dy (x)..... Dy (x). n1.....n¢ are lin-

early independent, we can obtain such locally defined orthonormal C! normal
vector fields v, ..., v¢ by the Gram-Schmidt orthogonalization process applied to
the basis D1y (€), ..., Dnru(€),m1, ..., ne of R**¢ for & in a suitable neighborhood
of x.

The geometric significance of B is as follows: If 1 € T, M with [t = 1 and y :
(=1,1) - R"* isa C2 curve with y(0) = y, y(—1,1) € M, and y(0) = t, then

ooy L
4.25 By(r.7) = (#(0))",
which is just the normal component (relative to M) of the curvature of y at 0,
y being considered as an ordinary space-curve in R"**. (Thus B, (z, ) measures
the “normal curvature” of M in the direction 7.) To check this, simply note that
v (y(t)) - y(t) = 0, |t| < 1, because y(r) € TyyM and v¥(y(t)) € (Ty(,)M)J'.
Differentiating this relation with respect to 7, we get (after setting t = 0)

V() 7(0) = =(Dev®) -7
and hence (multiplying by v*(y) and summing over «) we have

(7(0)) " = =Xk_y (x- Dev®)v¥(y)
= By(z.7)

as required. (Note that the parameter ¢ here need not be arc-length for y; it sufhices
that y(0) = 7, |t| = 1.) More generally, by a similar argument, if 7,n € T,M
and if ¢ : U — R"** is a C2 mapping of a neighborhood U of 0 in R? such that
w(U)C M, ¢(0) =y, %(0’0) =1, ;{—";(0,0) = 7, then
2

4.26 By(t.n) = —(%(o,o))l.

Of course such maps ¢ do exist for any given 7, € T, M, so 4.26 implies in partic-
ular thaJt_ By (t,n) = By(n,7); that is B, is a symmetric bilinear form with values in
(T, M)™.

We define the mean curvature vector H of M at y to be trace By; thus

4.27 H(y)=Y"_,By(u.%) € (T,M)",
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where 1, ..., 17, is an orthonormal basis for 7, M. Notice that then (if v',... vk

are as above)
H(y) = =Yom1 i (5 D) ()
so that

4.28 H(y) = -Y%_, (divag v¥)0®

near y.

Returning for a moment to 4.21 (in case M is a compact C? manifold with smooth
(n—1)-dimensional boundary M = M\ M) it is interesting to compute [,, divys X
in case the condition X, € T, M is dropped. To compute this, we decompose X into
its tangent and normal parts:
X=X"+Xx"
where (at least locally, in the notation introduced of 4.24 above)
Xt =Yk (v X))
Then we have (near y)
diva X+ = Y5 (v*- X) divve,
so that by 4.28
4.29 divyy X+ =-X-H

at each point of M. On the other hand [,, divas X7 = — [;,, X - n by 4.21. Hence,
since divys X = divyy X7 + divyr X1, we obtain

4.30 / divMXdH”z—/ X~ﬂd%"—/ X - qdHrt.
M M oM

5 First and Second Variation Formulae

Suppose that M is an n-dimensional C! submanifold of R**¢ and let U be an open
subset of R"*¢ such that U N M # @ and H"(K N M) < oo for each compact
K cU. Also, let {¢:} | _,_,
such that, for some compact subset K C U,

be a 1-parameter family of diffeomorphisms U — U

@(x)) = @(t,x)isaC*map of (t,x) € (=1,1) xU - U
5.1 wo(x) =x, VxeU
or(x)=x, V(t,x)e(-1,1)xU\K,
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Also, let X, Z denote the initial velocity and acceleration vectors for ¢,: thus X, =

do(2,x) _ p(tx)
|,y Zy = =53 o Then

l2
5.2 @ (x) =x+tXx+EZx+0(t3)

and X, Z have supports which are compact subsets of U. Let M; = ¢,(M N K)
(K asin 5.1); thus M; is a 1-parameter family of manifolds such that My = M N K
and M, agrees with M outside some compact subset of U. We want to compute
49" (M,)|  and LH"(M,)

=0 ar?
The area formula is particularly useful here because it gives (with K as in 5.1)

(i.e. the “first and second variation” of M).

W (o (M0 K)) = [

Jy dH", e =@M NU,
MNK

and hence to compute the first and second variation we can differentiate under the

. . . 2
integral. Thus the computation reduces to calculation of 2 Jy, - and 257, —

To make the calculation we need to get an explicit expression for the terms up to
second order in the Taylor series expansion (in the variable ¢) of Jy,. Note that (for

fixed x)
dyy,(t) = Dy (v € TuM)

=t+tD. X+ ;D,Z + 0(t3) by 5.2.
Hence, relative to the orthonormal bases 7y,...,1, for TyM and ey, ..., e, ¢ for
R"*¢, the map dy,|, : TxM — R"*, has matrix with i-th row
Dyyi(x) =1 +1D X + ;D,,,Z + 0(1?)
fori = 1,...,n. Then, with respectto 71, ..., s, (d%\x)*o(d%lx) has matrix (b;; ),
bij = Dr,- Wt\x . D:; I/ftlx
=68 +1(ti-Dy; X +1;- Dy, X)
+12(3(ti - Dy Z +1- D, Z) + (D X) - (D, X)) + O(27).
so that, by the general formula
det(I + A) =1+ trace A + 1 (trace A)*> — 1 trace(4?) + O(|A]),
(Jy.)? = 1 + 2t divag X + 1% (divar Z + X7, | D, X |
+2(divae X)2 =330 (6 - Doy X + 1 - Dy X)?) + O(2%)
= 1420 divar X + 1> (divie Z + X7, | (D5 X)
+2(divar X)* =30 (5 Doy X) (- Dy X)) + O(1),
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where (D, X)J' (= the normal part of Dy; X) = D, X =37, (7j-Dy; X)7j. Using
VI+x=1+1x—1x?+ O(x?), we thus get

Ty, = 1+t divye X + 2 (divar Z + (divar X)* + X0, | (D5 X)
=Y 7o (ti D X) (1 - Dy X)) + O(23).

Thus the area formula immediately yields the first variation formula

5.3 Lym (M)

= / leM X dan
t=0 M
and the second variation formula

54 L (M) |2 = /M (divwr Z + (divw X)* + X7, [ (Do X))
=i (@ Dy X) (5 - Dy X)) dH”.

i,j=1

We shall use the terminology that M is stationary in U if H" (M N K) < oo for each
compact K C U and if £H" (M,))t_o = 0 where M, = ¢;(M N K), ¢;(x) = x
forall (x,7) € (U \ K) x (—¢,¢). Notice that by the first variation formula 5.3 this
is equivalent to [, divas X dH" = 0 whenever X is C! on U with support X a
compact subset of U.

In view of 4.30 we also have the following:

5.5 Lemma. Suppose M is a C? submanifold of R"** with mean curvature vector H
and U C R"** is open. Then

(1) If M is a C? submanifold with smooth (n — 1)-dimensional boundary IM =
M\ M, then M is stationary in U ifand only if H = 0on M NU and M NU = Q.

(2) If UNM isa compact subset of M, then M is stationary in U if and only if H = 0
onMnNU.

For later reference we also want to mention an important modification of the idea
that M is stationary in U with U is open in R"**. Namely, suppose N is a C?
(n + €)-dimensional submanifold of R**£, 0 < ¢ < L, and suppose U is an open
subset of R"*Z such that (N\N)NU = @, and let {¢;
of diffeomorphisms U — U such that

b <1< @ I-parameter family

@:(x)) = @(t,x) isa C? map of (t,x) € (=1,1) xU — U
5.6 with,(UNN)CcUNN Ve (—1,1)
po(x) =xVxeU, ¢((x)=xV(t,x)e(-1,1)xU\K,

where K is a compact subset of U. Then we have the following definition:
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5.7 Definition: V is stationary in U N N if £M(¢,(V L K))‘ = 0 whenever

the family {¢; },

c(=11) is as in 5.6.

In view of the fact that if X is any C! vector field in U with compact support K
such that K N N is a compact subset of N and such that X, € TxN at each x € N,
then there is a 1-parameter family ¢, as in 5.6 above with %(p(x, t)|t=0 = Xx at each
point x € N N U, we see that M is stationary in U N N as in 5.7 if and only if

5.8 / divyy X = 0
JM

whenever X isa C! vector field in U with compact support K such that K N N is
compact and whenever X, € TxN Vx € M.

,vL be an orthonormal family (defined locally near a point y € M)

of vector fields normal to M, such that v!, ..., v* are tangent to N and v¢*+1, ... vE

If we let v?,

are normal to N, then for any vector field X on M we can write X = X7 + X+,

where X7 € T,N and X+ = Y"5_, . (v/ - X)1/ (= the part of X normal to N).

Then if 74, ...,

5.9 divyy X =divy XT +3 —£+1( X) divy v/
=divy XT + Zj=£+1( -X)Zl-zlti - D0/
=divy XT -7 X - By (5. 5u),

1, 1s any orthonormal basis for T, M, we have

where B, is the second fundamental form of N at y and where we used the defini-
tion of second fundamental form as in 4.24 (with N in place of M) and hence by
virtue of 5.8 (with X () in place of X) we conclude:

5.10 Lemma. If N isan (n+£)-dimensional C? submanifold of R**L,if M C N and
if U is an open subset of R" L such that H" (M N K) < oo whenever K is a compact
subset of U, then M is stationary in U N N (in the sense of Definition 5.7) if and only

if
/ diVMXZ—/ HMX
M M
for each C! vector field X with compact support contained in U ; here
ﬁM|y:Z?:1Ey(Ti,Ti), yEM,

where By, denotes the second fundamental form of N at y and 1, . ..,
mal basis of TyM.

Ty, 1S any orthonor-

Finally, we shall need later the following important fact about the second variation
formula 5.4.
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5.11 Lemma. If M is C?, stationary in U, U open in R"* with (M \ M) NU = @,
and if X as in 5.4 has compact support in U with X, € (TyM)J' Yy € M, then 5.4
says

dz

—H"(M;)

dt? le I(X B(tlvtj)) )dHn

= Sl

5.12 Remark: In case L = 1 and M is orientable, with continuous unit normal v,
then X = ¢v for some scalar function ¢ with compact support on M, and the above
identity has the simple form

(%) et ()| = [ (v =8P ane,
where |B|?> = Zﬁj:liB(Ti’tj)f =Y B(t:,7;)|. This is clear, because
(Dri(vé‘))l = v Dy, ¢ by virtue of the fact that D,iv}y eTy,MVyeM.

Proof of 5.11: First we note that [, divay ZdH" = 0 by virtue of the fact that
M is stationary in U, and divy X = —X - H = 0 by virtue of 4.29 and 5.5(2)
and the fact that X s normal to M. The proof is then completed by noting that
;- Dy, X = —X - B(1;.7;) by virtue of 4.24 and the fact that X is normalto M. O

6 Co-Area Formula and C! Sard Theorem

As in our discussion of the area formula, we begin by looking at linear maps A :
R” — R™, but here we assume m < n,son = m + k with k € {1,2,...}. Let us
first look at the special case when A is the orthogonal projection p of R” onto R™.
The orthogonal projection p : R” — R™ (i.e. p:x = (x',...,x") > (x1,...,x™))
has the property that, p~(0) is a k-dimensional subspace. Thus the inverse images
p~1(y) are k-dimensional affine spaces, each being a translate of the k-dimensional
subspace p~1(0). Thus the inverse images p~!(y) decompose all of R” into parallel

“k-dimensional slices” and by Fubini’s Theorem

6.1 / HE(p~(y) N A) d L™ (y) = H" (A)
RrRM

whenever 4 is an £"-measurable subset of R".

This formula (which, we emphasize again, is just Fubini’s Theorem) is a special case
of a more general formula known as the co-area formula. We first derive this in case
of an arbitrary linear map A : R” — R™ with rank A = m.

Let F = 271(0). (Then for each y € R™, A7!(y) is a k-dimensional affine space
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which is a translate of F; the sets A7 (y) thus decompose all of R” into parallel
k-dimensional slices, k = n —m)

Take an orthogonal transformation ¢ = R* — R” such that ¢F+ = R™ x {0},
qF = {0} xRk, Then A og* is zero on {0} x R¥ and is an isomorphism of R™ x {0}
onto R™, hence A = 0 o p o g, where p(x,y) = x is as above and ¢ is a linear
isomorphism of R”. By 6.1 above, for any #"-measurable A C R",

£(A) = £(q() = [ #E(a(A) 0 p7 () dL7 ()

RW!
= [ HANg™ (p7H () dL™ ().
Making the change of variable z = o(y) dy = | deto|~! dz, we thus get
deroler(4) = [ HE(A0g™ (77 (071 (2))) 4L (2)

= [ H(ANA(2))dLm(2).
R}‘ﬂ
Also, since g* o g = 1gn and p o p* is the identity on R™, we have Ao A* =g o0*:

R™ — R™, so that |deto| = v/det A o A*.
Thus finally

6.2 Vdet 2 o 4 £7(A) =/Rm7-lk(AﬂA_1(y))d£’"(y).

This is the co-area formula for linear maps. (Note that it is trivially valid, with both
sides zero, in case rank A < m.)

Generally, given a C! map f : M — R™, where M is an n-dimensional C! sub-
manifold of some Euclidean space RY, we can define

I} () = ydet(df) o (df)".

where, as usual, dfy : TxM — R™ denotes the induced linear map. Then for any
Borel set A c M

6.3 /AJ; dH" = /Rm’Hk(Aﬁf_l(y))dﬁ'"(y).

This is the general co-area formula. Its proof uses an approximation argument based
on the linear case 6.2. (See [Har79] or [Fed69] for the details.)

An important consequence of 6.3 is that if C = {x € M : Ji(x) =0}, then (by
using 6.3 with 4 = C) H*(C n f~'(y)) = 0 for L™-ae. y € R™. Also, since
J7(x) # 0 precisely when dfy has rankm, the implicit function theorem implies
that either f~!(y)\ C is empty or else it is an k-dimensional C! submanifold in the
sense of §4 above.

§6 oF CHAPTER 2: Co-AREA FORMULA AND C'! SARD THEOREM 67

In summary we thus have the following important result.

6.4 Theorem (C!Sard-type Theorem.) Suppose f : M — R™, m < n, is C', with
M is an n-dimensional C' submanifold of RN. Then for L™-a.e. y € f(M), f~1(y)
decomposes into an k-dimensional C* submanifold and a closed set of H*-measure zero,
where k = n — m. Specifically,

') =T )\NC)u(fHy)nC),

C={xeM:J(x)=0}(={x €M :rank(dfy) <m}), H(f'(y)nC) =0,
L™-a.e.y,and [~ (y)\ C is either empty or an k-dimensional C* submanifold.

6.5 Remark: If f and M are of class C¥*1, then Sard’s Theorem asserts the stronger
result that in fact f71(y) N C = @ for L™-a.e. y € R™, so that f~(y) is a k-
dimensional C¥*! submanifold for £™-a.e. y € R™.

A useful generalization of 6.3, obtained by applying 6.3 to a suitable increasing
sequence of simple functions, is as follows: If g is a non-negative H"-measurable
function on M, then

6.6 /gJ;dH"=/ / gdHkdrm(y).
M RS f=1(y)

6.7 Remarks: (1) Notice that the above formulae enable us to bound the #* mea-
sure of the “slices” f~!y for a good set of y. Specifically if | /| < R and g is as
in 6.6 (g = 1 is an important case), then there must be set S C Br(0) (C R™),
S =58(g. £ M), with £7(S) > 1£"(Bg(0)) and with

2 n
dH* < —/ JXdH"
/f”(y)g L™ (Br(0)) el

for each y € S. For otherwise there would be a set T C Bg(0) with £"(T) >
1L™(Bg(0)) and

2
deZ—/ JYdH", yeT,
/f“(y)g L™ (Br(0)) u® Y

so that, integrating over 7" we obtain a contradiction to 6.6 if [y, g /7 dH" > 0. On
the other hand if [}, ¢ J7 dH" = 0 then the required result is a trivial consequence
of 6.6.

(2) The above has an important extension to the case when we have f : RY — R”
and sequences { M }, {g; } satisfying the conditions of M, g above. In this case there
isaset § C Bg(0) with £ (S) = 1™ (Br(0)) such that for each y € S thereis a
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subsequence { j'} (depending on y) with

2
/M.//ﬁf_l(Y) ’ L™ (Br(0)) /m;, Y

Indeed otherwise there isa set 7" with £ (T) > 1£™ (Bg(0)) so that foreach y € T
there is £(y) such that

2
« g-d?—[,k>m—/ ¢ JEdH"
() /Mjﬂf*](y) ’ £m(Br(0)) Ja;>

for each j > €(y). But T = U2, T}, T; = {y € T : £(y) < j}, and hence there
must exist j so that £ (7}) > 2£™ (Bg(0)). Then, integrating () over y € T}, we
obtain a contradiction to 6.6 as before.
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1 Basic Notions, Tangent Properties

Firstly, a set M C R"** is said to be countably n-rectifiable if
1.1 M C Mo U (U2, Fj (R"),

where H" (Mo) =0and F; : R" — Rt are Lipschitz functions for j = 1,2,....!
Notice also that by the extension theorem 1.2 of Ch.2 this is equivalent to saying

M = MoU (U5, F;(4)))

where H"(Mo) = 0, F; : A; — R"*¢ Lipschitz, 4; C R". More importantly, we
have the following lemma.

1.2 Lemma. M is countably n-rectifiable if and only if M C U5\ N;, where 1" (No) =
0 and where each N;, j > 1, is an n-dimensional embedded C* submanifold of R"**,

Proof: The “if” part is essentially trivial because if N is an n-dimensional C! sub-
manifold, then using local representations for N as in Remark 4.4 of Ch.2 we see

"Notice that this differs slightly from the terminology of [Fed69] in that we allow a set Mo with
H" (M) = 0.
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that for each x € N there is px > 0 such that B, (x) " N = y/(V) for suitable C!
map ¥ : V — R* 1V C R” open. Since such C! maps are automatically Lipschitz
in each closed ball C V it is then clear that M satisfies the definition 1.1.

The “only if” part is a consequence of the C! Approximation Theorem 1.5 of Ch. 2,
which says that for each j = 1,2,... we can choose C! functions Gy;, Goj,... :
R" — R* such that, if F; are Lipschitz functions as in the Definition 1.1 above, then
H"({x: Fj(x) # Gij(x)}) < 1/i. So, with

Zj =R"\ (UZ{x: Fj(x) = Gij (x)}),
we have H"(Z;) = 0, in which case
(1) graphFj CEjﬂ(U?ilGijGRn)), ] =1,2,...

where E; = Fj(Z;). Then H"(E;) = 0 because F; is Lipschitz and H"(Z;) = 0,
s0

(2) Hn(N()) = 0, where Ny = (U;‘;IE]'>,

and we have proved

M C Mo U No U (U5 _,Gj;R").
Now by the area formula £" ({x : Jg;; = 0} whereas if the Jacobian G;; is non-zero
at a point x, then there is a p > 0 such that G;;(B,(x)) is an n-dimensional C'!
submanifold of R” (with G;; providing a local representation in a neighborhood of
the point y = G;;(x)). So U;;G;; can be written as the union of a set of measure

zero and countably many n-dimensional C!' submanifolds of R"**. O

1.3 Remark: If M is countably n-rectifiable, the above lemma guarantees that we
can find Ny with H" measure zero and n-dimensional C! submanifolds N;, N, ...
with M C U2 N}, and so we can write M as a disjoint union M = U2 M; with
M; C Nj for each j = 0.1,2,.... To achieve this, just define the M; inductively
by My = M N Noand M; = M N N; \ U/Zs M;, j > 1. Of course the sets M; so
constructed are all #"-measurable if M is.

We now want to give an important characterization of countably n-rectifiable sets
in terms of approximate tangent spaces, which we first define:

1.4 Definition: If M is an H"-measurable subset of R**¢ with H(M N K) < ooV
compact K, then we say that an n-dimensional subspace of P of R"*+¢ is the approx-
imate tangent space for M at x (x a given point in R"*¢) if

lim [ FO)H () = [ F0)aH () VS € COE),
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(Recall 7, 5 : R*" ¢ — R+ is defined by n,.2(y) = A7 (y —x), x,y e R*T, 1 > 0.)
1.5 Remarks: (1) Of course P is unique if it exists; we shall denote it by T M.
(2) We shall show below (in the proof of the “=” part of 1.6) that, with M;, N; as
in Remark 1.3 above,

TxM = TyN;, H'-ae.xeM;, j=1.2,....
This is a very useful fact.
(3) By choosing f : R**¢ — [0,1] € CO(R**¢) with f = 1 0on B;(0) and f =0on
R"*4\ By4¢(0) in Definition 1.4, we see (after letting ¢ | 0) that 7, M exists =

lim(w,p") ' H" (M N B,y(x)) = 1.
00

and similarly by taking functions f : R"** — [0, 1] € C2(R"**) approximating the

indicator function X . we see that Ty M exists =

1/2((TXM>J-,O)PIB](O>
/,L(X% ((TeM)*+,x) N By(x))
m

P40 wp p"

=0.

The following theorem gives the important characterization of countably n-rectifiable
sets in terms of existence of approximate tangent spaces.

1.6 Theorem. Suppose M is H"-measurable with H" (M N K) < oo for each compact
K C R Then M countably n-rectifiable <= the approximate tangent space Ty M
exists for H"-a.e. x € M.

Proof of 1.6 “=”: As described in Remark 1.3 above, we may write M as the
disjoint union U2, M;, where H" (M,) = 0, M; C N;, j > 1, N; embedded C'
submanifolds of dimensions 7, and M; H"-measurable. Let R > 0 f € C2(R"*%)
with f = 01in R"*¢\ Bg(0). Then for x € M;

/ fd?-l”:/ fd?—l"—/ Fdn" + fdn
Nx.A (M) Nx.A(Nj) Ny, a (N \M;) Nx.a (M\M;)

and, since x € N; and N, is a C! submanifold,

lim £ d :/ fan,
A0 Sy 2 (N)) TxN;

and, by the Upper density Theorem 3.6 of Ch. 1,

‘/'IX,A(M\N_,-)f dH"| <sup|f|H"(Br(0) N nyr(M\ Nj))

=sup|f|AT"H"(Bir(x) N M \ N;) — 0 for H"-a.e. x € M;
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Similarly, again by the Upper density Theorem,

fdH"| — 0for H"-a.e. x € M.

‘/WX,A(N/‘ \M;)

Thus we have shown that Ty M exists and = TxN; for H"a.e. x € M;. In particular
Remark 1.5(2) is checked. O

Proof of 1.6 “<”: Define u = H" L (M N Br(0)), we have that 4 is Borel regular
with p (R*H) < cc.

Given any {-dimensional subspace 7 C R"*¢ and any o € (0,1) we let X, (7, x)
denote the cone

(1) Xo(m,x) = {y e R"" . dist(y — x,7) < ]y — x|},
which can alternatively be written
(2) Xo(,x) = {y e R"™ ¢ |gn(y —x)| < aly — x|}
where ¢, denotes orthogonal projection of R**¢ onto =+, with
1 _ n+l . _
- ={zeR"":z-w=0Yw e x}.

For ¢-dimensional subspaces 7, 7’ we define the distance between 7, 7/, denoted
d(m,7'), by

(3) d(m.7') = sup |gx(x) = gz (x)

|x|=1

3

so that in fact d (7, ') is just the norm ||gz — ¢ /| of the linear map ¢ — ¢. Since
Ty M exists ji-a.e. and p(R"+¢) < oo, by 1.15 of Ch. 1 we can choose a closed subset
F C M such that

P

and such that for each x € F, M has an approximate tangent space Py at x. Thus
in particular by Remark 1.5(3) we have

. M(Bp(x))
(5) lplﬁ} Wy P

=1

(X1 (7mx,x) N Bpy(x))
6 li 2 =0,
( ) Plﬁ)l Wy P"
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forall x € F, where 7, = (Px)l.

Fork =1,2,...and x € F, define

B
fil) = inf L5

0<p<i Wp p"
and

[/L(X% (mx.x) N By(x))

gk (x) = sup .
0<p<i n P

Then
(7) lim f¢(x) =1 and limgx(x) =0 Vx € F,

and hence by Egoroff’s Theorem we can choose a closed set E C F with

(8) w(F\E) < %M(R"“)

and with (7) holding #niformly for x € E. Thus for each ¢ > 0 there is a § > 0 such
that

9) /L(Bp(:)) . ,u(X% (nx,x)nﬂ B,(x)) .
@n P Wy P
xe E,0<p<é.
Now choose ¢-dimensional subspaces 71, ..., 7y of R"+¢ (N = N (n,t)) such that
for each ¢-dimensional subspace = of R**¢, there is a j € {I,..., N} such that

d(m ) < %, and let Ey, ..., En be the subsets of E defined by
Ej={x€E:d(mj,m) < ¢}

Then E = UY_| E; and we claim that if we take ¢ = 1/16" and let § > 0 be such
that (9) holds, then

(10) X%(nj,x) NE;NBsp(x)={x}, VxeE;, j=1,...,N.

Indeed otherwise we could find a point x € Ej anda y € X1 (mj.x) N E; NdB,(x)
for some 0 < p < §/2. But since x € E and 2p < §, we have (by (9))

;L(X% (7x,x) N Bap(x)) < ewn(2p)"
and (since By/s(y) C X (mj.x) N Bsy(x)) we have also (again by (9))

M(X% (mx.x) N Byy(x)) = p(Bys(y))
> wn(/o/g)n’
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which contradicts (9), since ¢ = 1/16". We have therefore proved (10). Now for
any fixed xo € E; it is easy to check that (10), taken together with the extension
theorem 1.2 of Ch.2, implies

E;N 33/4()6()) C QT(graphf)

where Q is an orthogonal transformation of R**¢ with O (7;) = {0} x R¢, and
where £ = (f1..... ) : R" - R% is Lipschitz.
Since j € {1,..., N} and xo € E; are arbitrary, we can then evidently select Lips-
chitz functions fi,..., f; : R" — R and orthogonal transformations Q1,..., Qs
of R"*¢ such that

E C U}-’lej (graph f;).
Thus by (4), (8) we have

W (B UL, 0 (graph /7)) = u(B"H).

Since we can now repeat the argument, starting with i L (R**\U7_, Q; (graph f;))
in place of u, we thus deduce that there are countably many Lipschitz graphs
graph f;,j = 1,2,..., f; : R" — R’ and corresponding orthogonal transforma-
tions Q1, Qa, ... with that u(R"+\ U2, O, (graph f;)) = 0. Taking G; to be the
graph map x > (x, f;(x)) and F; = Q; o G; we then have that F; : R" — R"*¢ are
Lipschitz and H" (M \ (USZ, F;(R"))) = 0, so M is countably n-rectifiable. O

It is often convenient to be able to relax the condition #" (M N K) < oo V compact
K in 1.4 and 1.6 and consider instead sets M which can be written as the countable
union US2, M; of H"-measurable sets M; with #"(M; N K) < oo for each j and
each compact K C R"*¢. This is evidently equivalent to the requirement that M
is H"-measurable and there exists a positive H"-measurable function 6 on M such
that [, x 0 dH" < oo for each compact K, so we proceed to discuss this situation,
starting with the definition of approximate tangent space in such a setting:

1.7 Definition: Let M be an H"-measurable R"** and let 6 be a positive H"-
measurable function on M with [, 0 dH" < oo for each compact K C R**+¢.
For each x € R**¢, we say an n-dimensional subpace Py is an approximate tangent
space of M with respect to 0 if

SO0 +29) 4 (3) = 0(x) [ f(3)aH"(»)

(1) lim

A0 Nx.2 (M)

for each f € CO(R"**). Evidently P, is unique if it exists at all so we denote it
T M, and also Tx M agrees with our previous notion of approximate tangent space
in case H"(M N K) < oo for all compact K € R"* and 6 = 1.
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1.8 Remarks: (1) Notice that if M, 0 are as in the above definition, then, by Lusin’s
Theorem 1.17 of Ch. 1, there is an increasing sequence {M; } of compact subsets of
M with H" (M \ (USZ, M;)) = 0 and 6| M; continuous (hence has a positive lower
bound, hence H"(M;) < o) for each j. Also, since u = H" L 6 is locally finite in
R"*¢ we can apply Theorem 3.6 of Ch.1 to give a set E; C R"** of H"-measure
zero such that ®*" (L (M \ M, ), x) = 0for each j and each x € M;\ E;. Thenitis
straightforward to check that, with E' = U2 | E;, for every j and every x € M; \ E,
TxM; exists as in Definition1.4 <= T, M exists as in Definition 1.7, and then
TeM = T: M;.

(2) By taking a C° function f : R"** — [0,1] with f = 1in B;(0) and f = 0 in
R"*4\ By1¢(0), we see that the definition (i) implies in particular that

lim(wnp”)_l/ 6 dH" = 6(y)
P40 MNB,(y)

whenever M has an approximate tangent space with respect to 6.

In view of the Remark 1.8(1) above, we can apply Theorem 1.6 to the sets M; to
deduce the following generalization of Theorem 1.6:

1.9 Theorem. Suppose M C R"** is H"-measurable and 0 is a positive H"-measurable

function M with [y, 0 dH" < 0o for each compact K C R**X. Then M is countably
n-rectifiable <= M has an approximate tangent space Tx M with respect to 6 for
H'-ae x e M.

2 Gradients, Jacobians, Area, Co-Area

Throughout this section M is supposed to be H"-measurable and countably n-
rectifiable, so that we can express M as the disjoint union U%2, M; (as in Remark 1.3
of the present chapter), where #"(My) = 0, M; is H"-measurable of finite }"-
measure, and M; C N;, j > 1, where N; are embedded n-dimensional C! subman-
ifolds of R"+¢,

Let f be alocally Lipschitz function on U, where U is an open set in R"** contain-
ing M. Then according to the discussion in §4 of Ch.2 we can define the gradient
of £, VM f H"-ae.y € M by

2.1 Definition:
VM F(y) =VVif(y). yeM,,

where the notation is as above.
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Notice that, up to change on sets of #"-measure zero, this is independent of the
decomposition M = UM; (and independent of the choice of the C! submanifolds
Nj). Because for H"-a.e. y € M we have D, f (y) = % (y+17)|c=0 forallt € TxM
by 4.10 of Ch.2 and the fact that 7, M agrees with T, N; for H"-a.e. y € M;(=
M N N;). So VM f is well defined as an L! function with respect to Hausdorff
measure H" on M.

Having defined V¥ f, we can now define the linear d™f, : TxM — R induced by
f by setting
dMf(r) = Do f(y) (= (r VMf(X)>), teTyM

at all points where Ty M and VM f(x) exist. More generally, if f = (f1,..., f9)
takes values in R? (f/ still locally Lipschitz on U, j = 1,...,£), we define dMf, :
T:M — R? by

2.2 dMf. (1) = D, f(x).

With such an f, in case Q = n + £; ({1 > 0), we define the Jacobian Jys f (x) for
H"-a.e. x € M as in 4.12 of Ch.2; thus

2.3 TP (x) = Jdet T (x) = \Jdet(dMf)" o (dMfy)
where 7 (x) is the matrix with D, f(x)- Dy, f (x) in the p-th row and g-th column
(1, ..., s any orthonormal basis for 7x M) and (dex)* :R*"4 5 T .M denotes

the adjoint of dMf. In view of 4.11 and the area formula for Lipschitz maps from
domains in R”, as discussed in §3 we have the general area formula

2.4 /AJfM dH" = '/WHHO(A N (y)) dH" (y)

for any H"-measurable set A C M. The proof of this is as follows:
We may suppose (decomposing H"-almost all M; as a countable union if necessary
and using the C'! Approximation Theorem 1.5 of Ch.2) that f|M; = g;|M;, where
gjisClon R j > 1.
By virtue of the 2.1, 2.2, we then have

J;W(x) = JNigi(x), H"-ae x € M;.

Thus JM is H"-measurable, and by the smooth case 3.4 of Ch.2 of the area formula
(with N; in place of M, AN M; in place A and g; in place of f), we have

[ aptawr = [ wo(an ;07 ) ane.
AﬂM,' R

§2 oF CHAPTER 3: GRADIENTS, JACOBIANS, AREA, CO-AREA 77

We now conclude 2.4 by summing over j > 1 and using the (easily checked) fact that
if y : U — R™ is locally Lipschitz and B has H"-measure zero, then H" (¢ (B)) =
0.

We note also that if / is any non-negative H"-measurable function on M, then, by
approximation of & by simple functions, 2.4 implies the more general formula

25 /hJMdH”:/ / hdHO) dH"(y).
M f Rn+e( SNy ) (J’)

In case f|M is 1:1 and this becomes
2.6 /hJ}”dH”:/ ho f~1dH".
M f(M)

There is also a version of the co-area formula in case M is merely H"-measurable,
countably n-rectifiable and f : U — R™ is locally Lipschitz with m < n; we write
n =m + k and here U open with M C U as before.

In fact we can define (Cf. the smooth case described in §6 of Ch.2)

27 T (x) = Jdet(dMfy) o (M)

with dMf, asin 2.2 and (dMf,)" = adjoint of d™f,. Then, for any H"-measurable
set AC M,

2.8 /AJ;”*dH" - /RmHk(Aﬂf_l(y))dLm(y).

This follows from the C! case (see §6 of Ch.2) by using the decomposition M =
U2 yM; of Remark 1.3 and the C' Approximation Theorem 1.5 of Ch.2 in a simi-
lar manner to the procedure used for the discussion of the area formula above.

As for the smooth case, approximating a given non-negative H"-measurable func-
tion g by simple functions, we deduce directly from 2.8 the more general formula

2.9 / JM*dH"=/ / dH*dcm(y).
877 Rm(f_l(ymMg ) ()

2.10 Remarks: (1) Note that Remark 6.7 of Ch.2 carries over without change to
this setting.

(2) The “slices” M N f~'(y) are countably k-rectifiable subsets of R*** for £L™-a.e.
y € R™. This follows directly from the decomposition M = U, M; of Remark 1.3
together with the C! Sard-type Theorem 6.4 of Ch.2 and the C! Approximation
Theorem 1.5 of Ch.2.
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3 Purely Unrectifiable Sets, Structure Theorem

3.1 Definition: A subset S C R"** issaid to be purely n-unrectifiable if P contains
no countably n-rectifiable subsets of positive H"-measure.

3.2 Lemma. If A is an arbitrary “H" o-finite” subset of R"** (i.e. A = US| A; with
H"(A;) < oo for each j), it is always possible to decompose A into a disjoint union

A=RUP,

where R is countably n-rectifiable and P is purely n-unrectifiable. Also R can be chosen
to be a Bovel set if A is H" measurable.

Proof: First observe that in case in case A is H"-measurable we can also take each
Aj to be H"-measurable (e.g., first take a Borel set B; D A; with H"(B;) = H" (A;)
and then replace A; by A N B;). In this case we let

a; = sup{H"(S): S C 4;, S countably n-rectifiable, #"-measurable}.

By 1.15(2) of Ch.1 and the definition of «; we can select closed countably n-
rectifiable sets R;; C A; with %#"(R;;) > o; — + and let R = U; ; R;;. Evidently R
is a countably n-rectifiable Borel set, A \ R is purely unrectifiable, and 3.2 is proved
with R Borel and P H"-measurable.

To handle the case when A4 is not necessarily #"-measurable, we first pick a Borel
set B = U; B, where each B; is a Borel set containing A; with the same H"-measure
as A;. Then by the measurable case of 3.2 we have B = R U P with R countably
n-rectifiable Borel and P purely unrectifiable, and then A = (ANR)U (AN P)isa
suitable decomposition of 4. O

The following lemma gives a simple and convenient sufficient condition for check-
ing if a set is purely n-unrectifiable. In this lemma we adopt the notation that pr,
denotes the orthogonal projection of R"** onto L for any n-dimensional subspace
L C R"+¢,

3.3 Lemma. Forl < ji; < jo <+ < jn <n+Llet pj . denotethe orthogonal
projection of R"*¢ onto span{ej,, ..., e;, }, and suppose S C R"** has the property
that H" (pj,,...;s(S)) = 0foreach 1 < ji1 < -+ < ju < n+ 4L Then S is purely
n-unrectifiable.

Proof of 3.3: We first claim that if L is any n-dimensional subspace of R"*¢ then
there issome 1 < j; < jp <-+- < j, <n+{suchthat pj, . ;,|L isan isomorphism
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onto span{e;,,...,¢j, }. Indeed if vq,..., v, is a basis for L and V is the n x (n + ¢)
< ju < n + £ such that
the column numbers jy, ..., j, of V give an n x n non-singular matrix, and hence

matrix with rows vy,..., vy, then thereis 1 < j; < ---

Pitvein (V1)sevvs Pjrjn (0n) are linearly independent.

Now suppose on the contrary that S is not purely n-unrectifiable. Then Lemma 1.2
implies there is an n-dimensional C! submanifold N with H"(S N N) > 0, so there
must be some x € S NN with H*(S NN N B,(x)) > 0 for all p > 0. With
such an x we see that, by the above discussion and by Remark 4.4 of Ch.2 (with
M = N)that thereis 1 < j; < j» < +- < j, < n+4£and p > 0 such that
DitoinlN 0 By(x) is a C! diffeomorphism onto an open W C span{ej,.....e;, }
and so H" (pj,...;, (SN N N By(x))) >0. O

.....

3.4 Remark. The above proof can be modified to give a more general conclusion:

foreach 1 < j; < jo <-+- < jn <n+{,then S is purely n-unrectifiable.

3.5 Example. A simple example (in the case n = £ = 1) of the use of Lemma 3.3
is the following: Let Co = [0, 1] x [0, 1], C; = the union of the 4 sub-squares of Cy
with edge length § each sharing one corner with Co. Observe that the orthogonal
projection p onto the line y = 1x projects C; onto a full line segment o of length
Jig' Thus if we inductively define a sequence C, of sets, each of which is the union
of 4" squares with edge length 47" and if we stipulate that C, 4 is obtained from C,
by replacing each square s of C, with 4 squares of edge-length 47"~ each sharing a
corner with s, then C,41 C C, and each C, projects via the orthogonal projection
p onto the full line segment o, and hence so does the compact set C = N2 C,,.
Furthermore H'(C) > #'(p(C)) = % > 0, and also #!(C) < v/2 < 0o because
each of the 4" squares comprising C, has diameter 4~ +/2. Finally, each C, projects
via orthogonal projection p, of R? onto the x-axis to a union of 2" closed inter-
vals each of length 47", and hence £'(px(C)) = lim £!(px(Cy)) = 0. Similarly
L'(py(C)) = 0, where p, denotes orthogonal projection onto the y-axis. Evidently
then Lemma 3.3 is applicable with n = £ = 1, so C is purely 1-unrectifiable.

A very non-trivial theorem (the Structure Theorem) due to Besicovitch [Bes28,
Bes38, Bes39] in case n = £ = 1 and Federer [Fed69] in general, says that the purely
unrectifiable sets O of R**¢ which (like the subset P in 3.2) can be written as the
countable union of sets of finite H"-measure, are characterized by the fact that they
have #"-null projection via almost all orthogonal projections onto n-dimensional
subspaces of R"*¢. More precisely:
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3.6 Theorem. Suppose Q is a purely n-unrectifiable subset of R"+* with Q = U2, Q;,
H"(Q)) < oo V). Then H" (p(Q)) = 0 for o-almost all p € O(n + €,n). Here o is
Haar measure for O (n + £,n), the orthogonal projections of R"** onto n-dimensional
subspaces of R" ¢,

For the proof of this theorem see [Fed69] or [Ros84].

3.7 Remark: Of course only the purely n-unrectifiable subsets could possibly have
the null projection property described in 3.6, by virtue of Lemma 3.3 above.

Notice that, by combining 3.2 and 3.7, we get the following Rectifiabiliry Theorem,

which is of fundamental importance in understanding the structure of subsets of
R+,

3.8 Theorem (Rectifiability Theorem for sets.) If A is an arbitrary subset of R"+*
which can be written as a countable union U2, A; with H" (A;) < 0oV j, and if every
subset B C A with positive H"-measure has the property that H" (p(B)) > 0 for a set of
p € O(n +£,n) with c-measure> 0, then A is countably n-rectifiable.

4 Sets of Locally Finite Perimeter

An important class of countably n-rectifiable sets in R”** comes from the sets of lo-
cally finite perimeter. (Or Cacciopoli sets—see De Giorgi [DG61], Giusti [Giu84].)
First we need some definitions.

If U ¢ R""! is open and if E is an £"*!-measurable subset of R"T!, we say that
E has locally finite perimeter in U if the characteristic function yg of E is in

BVioe(U). (See §2 of Ch.2.)

Thus E has locally finite perimeter in U if there is a Radon measure g (= |D x|
in the notation of §2 of Ch.2) on U and a yg-measurable function v = (v!,...,v"*!)

with |[v| = 1 ug-a.e. in U, such that

4.1 / divgdﬁ"“z—/g-vduE
ENU U

for each g = (g',....¢""") withg/ € C}(U), j = 1,....,n + 1. Notice that if E
is open and dE N U is an n-dimensional embedded C! submanifold of R"*!, then
the divergence theorem tells us that 4.1 holds with ug = H" L (0E N U) and with
v = the inward pointing unit normal to dE. Thus in general we interpret ug as
a “generalized boundary measure” and v as a “generalized inward unit normal”. It
turns out (see 4.3 below) that in fact this interpretation is quite generally correct in
a rather precise (and concrete) sense.
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We now want to define the reduced boundary 9*E of a set E of finite perimeter by

/ <>UdME
4.2 PE={xeU:lim=2
{ pl0 g (Bp(x))

Since |[v| = 1 ug-ae. in U, by virtue of XXX Theorem 3.23 of Ch.1 we have
pe (U \J*E) = 0,so that ug = pg L 9*E. We in fact claim much more:

exists and has length 1}.

4.3 Theorem (De Giorgi.) Suppose E has locally finite perimeter in U. Then 9*E
is countably n-rectifiable and pg = H" L 9*E. In fact at each point x € 0*E the
approximate tangent space Ty of g exists, has multiplicity 1, and is given by

(%) Ty = {)’ eR"™ !y vp(x) =0},

Jp,x Ve

where vg (x) = lim,yo (so that |ve (x)| = 1 by 4.2). Furthermore at any
wEe (B,,(x>)

such point x € 3*E we have that vg (x) is the “inward pointing unit normal for E” in
the sense that

(:H:) Ex,)k = {A_l(

inthe L| (R"*!) sense.

x):yeE} > {yeR"* 1y vp(x) >0}

Proof: By 1.6 and 3.6 of Ch.1, the first part of the theorem follows from 4.3 (1),
which we now establish. 4.3 (if) will also appear as a “by product” of the proof of
4.3 (f). Assume without loss of generality v = vg on 9*E.

Take any y € 9*E. For convenience of notation we suppose that y = 0 and v(0) =
(0,...,0,1). Then we have

/ Vni1dpE
B,(0)

o us(By0)

(1)

and hence (since |v| = 1 ug-a.e.)

|vildig
(2) lim —‘/Bﬂ“’)
pb0 g (B,(0))

further if ¢ € Cy (U) has support in B,(0) C U, then by 4.1

=0,i=1,..., n.

[ vwsitdug == [ xeDaritacr
U U

(3) < /E|D§|d/:"+‘.
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Now (taking B,(0) to be the closed ball) replace ¢ by a decreasing sequence {{ }
converging pointwise to the characteristic function of B,(0) and satisfying

. d
4) lim /E|D§k| = LT (EN By (0)).

(Notice that this can be done whenever the right side exists, which is £'-a.e. p.)
Then (3) gives

d
5 / idug < St (E N B0
) [ e = 5L (E 0 B,(0)

for £'-a.e. p € (0.p9), po = dist0,0U. Then by (1) we have, for suitable p; €
(Oa pO)s

(6) HE (B,,(O)) =

<2(n+ Dwpt10"

2dip£"+1 (E N B,(0)) =2H"(E N3B,(0))

for £'-a.e. p € (0, p1).

Then by the Compactness Theorem 2.6 of Ch.2, it follows that we can select a
(R**1), where F is a set of locally

finite perimeter in R”*!. Hence in particular for any non-negative { € Cy (R"*1)

sequence pr | 0 so that Xor'E = AR in Lloc

7 lim
( ) k—o0 p;lE

Ditd ! =/Di§d£”+1.
F

Now write ¢k (x) = ¢(p; 'x) and change variable x — pyx; then

(8) / -

k

Dttt = i [ Ditedrm = [ v de

(by 4.1), so that prIE DitdL" — 0by (2) fori = 1,...,n. Thus (7) gives

/ DitdL™ =0V e CLR™Y). i =1.....n,
JF

and it follows that F = R” x H for some £!-measurable subset H of R.

On the other hand by 4.1 with ¢ = {xen41 and by (1) we have, for k sufficiently
large and ¢ > 0,

0< PE”/UkanH due = /_IEDnHC

Pk

ag‘ / n n
—)/FDn-‘rl;E An (/HW<X , X +1)dx 'H)dx/
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as k — oo, so that yg is non-decreasing on R, hence
(9) F={xeR™* . x"" <1}

for some A. We have next to show that A = 0. To check this we use the Sobolev in-
equality (see e.g. [GT01]) to deduce that, if ¢ > 0, spt ¢ € U and o < dist(spt ¢, U ),

then

n+1 n
n d£n+l) n+1

(/U(E% * IE)
<c [ D (5o * 1£)|dL™!
< c(/U§|D(<pa x xg)|dcrt!
+ [ 0a % xpID L),
Then by 2.5 of Ch.2 it follows that
()&% ac ™ <c([ taus + [ Ipylacr),
and replacing ¢ by as sequence & as in (4), we get for a.e. p € (0, py)

(£ (E 1 By 0) ™ < (s (B (0) + 7674 (E 0 B,(0),

which by (6) gives
(£ (En Bp(0)))n+1 < cj L' (E N B,y(0)) ae.pe(0,p1).

Integration (using the fact that £"7!(E N B,(0)) is non-decreasing) then implies
(10) L' (E N By(0)) = cp"*!

for all sufficiently small p. Repeating the same argument with U \ E in place of E,
we also deduce

(i) £ (By(0)\ E) 2 e
for all sufficiently small p. (10) and (11) evidently tell us that A = 0 in (9).

Now given any sequence px | 0, the argument above guarantees we can select
1 n+1
X {semn+tixmti <o in L (R**!). Hence

a subsequence pg such that x bl E o
and (2) of the theorem is established. Then by 4.1, (1)

Xo'E = X{XER”+1:x”+1<O}
and (2) we have
Ho—tE = M{xeRnH:anw} =H"L{xeR"T: X" =0}asp |0

and the proof is complete. O
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Let M be a countably n-rectifiable, #"-measurable subset of R"*¢, and let 6 be a
positive locally H"-integrable function on M. Corresponding to such a pair (M, 6)
we define the rectifiable n-varifold v(M, 6) to be simply the equivalence class of all
pairs (M, 8), where M is countably n-rectifiable with #" ((M\M)U(M\M)) = 0
and where § = 6 H"-a.e. on M N M." 6 is called the multiplicity function of
v(M,0). v(M,0) is called an integer multiplicity if this multiplicity function is
integer-valued H"-a.e.

In this chapter and in Ch.5 we develop the theory of general n-rectifiable varifolds,
particularly concentrating on stationary (see §2 below) rectifiable n-varifolds, which
generalize the notion of classical minimal submanifolds of R"*+¢. The key section is
§3, in which we obtain the monotonicity formula; much of the subsequent theory
is based on this and closely related formulae.

'We shall see later that this is essentially equivalent to Allard’s ([All72]) notion of n-dimensional
rectifiable varifold.
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1 Basic Definitions and Properties

Associated to a rectifiable n-varifold V = v(M, ) (as described above) there is a
Radon measure u (called the weight measure of V') defined by

1.1 py =H"L 6,
where we adopt the convention that 6 = 0 on R"*4\ M. Thus for an #"-measurable
set A,

A) = "
py (4) /AOMG dH",
the mass (or weight) of the varifold V', M(V), is defined by

/ 0dH".

Notice that by virtue of 1.9 of Ch.3, an abstract Radon measure p is actually uy

1.2 M(V) = py (R™)

for some rectifiable varifold V if and only if u has an approximate tangent space Py
with multiplicity 6(x) € (0, 00) for pu-a.e. x € R**£, (See the statement of 1.9 of Ch.
3 for the terminology.) In this case V = v(M, 6), where M = {x : ©*"(u,x) > 0}.

1.3 Definition: Given a rectifiable n-varifold V = v(M, 0), we define the tangent
space T,V to be the approximate tangent space of M (as defined in the statement
of 1.9 of Ch.3) whenever this exists; notice that this is independent of the choice of
representative (M, ) for the equivalence class v(M, 6).

We also define, for V =v(M, 6),
1.4 sptV = spt uy,

and for any H"-measurable subset A C R"*¢, v A is the rectifiable n-varifold

defined by
15 VL A=v(MnNA 0|(MnA)).

Given V = v(M,0) and a sequence Vi = v(My, 6x) of rectifiable n-varifolds, we
say that V; — V provided py, — uy in the usual sense of Radon measures. (Notice
that this is 7ot varifold convergence in the sense of Ch.8.)

Next we want to discuss the notion of mapping a rectifiable n-varifold relative to a
Lipschitz map. Suppose V = v(M,0), M C U, U open in R"*¢, W open in R"*+*
and suppose f :sptV N U — W is proper?, Lipschitz and 1:1. Then we define the
image varifold f4V by

1.6 [V =v(f(M).00f7").

2ie. f71(K) NsptV is compact whenever K is a compact subset of W
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Since K compact = f~!(K) compact and hence f(M)NK = f(M n f~1(K),
the area formula 4.13 of Ch.2 gives

1.7 / bo 1 dH" =/ JM G ann,
MK MOS—1(K)

so in particular 6 o f 7! is locally H"-integrable in W, and therefore 1.6 does indeed
define a rectifiable n-varifold in W. More generally if f satisfies the conditions
above, except that f is not necessarily 1:1, then we define f3V by

[V =v(f(M).0).

where 6 is defined on f (M) by Yxer-1nm?(x) (= [r-1()n 0 dH°). Notice

that 6 is locally H"-integrable in W by virtue of the area formula (see §2 of Ch.3),
and in fact

1.8 M(fV) =/ §d’H"z/ In f 0 dH",
£ () "

where Jps f is the Jacobian of f relative to M as defined in §2 of Ch.3. Thus,

assuming m > n, we define

1.9 JfM(x) = ,/det 7 (x).

where 7 (x) is the matrix with D, f(x)- D¢, f (x) in the k-th row and £-th column
(1, ..., T any orthonormal basis for T,y M), dM f, : TxM — R"** is the linear map
induced by f as described in §2 of Ch.3, and (dex)* : R™ — T M denotes the
adjoint of dMf,.

2 First Variation

Suppose {¢:} ,_,_, (&> 0)isa l-parameter family of diffecomorphisms of an open
set U of R"*¢ satisfying

’1 ¢o = 1y, I compact K C U such that ¢;|U \ K = 1y\g Vi € (—¢,¢)
(x,1) = ¢¢(x) is a smooth map : U x (—¢,¢) > U.

Then if V = v(M,0) is a rectifiable n-varifold and if K C U is compact as in 2.1
above, we have, according to 1.8,

M(ge, (V L K)) = /Mijqu,@d’H,”,
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and we can compute the first variation M (¢:y(V L K ))‘
Ch.2. We thus deduce

d
2.2 TM(py(V LK)

S exactly as in §3 of

=/ divyy X duy,
M

where X, = 2ot x)’ _is the initial velocity vector for the family {¢} and
where divys X is as in §4 of Ch.2:

2.3 divyy X = Y1 VM XT (= Yite; - (VM XT)).
(VM X/ asin §2 of Ch.3)

We say that V is stationary in U if the first variation vanishes in U. That is, by 2.2,
the definition is as follows:

2.4 Definition: V = v(M,0) is stationary in U if LM (¢, ,(V L K))‘ , =0 for
t=

every family {¢;} as in 2.1; of course by 2.2 this is equivalent to the requirement

[ divayr X dpuy = 0 for any C! vector field X on U having compact support in U.

More generally let N be an (n + ¢)-dimensional C? submanifold of R**% (¢ < L),

U an open subset of R"*Z such that (N\N)NU =@, M C N,and {¢;} ,_,_ a
1-parameter family of diffeomorphisms U — U such that
@ (x) = @(t,x) isa C* map of (¢,x) € (~1,1) xU — U
2.5 with g, (UNN)CcUNN Ve (—1,1)
po(x) =xVxeU, ¢;(x)=xV(t,x) e (-1,1)xU\ K,
where K is a compact subset of U. Then we have the following definition:
2.6 Definition: V is stationary in U N N if £M(¢,(V L K))‘ , =0 whenever
t=

{¢:} are asin 2.5.

As already mentioned in the discussion preceding 5.8 of Ch.2, for each C! vector
field X on U with X|y € TyN Vx € N N U, there is a 1-parameter family ¢; as
in 2.5 with initial velocity %(pt (x)|t=0 = X|x for each x in x. Thus in this context,
when V = y(M, 0) is stationary in U N N, we can compute, using the area formula
exactly as in 2.2 above, that V = v(M, 0) is stationary in U N N if and only if

/ CliVMXd/LV =0
M

for each C! vector field X on U with X tangent to N at each point of N N U; that
is, X € CH(U,R"*L) with X|; € TyN Vx € N N U. On the other hand, by exactly
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the computation of 5.9 of Ch.2 (which did not depend on smoothness of M), we
can start with any C! vector field X on U and compute (as in 5.9 of Ch.2) that

n
divaye X =divye X7 =Y HV . X
i=1
at all points x € M where M has an approximate tangent space Tx M, where X7 is
C! with compact support in U and tangent to N at each point of N N U and, as
in 5.9 of Ch.2, HN = Y"_, By(w,5), with 7q,.. ., 1, any orthonormal basis for
T M. Thus in fact we conclude that V is stationary in U NN <

2.7 / divyy X duy = —/ X - HY duy for each X e C} (U, R E),
M M

3 Monotonicity Formulae in the Stationary Case

In this section we assume that U is open in R**¢, VV = v(M, 6) is stationary in U,
which means Definition 2.4 holds, i.e.

3.1 / divas X duy =0
M

whenever X is a C! vector field on U with compact support in U. We proceed
to extract important information from this identity by taking specific choices of
the vector function X = (Xy.....X,4¢). In fact we begin by choosing X, =
y(r)(x — &), where £ € U is fixed, r = |[x —&|,and y : R — [0,1] is a C1(R)
function with

y'(t) <0Vt, y(t) =1fort <p, y(t) =0fort > R,

where R > p > 0and Bg(§) C U.

For any f € C'(U) and any x € M such that Ty M exists (see 1.6, 1.9 of Ch.3)
we have (by 2.1 of Ch. 3) VM f(x) = Z”H Le/*Dylf (x)e;, where Dy f denotes
the partial derivative -2 s A of f taken in U and where (e/%) is the matrix of the
orthogonal projection of R"** onto T M. Thus, writing VM = ¢; - VM (as in §2),
with the above choice of X we deduce

32 divy X = Y1H VM X7 =

y(r )ZnHeU +rV'(r)Z;’ZZ1€]k (x/-¢7) (xk—fk).

r r

n+{

Since (e/*) represents orthogonal projection onto Tx M we have Y 71} ¢// = n and

. /',Ej kfgk
st st G ) ety oyt
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where D1r denote the orthogonal projection of r=!(x—&) = Dr (which is a vector
of length = 1) onto (7% V)J'. Writing i = py, the formula 3.1 thus yields

3.3 n/y(r)d/L-I— VV/(r)d,M=/VV/(r)|(Dr)L\2dM’

provided Bg(¢§) C U and p € (0, R], which we subsequently assume. Now take
e € (0,1) and a C! function ¢ : R — [0, 1] such that ¢(t) = 1 fort < 1, ¢(¢) =0
fort = 1+ eand ¢'(r) < 0forall . Then we can use 3.3 with y(r) = ¢(r/p) and
p < R/(1+¢). Since

ry'(r) =rp” ' (r/p) = —p35 [0 (r/p)]

this gives
nl(p) —pl'(p) =—pJ'(p). p < R/(1+e),
where

1(0) = [ e(r/p)di. J(p) = [ o(r/p)ID*rPdp.

Thus, multiplying by p~"~! and rearranging, we have
3.4 (" 1(p)) = p7" I (p).

Since (1 + 8)_”r_”a% [(r/p)] < ,o_"a% [o(r/p)] < r‘"% [(r/p)], by integration
in 3.4 we get

35 [ (o) (0(r/p) = o(r/0) D1 P day < 71 (p) — 0 1(0)
< [ 7 (lr/p) = o(r/0))ID 1P diay

Thus letting ¢ decrease to the indicator function of the interval (—oo, 1] by letting
& ] 0, we obtain

1,02
3.6 p" v (By(£)) —o " uv (Bs(£)) =/ ud#v, 0<o=<p<R,

Bo(§)\Bo(£) T

provided Bgr(§) C U. We also of course have the differentiated version of this,
namely
D[’

rn

d, 4
37 ap PR (Bo(8))) = dp/zms)

dupy,

rn

which holds in the distribution sense on (0, R). Since both 11 (B,(§)) and [ Dor?

are increasing in p, the differentiated version 3.7 also holds in the classical sense for
a.e. p € (0, R), assuming Bg(§) C U.
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3.6 is the fundamental monotonicity identity. In particular 3.6 tells us that the ratio
3.8 p " (By(£)) is increasing in p, 0 < p < R,

and hence the density

(B,(£))

3.9 O"(uy,&) = lim sl exists and is real for every & € U,
00 Wp P"

and by letting o | 0 in 3.6 we also have

D

rn

310 (wnp") v (Bo(§)) — O (uy,§) = wf[g . duy, 0<p <R,
0

DJ-Z

r . . . .
—n| dpy < oo. We also claim the upper semi-continuity

and in particular [ . ‘—

3.11 " (uy,&) > limsupx_>$ " (uy,x), €e€U.

To check this take and p, & > 0 with B,4.(§) C U and any sequence &, — &. Then
B, (&) C Byte(§) for all sufficiently large j, and hence using the monotonicity 3.8
we have

0" (v, &) < (0np") " v (Bo(§)) < (0np") " 1ty (Bps(£))
for all sufficiently large j, and hence

limsup ©" (uy. &) < (wnp”) ' v (Bose(£)).

Jj—o0
Letting ¢ | 0 we then have limsupj_)oo O (uy, &) < (0np") v (Bp(£)), and
finally, by letting p | 0, we obtain 3.11 as claimed.

Since V = y(M,0) and ©" (uy,x) = 0(x) for H"-a.e. x € M (by Remark 1.8(2)),
3.11 enables us to choose “canonical representatives” My, 0y for V, so that V =
v(My,6y), where

312 My ={xeU:0"(uy,x)>0}and Oy (x) = ©"(uy,x)Vx e U.
Since Oy is then upper semi-continuous in U by 3.11 we then have
3.13 {x € My : 0y (x) > a} is relatively closed in U for each « > 0

and in particular My itself is relatively closed in U (and in fact equal to spt V N U)
in case there exists « > 0 with 0(x) > o for #"-a.e. x € M (and then of course
Oy (x) > a for every x € My by 3.11).

We now want to generalize this discussion to a context which includes of varifolds
which are stationary in an (n + £)-dimensional C? submanifold N rather than in
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R"*, as discussed in §2 above. We in fact introduce the concept of generalized mean
curvature vector for the varifold V = v(M, 0) as follows:

3.14 Definition: Let V = v(M,0) be a rectifiable varifold in the open set U C
R"*¢. Then we say that V has generalized mean curvature vector H if

(%) /M divag X dpy = —/MX “Hduy VX € C}(U.R™).

Thus V is stationary in U if and only if it has generalized mean curvature zero.

Notice also V' is stationary in U N N, where U is open in R"*L and N is a C?
(n 4+ £)-dimensional submanifold of R"*Z, if and only if V has generalized mean
curvature HY in U, with H" as in 2.7 of the previous section.

We want to show that the above monotonicity discussion generalizes to the case
when V = v(M,0) has bounded generalized mean curvature H. So suppose that
there is constant A such that

3.15 |[Hl<AonMnNU.

We can then proceed on the left side of 3.14 (1) exactly as in the case H = 0 with
the same choices of X, thus giving

3.16 E () =p" 45T (p) — Eolp), 0<p <R,

assuming Bg(¢§) C U, where I,J are as in 3.4 and E¢(p) = p" [y p ' (x — ) -
Ho(r/p)duy, so that, since ¢(r/p) = 0 forr > (1 + ¢)p,

—Aep™"1(p) = Eo(p) = Aep™1(p),

where A, = (1 + ¢)A, and hence Eo(p) = E(p)p "1 (p), where E(p) € [—Ae, A¢]
for each p € (0, R). Thus, after multiplying each side of 3.16 by the integrating
factor F(p) = eJo EW)dt ¢ [o=Aep oAeh) we obtain

e AeRp LT (p) < £L(F(p)p "1 (p)) < e Rp™" 5T (p).

Then taking ¢ as in 3.5 and integrating from o to p as in the case H = 0 and then
letting ¢ | 0 as we did before, we obtain (analogous to 3.6)

F(p)o™ v (By(€)) = F(0)o~"wy (Bo(8)) = Glowp) [

r"| D r?duy.

with G (0, p) € [e72R, eAR]. Thus we have proved the following:

3.17 Theorem. If U is open in R"™*, if Br(§) C U and V has generalized mean
curvature vector H in U with |H| < A, then

F(p)p™" v (Bo(§)) = F(0)o™" v (Bs (§)) = G (o, ,0)/B (E\Bo (&)

r"|DEr P dpy,
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forall0 < o < p < R, where F(p) € [e74°,e2°] forall 0 < p < R and G(o,p) €
[e™AR eAR] forall0 <o < p <R

Then notice that since F(p) € [e74?, e2?], we again conclude that ©" (1, £) exists
for all ¢ € N N U and is an upper semi-continuous function on N N U by very
straightforward modifications to the previous argument for H = 0.

We conclude this section with an observation that will be important in our later
discussion of tangent cones: Namely, if § > 0 and 0 < o < p are given, and if,
instead of the boundedness condition for H assumed above, we merely require that

HelLl (U)and rl_”/ |H|dpy <8forallo <t <p,

B (£)
then in place of the identity 3.7 we evidently have

\%((f‘”uv(&(s))) -/ |DEr”

assuming of course that B,(§) C U. By integrating this gives

3.18 ‘(p_”uv (Bo(§)) =0 uv (Bs (5)))

—/ V_"lDLrlzd,uV‘ <8log(p/o), o<1t <p.
By (§)\Bo (§)

4 Monotonicity Formulae for L? Mean Curvature

Here we continue to assume that V' = v(M, 0) is a rectifiable varifold in U (U open
in R"**) with generalized mean curvature vector H in U, but now we assume H is
merely in L? function rather than L as in the previous section.

Using the identity 3.14 () we proceed exactly as in the previous section to obtain

(Cf. 3.16)
4.1 L™ (p) =p "4 (p) - p‘”/Up‘l(x —&)-Heo(r/p)duy, 0<p <R,

assuming Bg(§) C U, where I,J are as in 3.4. But now we assume only an L?
condition with p > n instead of a bound on H. Specifically we assume

4.2 p >nand (R"_”/
Br

\H|? duy)'"? < kA,
(&)

where A is a constant to be chosen and ¥ = ; appears in front of A merely

P
4(p—n
as a convenience to simplify the form of the main monotonicity identity below.
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Observe that then by using Holder’s inequality we have (since ¢(r/p) = 0 for
<(1+¢)p)

|p‘”/Up‘1(x —§)-Ho(r/p)duy|
< (L+&)p " I1H lLr(uy L Brien( ()7
(14 )™ P I H Loy  sreen (0" 1(0))' 7
(1 +8)R_1(p/R)_n/p(Rp—n/B (§)|H|p duv)l/l’(p—n[(p))l—l/l’

R

<2%AR (p/R)™P(1+p7"1(p)), p<R/(1+5),

where at the last step we used a'~/? < 1 + a, valid for @ > 0. Thus 4.1 can be
written

4.3 L1 (p)) = p" LT (p) = Folp) (14 p"1(p)),

where
|Fo(p)| < 2AR™"(p/R)™"/7,

so after multiplying through by the integrating factor F(p) = /0 Fo()d% in 4.3, we

obtain

44 L(F(p)p™I(p)+ E(p)) = F(p)p "4 (p). 0<p<R/(1+e),

0
et E() = F(p) = F(0) = Fg) L S ()1 < §8(0/R) 2,
|F(p)— F(0)| = |f '(¢)dt] <€2Af0 |Fo(t)|dt, we then havethe bounds

e—A < e_%A(,O/R)l_"/" < F(,O) < e%A(p/R)l_”/p < EA,
4.5

1
E(p)] = 563 A(o/R)'™?. 0<p <R,
In particular if A < 1 we have
4.6 |E(p)] < Alp/R)'™7, 0<p<R.

Thus we can proceed exactly as before, integrating from o to p and letting ¢ | 0 in
order to conclude

47 (F(o)p™" v (Bo(§)) + E(p) ) = (F(0)o™" v (Bo (§)) + E(0))

= G(o,p)/ |Dlr|2 duy, G(o,p) € [e7, 2],
By (£)\Bs (§)

forall 0 < o < p < R, where 4.5 holds. In particular

4.8 F(p)p"nv(Bp(€)) + E(p) is increasing in p, 0 < p < R,

§5 oF CHAPTER 4: POINCARE AND SOBOLEV INEQUALITIES 95

with E, F as in 4.5. 4.5 and 4.8 evidently enable us to argue precisely as in §3, to
conclude that ©" (uy, &) = lim,yo(wnp™) 'y (B, (£)) exists V& € U and

4.9 ®"(uy, &) is an upper semi-continuous function on U.

4.10 Remarks: (1) In the case of H € L{ (uy) with p > n, if 6 > 1 py-ae.
in U, then ®"(uy,x) > 1 at each point of sptuy N U, and hence we can write
V = v(M,.6x) where My = sptuy N U, 6.(x) = ©"(uy.x), x € U. Thus V
is represented in terms of a relatively closed countably n-rectifiable set in U with a
multiplicity function which is upper semi-continuous in U .

(2) Notice that 4.7 gives bounds of the form u(B,(§)) < Bo™, 0 < 0 < R for
suitable constant B. Such an inequality implies

/ |x_§|—ot np(n—a) ' (p"*—0"""), 0<a<n
(§)\Bo (& 13 IOg(,D/U) —

forany 0 < 0 < p < R. This is proved for 0 < & < n by using the following general
fact with f(x) = |x — &7, 10 = p~!, and with n — « in place of &, and with

4.11 Lemma. If X is an abstract space, ju is a measure on X with p(X) < oo, f €

LY w), f>0,andif A, ={x e X : f(x)>1t},then
/oota_lu(A,bigr)dt :oz_1/ (f*—=1t§)dpn, O<a<n
J 1o AtO

/oot—llL(A[> di = /Ato log( f/t0) dpt

to

for each to > 0.

Proof: Since [, 1* 7' ju(Ar) dt = [° [x 1%~ Xa, (x) dpu(x) dt, this is proved simply
by applying Fubini’s theorem on the product space 4, x [fp,00). O

5 Poincaré and Sobolev Inequalities

In this section® we continue to assume that V = v(M, 6) has generalized mean
curvature H in U, and we again write u for puy. We shall also assume 6 > 1 p-a.e.
x € U (so that (by the comments in 4.10) ®" (i, x) > 1 everywhere in sptu N U if
H e L{ (u)for some p > n).

3Note: The results of this section are not needed in the sequel
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We begin by considering the possibility of repeating the argument of the previous
section, but with Xy = h(x)y(r)(x — &) (rather than X, = y(r)(x — &) as before),
where 1 is a non-negative function in C!(U). In computing divys X we will get
the additional term y(r)(x — &) - VMh, and other terms will be as before with an
additional factor /(x) everywhere. Thus in place of 3.7 we get

51 (o T0) =57 [I(Dr)* Pholr/e) du

+ p‘”‘l/(x — &) [VMh+ Hh) ¢(r/p) du

where now I (p) = [ ¢(r/p)hdpu.
Thus

Ll TE) = 077 [ (=€) (Vb + HI) o(r/p) d
= R say.

We can estimate the right-side R here in two ways: if |H| < A we have
5.2 R> —p‘”‘l/rIVMhl o(r/p)du— (Ap)p™"1(p).
Alternatively, without any assumption on H we can clearly estimate
5.3 Rz—p_”_l/r(‘VMh|—i—h’ﬂ])go(r/p)du.

If we use 5.2 in 5.1 and integrate (making use of 4.11) we obtain (after letting ¢
increase to the characteristic function of (—oo, 1) as before)

1 1 1 vMp
/ hdufeAp< / hdu + / |—|1d,u),
wn0" JBo (&) wn " J B, (€) nwy JB,(€) |x — &'

provided B,(§) C U and 0 < 0 < p.

5.4

If instead we use 5.3 then we similarly get

1/ hdp < 1/ hdp+ pf—"—l/ r(|9™h] + b H]) dpud.
wn0" J Bo (£) Wn " J By (£) Wn Jo B (£)

and hence (by 4.11 again)

1 1 1
/ hdu < / hdu + — /
wn0" JBgs(£) WnP" J By (£) Ny JBy(£)

provided B,(§) CU and 0 < 0 < p.

(IV*h| +h|H])

5.5
lx — &1
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If we let o | 0 in 5.4 then we get (since ©(u, &) > 1 for & € sptu)

h(§)<eAP( ! / hdu + 1/ M) Eesptu, By(§) cU
- wnp" By (8) nwy JB, ) |x — £ Cr '

We now state our Poincareé-type inequality.

5.6 Theorem. Supposeh € C'(U), h > 0, Bp(§) C U, |H| < A, 0 > 1 pae inU
and
p{x € By(§) :h(x) >0} < (1 —a)wup", e <1+«

for some a € (0, 1). Suppose also that

() p(B2p(§)) <Tp", T >0.
Then there are constants B = B(n,a,T) € (0,1/2) and ¢ = c¢(n,a,T) > 0 such that

/ hdufcp/ |VMh|d/L.
Bpp(§) By (&)

Proof: To begin we take B to be an arbitrary parameter in (0, 1/2) and apply 5.5
with n € Bg,(&) Nspt w in place of &. This gives

(1)
1

1
h(n < A=B)p —/ hd,u—i——/ ———du
() (wn((l —B)p)" B(1—p)p(n) NWn JB(1—p)p(§) |x —pl*1 )

1 ~ 1/ |VMh
Ap / '
<eM(———m— hdp + / du).
(wn((l—ﬁ)p)" B,(£) nwy JB, ) |x =yl )

Now let y be a fixed C! non-decreasing function on R with y(¢) = 0 for 7 < 0 and
y(t) < 1 everywhere, and apply (1) with y(h —1) in place of h, where r > 0 is fixed.
Then by (1)

y(h(n) —t) < du+(1—a®)(1-)".

1+a/ w'(h—1)|[VMh|
By (§)

nwn |x —nl*=!

Selecting B small enough so that (1 — )™ (1 — a?) < 1 — a?/2, we thus get

2 1 M
o) o _ 1+a/ y'(h—1)|V¥h|
2 By (%)

nwp lx — 77|n_1

for any n € Bg,(£) N spt u such that y(h(n) — ) > 1. Now let ¢ > 0 and choose y
such that y(z) = 1 fort > 1 + ¢. Then (2) implies

y'(h—1)|VMh|
lfc/ ————————du, n€ Bg,(§) N Asye,
Bye) |x—n|n! pol£) N Arse
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where A; = {y e sptpu : h(y) > t}. Integrating over A4, N Bp, (&) we thus get
(after interchanging the order of integration on the right)

y (h(x) )| V¥ R 1

Bgp(€) |x — "1

(Arve N Bpy(§)) = C/

Bt du(n)) du(x)

by hypothesis 5.6(3) and 4.10(2). Since y'(h(x) —t) = =&y (h(x) —t) we can now
integrate over ¢ € (0, 00) to obtain (from 4.11) that

/ (h—s)chp/ (VM h|dp.
AeNBp, (§) By (§)

Letting ¢ | 0, we have the required inequality. O

Remark: If we drop the assumption that 6 > 1, then the above argument still yields

/ hdufcp/ |VMh}d;L.
{x:0(x)=1}NBg, (§) JBp(§)

We can also prove a Sobolev inequality as follows.

5.7 Theorem. Suppose h € C} (U), h > 0,and 6 > 1 p-a.e. in U. Then

(%) ([w du)nT_l < [(I9"] + hlH]) dp. ¢ = c(n).

Note: ¢ does not depend on k.

In the proof we shall need the following simple calculus lemma.

5.8 Lemma. Suppose f, g are bounded and non-decreasing on (0, 00) and
(B 1=0"f) =" o)+ [e(0)dn 0<0 <p<oo
then p with 0 < p < po = 2(f (00))/™ (f (00) = limppeo f (p)) stuch that

(1) £(50) < 55" pos ().
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Proof of Lemma: Suppose (%) is false for each p € (0, po). Then (ff) =

—n —n 2.5 0 —n
L= sup 07" f(0) =" f (o) + o [ 67" F(50) dp
0<o<po Po Jo
_ 2 /‘PO _
= n = n d
Po f(P0)+5p0 . P f(p)dp

00

= py" f (po) + Sim(/zop‘”f(p) dp + /i p~" f(p)dp)

0

2
<p" += sup p " + ~ £ (00).
po" f (00) e f(p) S’ f(00)
Thus _
3 =5 sup 07" f(0) <2pg" f(o0) =27",

0<0o<pg

which is a contradiction. O

Continuation of the proof of 5.7: First note that because / has compact support
in U, the formula 5.5 is actually valid here for all 0 < 0 < p < co. Hence we can
apply the above lemma with the choices

re=otf

0

hdpu,
H

=w,! VMp| + h|H|) dpu,
go)=op" [ (V¥H]+H|H]) d

provided that & € spt u and 2 (§) > 1.
Thus for each § € {x esptyu: h(x) =1} we have p < 2(w,* [, h du)l/n such that

! / hdu < 5" —1/hd ””/ YMu| + h|H|) dp.
m o) (@ M k) Bp<s>(| |+ k) du

Using the covering Lemma (3.4 of Ch. 1) we can select disjoint balls B,, (£1), By, (£2),

k1€ {Eesptu: h(§) = 1} such that {§ € M : h(§) > 1} C U2 Bsp, ().
Then applying (1) and summing over j we have

1/n
hdp <5" ‘1/ hd / VMp| + hlH|) dp.
/{xesptu:h(x)zl} = (wn M M) M(| |+ |—|) M

Next let y be a non-decreasing C!'(R) function such that y(1) = 1 for 1 > ¢ and
y(t) = 0for ¢ < 0, and use this with y(h — 1), t > 0, in place of /. This gives

w(Meye) <50, (M(Mt))”"/M(Nh =0V +y(h—0)|H]) dp.
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where
My ={xeM:h(x)>a}, a=>0.

Multiplying this inequality by (¢ 4+ ¢)#=1 and using the trivial inequality (¢ +

&)1 (M) 5/

» (h + €)1 dyu on the right, we then get

(t + &)™ T u(Mpye) <

n 1 d "
5nw;l/n(/M(h +e)atT dp) " (_E/My(g—t)‘vMM +/Mr |H|dp).

Now integrate of # € (0, 00) and use 4.11. This then gives
1
R — o) d < 571 —1/n/h T*/ M|+ h|H|) dp.
[, ety au < o ([ eyt (98] 4+ n ) d
The theorem (with ¢ = 5"*1w, /") now follows by letting & | 0. O

5.9 Remark: Note that the inequality of 5.7 is valid without any boundedness
hypothesis on H: it suffices that H is merely in L! (u).

loc

6 Miscellaneous Additional Consequences

Here V = v(M, ) is a rectifiable n-varifold in R"** with generalized mean curva-
ture H in U, U C R"** open, as in Definition 3.14 of the present chapter. We first
derive a preliminary property for V in case H is bounded.

6.1 Lemma. Suppose U = R" T\ Br(§) and V I_U has L} (uv) generalized mean
curvature H in U withn™'|H (x) - (x — §)| < 1 py-a.e. in U, and suppose also that
spt V' is compact. Then

sptV C Bgr(§).

(1e. VLU =0.)

Proof: Since spt V' is compact it is easily checked that the identity (see §3)
n [v()duy + [ry' () (1= D) duy = = [H(x) - (x = €)p(r) dpey (x)

(where r = |x —&|) actually holds for any non-negative increasing C ! (R) function y
with y(z) = 0fort < R + &. (¢ > 0 arbitrary.) We see this as in §3, by substituting
X(x) = ¥(x)y(r)(x — &), where ¥ € C}(R"**) with ¥ = 1 in a neighborhood
of sptV. Since 1 — [D+r?> > 0 and |H - (x — £)| < n uy-ae., we thus deduce
Jy(r)dpy = 0for any such y. Since we may select y so that y(r) > 0forz > R+e¢,
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we thus conclude spt V (= sptuy) C Br4s(§). Because ¢ > 0 was arbitrary, this
proves the lemma.

6.2 Theorem (Convex hull property for stationary varifolds.) Suppose sptV is
compact and V. is stationary in R"T4\ K, K compact. Then

spt V C convex hull of K.

Proof: The convex hull of K can be written as the intersection of all balls Bg(§)
with K C Bg(&). Hence the result follows immediately from 6.1. O

The observation of the following lemma is important.

XXX Hausdorff distance sense convergence.

6.3 Lemma. Suppose 0 > 1 p-ae. inU, H € LY () in U for some p > n. If the
approximate tangent space Ty V (see §1) exists at a given point x € U, then T,V isa
“classical” tangent plane for spt u in the sense that

liilg(sup{p_l dist (y, TxV) : y € sptpu N By(x)}) = 0.
o

Proof: For sufficiently small py (where 0 < pg < R with Bg(x) C U), 4.7 (with
o | 0) and 4.10(1) evidently imply

(1) w, ' p " (By(E)) = 1/2, 0 < p < po. € €sptuy.

Using this we are going to prove that if @ € (0,1/2) and p € (0, R) then

2) w(Bo(x)\ {y : dist(y. TxV) < ep}) < %a"p"
= sptiu N Byja(x) C {y : dist(y. TxV) < (e + )p}.

Indeed if £ € {y : dist(y. TxV) = (e + @)p} N Byya(x), then Byp(§) C By(x)\ {y:
dist(y, Tx V') < ep} and hence the hypothesis of (2) implies u(Bay(§)) < 2wnap".
On the other hand (1) implies 4t (Ba,(€)) > Lwna™p”, so we have a contradiction.

Thus (2) is proved, and (2) evidently leads immediately to the required result. O



Chapter 5

The Allard Regularity

Theorem

§1 Harmonic Approximation in the Smooth Case .................. 104
§2 Preliminaries, Lipschitz Approximation ......................... 106
§3 Approximation by Harmonic Functions ........................ 114
§4 The Tilt-Excess Decay Lemma ... ..ovvvveineenniiniineinenn... 115
§5 Main Regularity Theorem ........oooviiiiiiiiiiniiiniinnn.e 121
§6 Conical Approximation, Extension of Allard’s Th. ............... 124
§7 Some Initial Applications of the Allard Theorem ................ 127

Here we discuss Allard’s ([All72]) regularity theorem, which says roughly that if the
generalized mean curvature of a rectifiable n-varifold V- = v(M.0) isin L] (uv)
inU, p>n,if0>1py-ae inu,if § € sptVNU,andif w, o7 uy (By(§)) is
sufficiently close to 1 for some sufficiently small® p, then V is regular near £ in the
sense that spt V is a C 1="/? p-dimensional submanifold near £.

A key idea of the proof is to show that V is well-approximated by the graph of a har-
monic function near §. We begin in the first section with a motivating discussion,
where we consider smooth minimal surfaces with small C! norm, and discuss the
fact that in such a classical setting harmonic functions do indeed give a very good
approximation.

The rest of the chapter to devoted to Allard’s theorem, beginning in §2 with a
discussion of the fact that a stationary n-dimensional rectifiable varifold V' in a ball
Br(§) c R*** which has mass density ratio (w, R") ™'y (Br(£)) close to 1 has

Depending on ||ﬂ||Lp (1v)
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nice affine approximation properties near every point in the support, and can be
very well approximated by a Lipschitz graph with small Lipschitz constant. We in
fact do this under the assumption that the generalized mean curvature has small L?
norm with p > n.

In §4 we show that the harmonic approximation lemma of §3 can be applied to the
Lipschitz approximation of §2, leading to the “tilt-excess decay” theorem, which is
the main step in the proof of the Allard theorem.

The idea of approximating by harmonic functions (in roughly the sense used here)
goes back to De Giorgi [DG61] who proved a special case of the above theorem
(when k = 1 and when V corresponds to the reduced boundary of a set of least
perimeter—see the previous discussion in §4 of Ch.3 and the discussion in §5 be-
low). Almgren used analogous approximations in his work [Almé8] for arbitrary
k > 1. Reifenberg [Rei60, Rei64] used approximation by harmonic functions in a
rather different way in his work on regularity of minimal surfaces.

1 Harmonic Approximation in the Smooth Case

Suppose M is an n-dimensional C? submanifold of R"**. We say that M is a
minimal submanifold if its mean curvature vector H is identically zero. From
the discussion in Ch.2 we have seen that this is exactly equivalent to the volume
H" (M) being stationary with respect to compactly supported perturbations of
the identity. Thus, in the notation of §5 of Ch.2, M is minimal if and only if
L91" (91 (M))|i=0 = 0. We showed that this in turn is equivalent to the first varia-
tion identity [;, divays X dH" = 0. In the present smooth case we can use the local
graphical representations discussed in 4.4. Thus, modulo an orthogonal transfor-
mation of R"*¢ we can locally write M as a graph of a C? function with values in
R¢ over a domain in R”. Thus for each £ € M we can assume there are open sets
W c R** and aball B,(n) c R" anda C2 map u : B,(n) — R* such that u(n) = &,
Du(n) = 0 and graphu(= {(x,u(x)) : x € B,(n)}) = M N W. Then stationarity
of M implies in particular that the area functional A(u) = [ ) Ju dH" must be
stationary with respect to compactly supported perturbations of u in B,(n), where
Ju is the Jacobian of the graph map x € B,(n) — (x,u(x)) € graphu = M N W.
Thus J,, = v/det J, where 7 (x) is the n xn matrix (D; (x,u(x))-D; (x,u(x))); i.e.,
the n x n matrix with entry (e;, Dju(x)) - (ej, Dju(x)) = 8;; + Diu(x) - Dju(x) in
the i-th row and j-th column. Thus

Alu =/ det(8:; + Dyu - Dju) d L
()= [, \detlss ju)
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and for |Du| < gy (for suitably small &g = &o(n,€) € (0,1)) we can use a Taylor
series expansion to give

1
1.1 Au) =/ (1+ =|Dul® + F(Du))dL",
Bp(n) 2
where F = F(P) is a real analytic map of n x £ matrices P = (p;;) with |P| < g
to R such that
1.2 |F(P)| < CIP|* |Dy, F(P)|<CIPP, |P|=1.

where C is a fixed constant depending only on n, .

Since A(u) is stationary with respect to compactly supported perturbations of u we
have

G AW+ 1)l=0 =0, L= (1. &) € Co(By(n). R,
where CJ (B, (1), RY) denotes the C! maps ¢ : B,(n) — R* with { = 0 on dB,(n).

In view of 1.1, if | Du| < & this takes the form
/ )(1 +[Duf? + F(Du))™"?Y0_ Dju- DigdL" =
By(n
[, T4y (D)D),
By(n)
forall ¢ € Cg (B,(n),R), where A;;(P) = D, F(P). This can be rewritten
13 YD Digder = [ i A (D)D),
Bo(n) Bp(n) ‘
where IZU(P) = AU(P) — (1 — (1 + |P|2 + F(P))_I/Z)Pij, NeJ |A~U(P)| < C|P|3
Integrating by parts, we get
Au = Z;”jzlaij(Du)DiDju, aij(Du) = O(|Du|2)

It is therefore reasonable, so long as |Du| is small, to expect that u is well ap-
proximated by a harmonic function. Indeed let us check this rigorously: Assume
|Du| < &9 (g9 as above), and let v be the harmonic function on the ball B,(n) with
v = u on 3B, (n)—it is standard that such a harmonic function v exists and it is C'!
on B,(n) and C*®(B,(n)). Multiplying the equation Av = 0 by ¢ and integrating
by parts over the ball B,(n), we obtain

1.4 | iDiv-Ditdc =0, ¢ e Cl(Byn).
By(n)
Taking the difference between 1.3 and 1.4, we see then that

o S D) Digaet = [ ST Ay (DD £ < CY(By(n).F)
4 14
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In this identity we take ¢ = u — v, so that
/ |D(u—v) |2dﬁn / Zz 121 1A11(Du) i(uj —vj),
Bp(n)
and using the Cauchy-Schwarz inequality ab < 1a? + b2 on the right side we get

D(u—v)2dLr < / (D /D -
[, I PEm 0P 5[5 (A (D) + 5 1D =)

[ ip@-vPdcr = [ 5 (4 (D))
Bp(n) Bo(n)

That is, since |Y_;; (4;;(P))?| < C|P|® for | P| < &9, we obtain

finally

SO

1.5 / |D(u—v)|2d£"§C/ | Dul®.
By(n) Bp(n)

This shows that indeed v is a very good approximation of u for |Du| small: For
example if supp [ Du| = e < &9, then 1.5 shows

|Dul>d ",

p\N

(a)n,o")_l/‘ |D(u—v)*dL" §C84/
JBp(n) B

where (as in 1.2) C is a fixed constant depending only on n, ¢, so that / ( )|D(u —
Bp(n

v)|? is much smaller than / ‘ |Du|? for & small. Thus v is a very good approxi-

Bp(n)

mation to u if ¢ is small.

So there is good motivation to think that harmonic approximation could be rel-
evant in the study of the regularity of stationary rectifiable varifolds; indeed, as
mentioned in the introduction to this chapter, we will show that such approxima-
tions are appropriate even in the more general context of rectifiable varifolds with
generalized mean curvature in L?, p > n.

2 Preliminaries, Lipschitz Approximation

In this section U is an open subset of R"*¢, Bg(0) C U,V = v(M, 6) is a rectifiable
n-varifold with generalized mean curvature H in U (as in Definition 3.14 of Ch.4).

We being with the following lemma relating tilt-excess and height; note that we do
not need 6 > 1 for this.
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2.1 Lemma. Suppose B,(§) C U. Then for any n-dimensional subspace T C R+ we
have

E(§,p/2,T)<Cp™"

where C = C (n).

dist(x —&,T)\2
(M) du—i—sz_”/ |ﬂ|2dﬂ,
J By (§) o J By (§)

2.2 Remark: Note that in case p™"1(B,(§)) < B, we can use the Holder inequality

to estimate the term / |H |*dp, giving
By(£)

1/p
o H| )
By (§)

o

pz_”/ \H|” du < C(n”
By(8)

Thus 2.1 gives

p>2,C=C(n,p,pB).

E(&.p/2.T) = Cp™ (M)zdﬂ +C (pp_n/Bp@)'E'p d")w

By (§)
for p>2,C =C(n,p,B).

Proof of 2.1: It evidently suffices to prove the result with § = 0 and T = R” x {0}.
The proof simply involves making a suitable choice of X in the formula of 3.14 of
Ch.4. In fact we take

X =x)x, x' = (O,x"H,...,x”H)

forx = (x',..., x”H) € U, where ¢ € C}(U) with ¢ > 0 will be chosen below.
By the definition of divys (see §2 of Ch.3) we have

divas x' = YrHE el prae. x € M,

where (e/) is the matrix of the projection pr, p (relative to the standard orthonor-
mal basis for R**¢). Thus by the definition 3.14 of Ch.4 of H we have

74 l
(1) /Gézdu= / (200 XX e Dig — x' - H) dp,
with
. 1 .. y 1
L L 2
(2) 0= Yl e = s (e —)" = Jlprom — penl®,

where (V) = matrix of prs and where we used (¢”/)” = (') and trace(e”) = n.
Also observe that ¢/ = 0if i > n, so (1) can be written

() [ortdu= [(-2032 S (e ) Dys - ' H) d
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SO

Jotdn < [(2vale Vel + 11| H[¢) du.

Hence (using ab < 14> + 15?)

/a§2 dp < 4/(|?C'|2|V§|2 + x| H[¢?) dp,

The lemma now follows by choosing { = 1 in B,/»(0), { = 0 outside B,(0)
and |V¢| < 3/p, and then noting that [x'||H| = (o7 |x'|) (|H|p) < 2p72Ix* +
$(Hlp)" O

For the remainder of this section we continue to assume that V = v(M, ) has
generalized mean curvature H and now we additionally assume, with § € (0,4) a

constant to be specified below and 1 = py = H" L 0, the following:

1 <0 pae., 0esptV, B,(0)cU

2.3 " 1/p
i (Bo(0) < 148, (o [ (HIPap) " <.
W, p7" 1 (By(0)) <1+ (p Lo |H | M) <
Notice that by the monotonicity formula 4.7 and the semi-continuity 4.9 of Ch.4
we have, subject to 2.3, that y € spt V N Bs(0) = 1 — C§ < (w,0") ' u(Bo(y)) <
(14 C8)(wn(1 =8)"p") ' iu(Bi=s)p(y)) < 1+ C8, because B(1_5),(y) C B,(0).
Thus, for § < 8o(n,¢, p) € (0, 41'1]’
B
2.4 % <1-C§< M
w,o"

where C = C(n, ¢, p).

<14C§<2,0<0=(1-8)p, y esptV N Bs,(0),

Subject to conditions 2.3, we first establish a lemma which guarantees local afhine
approximations of the support at all points of spt V' in the ball Bs,(0) and in at radii
o < 268p:

2.5 Lemma (Affine Approximation Lemma.) Suppose § € (0. %] and 2.3 holds.
Then for each & € sptV N Bs,(0), 0 € (0,28p] there is an n-dimensional subspace
T =T(&0) with
) CMo [ pron = prP duy ()"
o/2
<o lsup {dist(x,£ + T):x esptV N B, (&)} < CsV/(2n+2),

where C = C(n, L, p).

Proof: Take any fixed o € (0,28p] and & € spt V N Bs,(0), and suppose for con-
venience of notation (by changing scale and translating the origin) that 0 = 1 and
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£ =0, so now, since § < § and hence (1—8)p/(8p) > 3, 2.4 holds for o < 2 and any
y € sptV N B1(0). By 4.7 of Ch.4 together with 2.4 above,

2 2 .
(1) / |P(romys (x =) S/ Pyt (x =) lx =y du < C8§
Ba(y) B> (y)

for y € sptV N B;(0). Next take & € (0,1) (to be chosen shortly, but for the
moment arbitrary). Recall the general principle that if K is compact and 1 > 0 then
any maximal pairwise disjoint collection B;/»(y;) with y; € K will automatically
have the property that K C U; B, (y;). Using this with n = §* we have pairwise
disjoint balls Bse/2(y1), ..., Bsa 2 (yn) with y; € spt V N By (0) such that

(2) spt VN B1(0) C UL, Bsa (y)).
Notice that then by 2.4 (with o = §*p) we have
(3) C718%" < u(Bsaya(y;)) <C8*", j =1,..., N,
and hence
CTNG™ < SV u(Brepa(37) = 1(UX-y By (07) < Ca(B(0)) < 2C.

Thus N < C§7%", and so, by using (1) with y = y; and noting that B>(y;) D B;(0)
for each j, we have

/1;3 ( )Zj\;lyl’TxML (x =) du < CN§ = 817,
1(0

Thus for any given k > 1 we have

(4) Z,N=1|PTXML (x—yj) |2 < Cks'™",

except possibly for aset of x € By (0)Nspt V of u-measure < 1/k. Since j1(Bse (0)) >
C~15%" by 2.4, we can select k = C57%", thus ensuring that (4) holds for some
xo € spt V N Bs« (0). So we have shown there is x¢ € spt V N Bs« (0) with

(5) Zj‘v=1 |pTx0Ml (x0 —y5) |2 < cslen,

and hence

—an

|1 me (v —Xo)| < C877" j=1....N.

Since |x0‘ < 8%, we then have

1_an o .
(6) |pTV0MJ_yJ|§C<82 +8 ), ]=1,,N
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Then, selecting & such that 3 —an = « (i.e. @ = 1/(2n + 2)), we have shown
that all the points y;,..., yn are in the C§2"+2) neighborhood of the subspace
To = Ty, M, and hence by (2) we have

dist(y, To) < C8Y2"+2) vy e sptV N By (0).

and hence the second inequality in (1) is proved with 7' = Ty = Ty, M.
The first inequality of (i) then follows directly from Remark 2.2. O

We have the following important corollary of the above lemma:

2.6 Lemma (Lipschitz Approximation Lemma.) Let L € (0, 1] be given. There is
B = B(n.L.p) e (0,1 suchthat if § € (0,(BL)*"*2] and if 2.3 holds, if the subspaces
T (0,£) areasinLemma 2.5, if 69 = 8p and if we assume (without loss of generality) that
T(200,0) = R" x {0}, then there is a Lipschitz f : B} ,(0) — R with Lip f < L,
sup | f] < C8Y2n+2) and with

1v (Boy/2(0) N (spt v \ graph f)) + 1" (Boy/2(0) N (graph f \ sptpuv))
ECL_Z/ ‘pTxM—pRnX{O}yzduy, C=C(n,t,p).
Bo (0)

Proof: Assume 2.3 holds, where for the moment § € (0, §] is arbitrary and, using
the notation of Lemma 2.5, let Tp = T (209,0) = R” x {0}, where 69 = §p. Then
by Lemma 2.5

(1) GWAH

)|pTxM _pTo|2 dﬂV(X) < C(gl/(n+1)’
0
0

with C = C(n,¢, p). Let

G ={yesptuy N Bsaga(0): sup o™ [ |pro—prPduy < FL2),
0€(0,00/2] Bs/2(y)

where g € (0, 1] is for the moment arbitrary but which we will choose shortly to
depend only on ., £, p. Thus y € spt uy N Big,/4(0) \ G = Jo € (0,00/2] with

(2) B*L*c" < / \promt — P> dpy.

Boy2(y

By the five-times covering lemma we can pick pairwise disjoint balls By, (y;) such
that (2) holds with 0 = 0 € (0,0¢/2] and y = y; € spt uy N By, (0) \ G, and such
that

spt 4y N Bgy/a(0) \ G C U; Bsg, (y).
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Thus using (2) with 0 = 0, y = y; and summing over j we obtain
B>L? 1y (Bsgy/4(0) \ G) < B>L*Y" iy (Bso, (yj))

<Cp’L*Y o} <C \prem — prol duy

UjBo;/2(yj
< C/ lprom — pro > dpy.
B (0)
Thus .
wv (B3gya(0) \ G) < Cﬁ_ZL_Z/B (0)|pTxM — prlP duy.
o0

We now claim that G is contained in the graph of a Lipschitz function. To check
this, let y1, y» be distinct points of G, let 0 = |y1 — y2|(< 0¢) and observe that by
definition of G and T (y1,0) we have the two inequalities

U_n/ \promt — pro|* < B2L?, 0_”/
JBg/2(y1) B

and hence, since | pr, — pr(y,.0)|* < 2|lprest — P1ol* + 2lPT oM — PT(31,0)1%

|PTed — PT (3,007 < 81/ FD)

o/2(y1)

(3) |PTo = Priyi.0)] = C(BL +8Y/2742)).
Now by Lemma 2.5 we have

|PT(31.0) (01 = ¥2)| = dist(y2. y1 + T (y1.0)) < Csl/(2n+2),

and hence by (3)

(4) dist(y2, y1 + To) = |p1o (y1 — 2|
= (PT(y1.0) + (PTo = PT(31.0))) (V1 — ¥2)]
< dist(y2, y1 + T(y1,0)) + |p1y — PT(31.0) 0
< C(BL +68Y@*2))s < CBL,

assuming we take § < (BL)?"*2. This says that |Q(y2 — y1)| < CBL|y1 — y2| <
CBL(|1Q(y1 — y2)| + |P(y1 — y2)|), where P, Q is denote the projections y =
(' ..., y"*+*) onto its first n and last £ coordinates respectively. Assuming CB < 1
we thus have |Q (y1)—Q(y2)| <2CBL|P(y1)— P (y2)|. In view of the arbitrariness
of y1,y2 € G this says that G is contained in the graph of a Lipschitz function with
Lipschitz constant < L, provided we eventually choose = B(n, ¢, p) to satisfy
the above restriction C8 < 1; we also needed the restriction § < (8L)*"*2, so we

need 2.3 to hold with § € (0, (BL)?"*+2].
Now by the Lipschitz Extension Theorem 1.2 of Ch.2, we thus have

(5) G C graph f, where f : R" — R® with Lip f < CBL (< L),
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and
(6) 1y (B3gy/a(0)\ G) < CL_Z/B
90
Of course, since To = To(200,0), we have by Lemma 2.5 that | £/ (x)| < C§1/(21+2)
for all x such that (x, f(x)) € G, so, by replacing f/ by
f7 = max{min{ £/, C§"/n+2} _Cgs!/n+2)},

) \prom — pro|” dpy.

we can assume

(7) sup|f| < C§Y/C+2),

It thus remains only to prove

(8) H" ((F \'spt ) N Byy/2(0)) < CL_Z/B |prem — Prol? duy
o0

where F = graph f with f asin (5),(6),(7). To check this, take any n € (F\spt )N
By,/2(0) and let o € (0, 00/4] be such that By (n) Nspt u = @ and Bas () Nspt o #
@. (Such o exists because 0 € sptu, and 7 € Bg,/2(0).) Then the monotonicity
identity 4.7 of Ch.4 implies

(9)  u(Bas(n) = pu(Bss(n)) — n(Bs(n))

" X
= Co" | X — |
Bso (n)\Bo (1) [Peraan <|x

)| dp + Céo™.

Now since spt 4 N By (n) # @, 2.3 implies u(Bss(n)) > Sw,0", and hence (9)
gives, for suitable § = §(p,n, ),

< C [, gl ()] an
« (/Bam))pwx{ow (=) ‘2 dp + /

C(/Ba(an‘P(Rnx{o})L( —'7>‘ dp + 11 (Bs(n) \ F)

+/ B - nx 2d )
Bn<n)|pTM Prrx{o} | M)

A

|PTXM - P]Rnx{o}|2 d#)

IA

where we use pr.(x) = x — pr(x) for any subspace T C R+, Since

y)‘ <CBforx,y € FN By(n),

|P (R?x{0})+ (
(because Lip f < BL), and u(B (77)) < 2w,0™ by 2.4, this implies

0" < C(BLo" + u(Bs(n) \ F) + [ 1T = Dol dn).

With B chosen appropriately (depending only on n, £, p), we can arrange that C <
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, and hence this gives
0) 0" = Ch(Ba\F) + [ [pros = po {0} ds).

Now observe that the collection of such balls B, () by definition cover all of

(1

Boy/2(0) N F \ sptu, so by the 5-times covering lemma we can find a pairwise
disjoint collection By, (1) with

(1) 0} < C(u(Boy () \ F) + |

for each j and Bg,/2(0) N F \ sptp C U;Bsg; (1;). Since F is the graph of the
Lipschitz function f with Lip f < 1, we of course have %" (Bs,; (n;) N F) < Co}
for each j, hence by (11)

H" (Boy/2(0) N F \'sptpu) < H"(F N (Y;Bso, (1)) < 3, H"(F N Bsg, (n;))
< CX; (1(Bo )\ F) + | P = peal? i)
< C(n(YjBs;(nj) \ F) +
< C(p(Brays(0)\ F) +
— n 2
< C/Bao(0)|pTXM prel”dp

by (6), so (8) is established. O

|prem — prel? di).
(n;)

\prem — pre|* dit)
g ij (nj)

|prom — pre| di)

2.7 Corollary. If the notation and assumptions are as in Lemma 2.6, then the parame-
ter B = B(n, ¥, p) can be chosen so that

— 2
sup o n/ iPTxM — p]R”x{O}| d,bL < ,82L2
§espt LN B /2(0),0€(0,00/2] o (§)
= spt i N By, /4(0) = graph f N By,/4(0)

for some Lipschitz map f = B" ,,(0) — R with Lip f < L, sup |f| < C§V/(2n+2)q

0o/4

Proof: Note that if SUPgeB, 5(0).0<00/2 Js, ) | P M — PR X (0} i2 du < B2L? then the
set G in the above proof of Lemma 2.6 by definition includes all of spt u N By, 2(0),
s0 spt LN By,/2(0) C graph f with Lip f < L and sup | f| < C§/(2"+2) 5. Further,
if n € graph f N By,,4(0) \ spt 1 then inequality (10) in the above proof gives

0" < C /B P = pansqol [ die = CF?L20" < C o
JDbg(N

for some o € (0,0¢/4]. This is evidently impossible with 8 = B(n, £, p) chosen so
that C B2 < 1, so with such B we have graph f N By ;4(0) \sptp =@ O
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3 Approximation by Harmonic Functions
The main result we shall need is given in the following lemma, which is an almost

trivial consequence of Rellich’s theorem:

3.1 Lemma. Given any ¢ > 0 there is a constant § = §(n, &) > 0 such that if f €
W12(B), B = B,(0) = open unit ball in R", satisfies

/BIV.flzsl, ‘/BVﬂV;dﬁ” < §sup |V¢|

for every ¢ € C2°(B), then there is a harmonic function u on B such that /B Vul? <1

and

/B(u—f)zsa

Proof: Suppose the lemma is false. Then we can find & > 0 and a sequence { fi} €
W12(B) such that

(1) [ Ve veaer| <k sup vy
for each ¢ € C°(B), and
/ VA <1,
B
but so that
(2) [ fe=ul >

whenever u is a harmonic function on B with [ [Vu|*> < 1. Let Ay = w, ' [ fr dL".

Then by the Poincaré inequality (see e.g. [GT01]) we have
2 2
Tl fe =] < C/B{ka| <C,

and hence, by Rellich’s theorem (see [GT01]), we have subsequence {k’} C {k}
such that fi» — Axs — w with respect to the £2(B) norm and V f;» — Vw weakly
in L?, where w € W'2(B) with [, [Vw|*> < 1. By the weak convergence of V fi to
Vw and by (1) we evidently have

/Vw-vgdcn =lim/ka-V§d£" —0
B B

for each ¢ € C°(B). Thus w is harmonic in B and [ fir — w — Ak > - 0. Since

w + Ay 1s harmonic, this contradicts (2). O
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We also recall the following standard estimates for harmonic functions (which fol-
low directly from the mean-value property—see e.g. [GT01]): If u is harmonic on
B = B;(0), then

3.2 sup 09| D%u| < Co™?||ul2(p)
BU/Z(O)
for each integer ¢ > 0, where C = C (g, n). Indeed applying this with Du in place
of u we get
33 sup 0‘171|un| < C||Vullp2(p)
Bs/2(0)
for ¢ > 1. Using 3.2, 3.3 and an order 2 Taylor series expansion for u, we see that if
¢ is the afline approximation to u given by £(x) = u(0) + x - Vu(0) then
[€(0)] = [u(0)| = Co™|lullzam), [Vl = [Vu(0)| = Co™|VuLa(z)

sup |u—£| < (no)?sup|D?u| < (n0)?| sup |D?u| < CrPo ™| Vu 12 (g
B0 (0) Byo Bs/2

3.4

for n € (0, 1], where C = C (n) is independent of 7.

4 The Tilt-Excess Decay Lemma

In this section we continue to assume V' has generalized mean curvature H in U (as
in Definition 3.14 of Ch.4), and we write u for uy.

If B;(§) C U we define the tilt-excess E (¢, 0, T') (relative to the rectifiable n-varifold
V =v(M.0)) by

4.1 E(£,0T)= U_n/B (§)|PTXM —1DT|2d/LV,2

T is an n-dimensional subspace of R**¢. Thus E measures the mean-square de-
viation of the approximate tangent space Ty M away from the given subspace T.
Notice that if we have T = R” then, in terms of the (n + £) x (n + £) orthogo-
nal projection matrices (¢”/) and (¢) for TxM and R" x {0}, |pr,m — pRnX{O}‘Z
is just 2, ((e0)? + (6)2 — 26e) = 2(n — Tioyell) = 250, el =
2 Zj-‘zl |VM x7+/ |2 where we used the facts that (e”/)? = (/) and trace(e” ) = n.

Thus

k
4.2 |prom — pRnx{o}|2 = 22 |VM ynti 2
Jj=1

2 . 2 ..
2|prem — p|” denotes the inner product norm trace (p7, — p)~; this differs from || p7, pr — plI?
by at most a constant factor depending on n + {—see Remark 4.4.
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so in this case
4.3 E(EpT) = 20—”/3 (E)Zle}VMx”H]zduy
(VM = gradient operator on M as defined in §2 of Ch.3).

4.4 Remark (Operator norm v. inner product norm): Notice that in 4.1 we
use the inner product norm, but we could equivalently use the operator norm: If

L : RP — R? is linear with matrix £ = (¢/) (so that L(x) = Z e x ey
then the operator norm is ||| = supy, |, |L(x)|, whereas the inner product norm
is|Ll = /> (¢7)2. Observe |L(x)[> = xT€T £x and €7 ¢ is a symmetric positive
semi-definite P x P matrix with non-negative eigenvalues 0 < A; < A, <--- < Ap
and |L|?* = trace £T¢ = Z 1A, while |L||> = Ap = max{A,...,Ap}, s0
PTULP < |L|* < L%

In particular (n + €)7" [ &) |PTaM — Proxio)* < fBU lprem — Proxqoyl” <
fB(,g |prem — PR"X{O}| —i.e. fBg | proma — P]R”x{o}” and fBU(S) |pTxM_PR”><{0}|2
differ by at most fixed factor depending onn+ L.

We are now ready to discuss the following Tilt-excess Decay Theorem, which is
the main result concerning tilt-excess needed for the regularity theorem of the next

(01’_”/30(5)|ﬂ|pdﬂ)2/p},

section. In this theorem use the notation
E.(£.0.T) = max{E(g,a, T), 57!

where § is as in 2.3.

4.5 Theorem (Tilt-excess Decay Theorem.) There are constants 0.8y € (0, 1],

depending only on n, £, p, such that if hypotheses 2.3 hold for some § € (0,80], if

o € (0,8p/2], &€ € sptuy N Bsy(0), and if T is any n-dimensional subspace ofR”H,
then

Ey(£n0.8) <7 "PE,(5.0.T)
for some n-dimensional subspace S C R"+¢,

4.6 Remark: Notice that any such S automatically satisfies

(%) \ps — pr|” < Cn"E.(£,0,T)

Indeed we trivially have

—n 2 _n
(no) / |prom — pr| du <n"E(§.0.T),
Bno (§)
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while by 4.5 we have
o)™ [ |pro—ps| du < Eu(.0.T),
Byo (§)

and hence, since |ps — pT\2 < 2|prem — pT|2 +2|prem — p5|2, (1) follows by
adding these inequalities and using the fact that j1(Byo (£)) > 1 (wano)" (by 2.4).

Proof of 4.5: Throughout the proof, C = C(n, £, p). We can suppose § =0, T =
R"x{0}. Observe that by the Affine Approximation Lemma 2.5 we have a subspace
T (in fact T = T(0,20) in the notation of 2.5) with E(0,0,7) < C§Y/®+1) 5o we
can certainly assume

(1) E(0,0,T) < C§Yn+1)

because otherwise we just prove the lemma with T in place of 7 and this then triv-
ially implies the lemma for the original 7. Notice that since E (0, o, T) < C§l/nt1)
and SUP, st 11 B (0) dist(x, f) < C§Y21%2) by Lemma 2.5 we see also from (1) that
|pr — p7| < C§Y(21+2) ydist(x, T) < C§Y/2n+2) which
can be written

, and hence sup,. .. un5, (0

14

(2) sup |x" | < CcsY/ (@t

Bg(O)ﬂSpt/Lj=1

By the Lipschitz Approximation Lemma 2.6 with L = 1, there is a Lipschitz func-
tion f : B?(0) — R* with

(3) Lip f <1, sup|f| < C§V/2+2)4
(4)  u(sptp N Bo(0) \ graph f) +H" (graph f N B (0) \ sptpt) < CEo0™,
where Eg = E«(0,0,R"” x {0}); i.e.

§! (Op_n_/BU(O)’ﬁV dﬂ)ﬂl’}

Let us agree that C§'/(2"%2) < 1/4, in which case (2) implies

(5) (Bg/2(0) x

Our aim now is to prove that each component of the Lipschitz function f is well-

E, = max{o_"/B (0)‘PTXM - PRnx{0}|2dM7

R) N'sptu C By 5(0) x By 4(0).

approximated by a harmonic function. Preparatory to this, note that the defining
identity for H (see 3.14 of Ch.4), with X = {e, 4, implies

[ Ve dn == [enr; - Hedp, ¢ < C(Ba(0)),
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j =1,...,4, where V%rj =entj VM = prop(ens;) - VM = (VMxnt7) . vM

(VM = gradient operator for M as in §2 of Ch.3). Thus we can write
(6) / (VMx”H)-VMCdu:—/ entj - HCdu.
M M

Since x"*/ = f/(x) on M; = M N graph f (where f7 is defined on R"*¢ by
Vi (x1..., x””) = fI(x..., x") for x = (x1,..., x") € R"*4), we have by the
definition of VM (see §2 of Ch.3) that

(7) VM xnti = VM fi(x) p-ae. x € My = M N graph f.
Hence by (6) can be written
[ VMM =~ [ (M) M [ ey HEdp,
M, M M
and hence by (4), together with the fact that (by 2.3)

/B o Eldh = (/B (f)’ﬂpd”)l/p(M(Ba(é)))l_l/” < C8V2EF 6",

\M;

we obtain

(8) }o_”/Ml (VM 7y . VMidu| < C (o7 sup |§|81/2E0% + sup |V¢|Eo)

1
< Csup |V¢|(8'2E§ + Eo),
for any smooth ¢ with spt¢ € B, (0).
Furthermore by (7), 4.3, we evidently have

(9) o_”/ ]VMJ:’V]}Z du < Ejy.

MNBs(0)
Now suppose that o is an arbitrary C/ (Bg/%(O)) function, and let go (x1, ..., x"*¢)
=Go(x",....x"), s0sptlo = spt{o x R* C B ,(0) x R, and by (5) we can select a

function & € C}(By(0)) with 7 = 1 in a neighborhood of spt Nspt &, and hence it
is legitimate to use ¢o 4 in place of ¢ in the above discussion. But of course this is the
same as using {o in place of ¢, since again /& = 1 in a neighborhood of spt u N spt &.
So we can use all the above identities with ¢, in place of . In particular (8) holds
with & in place of ¢. Also, since pRnX{Q}(VE()) = Vo and pRnX{O}(ij) =VfJ,
we have
(10) VM F7-VME = prom(VF7)-Vio

= ij Vo — P(TXM)L(ij) Vo

= V[V —prmyr (V) Vo

= Vf7 V& — (praxio} © PiroaryL © Proxioy) (Vf7) - Vio.
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Now
| PR 0} © Prypryt © Prax{oy | = I(Prax{oy — PTeM) © D1yt © (Prax{oy — PTom) |
< llpraxo} — Prem|I® < | Prx{o} — PTeM|?
by 4.4, so (10) implies
(1) VM- IMEdu =V 7 V0| < |praxioy — prom | sup|Viol.
Thus (8) and (11) imply
~ ~ 1

(12) (a—" VIV d,u‘ < C(8"2E§ + Eo)sup| V.

M,

Also since (10), (11) are valid with ¢y = £/, we conclude from (9) that
(13) 0_”/ IV 77|? dp < CE,.
M| NBs

From (12), (13) and the area formula 3.5 of Ch.2 we then have (using also (3), (4))

o7 [ VT Vieb0 F U dL| < C8EY sup|Veo|.

B3 (0)
and
(14) o—"/ IV f/126 0 F Jp dL" < CE,
B5(0)

where F : R" — R"*¢ is the graph map defined by x € R > F(x) = (x, f(x)) €
graph f C R"**, x € B"(0), and where JF is the Jacobian of F defined as in §3 of
Ch.2 by

Jr(x) = \Jdet(D; F(x) - D; F(x)) = \/det (8 + D; f (x) - D; f (x)).
Then1 < Jrp <1+ C|Vf|?on B?(0)and 1 <6 <1+ C§ (by 2.5), so we conclude

(15) }a—"/Bn

o

. 1
R T C(82E] +so—"/
0) B"

o/2

o |Vf7| dL™) sup |Viol
< CSl/zEé/zsup|V§o|

by (14), because by (14) (and the fact that 6 > 1, Jr > 1) we have

(16) o*"/Bg(O) Vfif de" < CEo.

Now (15), (16) and the Harmonic Approximation 3.1 (with (CEp)~"/2 £/ in place
of 1) we know that for any given ¢ € (0,1) there is §o = 8o(n) such that, if the
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hypotheses of 3.1 hold with § < &y, there are harmonic functions u?,...,u*

By/2(0) such that

17) o /
B5)s

By (3) we have [u(x)] < Ju(x) — f(x)]| + C8/27+2) 50 oy p(0) 117 =25 0y 1=

12+ C8Y*+V Ey and hence by 3.4 and (17)

{ O,—1|u(0)| < C(81/2E01/2 + 51/(2n+2)) < C81/(2n+2)

|Du(0)| < CEM2.

on

[Duf*dc” < CEy. 072 |
(0) B!

o/2

(0)|f —u|?dL" < ¢E,,

(18)

Now, defining A(x) = (A'(x),...,A%(x)) with A/ (x) = u/(0) + x - Vu/(0) for
j =1.....4, and again using 3.4 with n € (0, 1), we have also

(19) ()2 [

no

f = AL fz(no)*"*z/ (1f —ul+ ju—A2)dLr
(0) By (0)
<2 " 2¢Eq + 2wy, n_za_zsume(O>|u — AP
<2 " 2eEg + Cr]za_"/ |D14|2 arct
B3 (0)
<27 "2cEq + Cn*E,,

where at the last step we used (17). Now let S be the n-dimensional subspace
graph(A —1(0)), let T = (0, A(0)), and observe that dist(x, 7+ §) < | f(x’) —A(x")]
forany x = (x, f(x')) € Bys(t) Ngraph f, so (19) implies

(na)_”_z/BM(r)ngmphf dist(x — 7, S)2dH" < Cn™" 2eEo + Cn*E,.

Then by (3), (4), (2), and (18), keeping in mind 6(¢§) <1+ C8 <2 in B, (0),

(no)_”_z/Bm(r) dist(x — 7, 8)2du < Cy " 2eEo + C8Y "V Ey + Cn? Ey,
and then by Remark 2.2 we have
(20) E(t,10/2,8) < Cn " 2¢Eg + C8YM TV E, + C (n? + ) E.
Now (18) implies |t| < C§'/2"+2)5, hence
(21) C8Y/2"+2) < /4 = Byo/4(0) C Byosa(t)
(for § small enough depending on n, ¢, p and 1), and then (20) gives

(22) E(0,70/4,8) < Cyp"2(e + §Y2" 2V Ey + C (? 4 6) Eo.
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The proof is now completed as follows:

With C as in (22), first select n = n(n.£, p) so that Cn? < 1(n/4)21="/P)  and
then choose ¢ = ¢(n,£, p) so that Cn™2e < 1(n/4)21="/?), and finally choose
§ < 8o(n, L, p) with 8y small enough so that B,5/4(0) C Bye/2(7) as in (21) and so
that the above harmonic approximation is valid with the choice of ¢ made above,
and also so that Cnp™=2§1/(2n+2) < 1(3/4)2(1=n/P) Then (22) implies

(23) E(0,70,8) < ?1/P)E,,

where 7 = n/4. Since

1/p
~ \p—n HI? d < yl-n/p P*"/
(('70) /B o ! M) =7 (0 -

no o

1/p
H | dp)
0)
by virtue of the inclusion Bj4(0) C B, (0), we thus conclude that
E.(0,750,8) < 72"/P E,(0,0,T).

This completes the proof of 4.5 (with 7 in place of ). O

5 Main Regularity Theorem

We recall the hypotheses of §2 on V (which is a rectifiable varifold V = v(M,0)
with generalized mean curvature H in the open set U C R*+¢);

1 <6 p-ae, 0esptV, B,(0) CU

5.1
w, ' pT" (B, (0)) < 1+, (pp‘”/
B

1/p
H|” ) " <.
0)

Then we have the following:

5.2 Theorem (Allard Regularity Theorem.) If p > n is arbitrary, then there
are 8o = So(n, €, p), y = y(n,€,p) € (0,1) such that the hypotheses 5.1 with § <
8o imply the existence of a linear isometry q of R' and a u = (ul,..., ut) e
Cl1=n/p (Br (0):RY) with Du(0) = 0, spt V N By, (0) = g(graphu) N By,(0), and

p_lsup|u| + sup | Dul|+

PP sup |y —y|T" P Du(x) — Du(y)| < €5V,

x,yE€B},(0), x#y

where C = C(n, L, p).
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5.3 Remark: We shall prove in the next section a slight improvement on the above
theorem, in that for every y € (0,1) there is § = §(y,n, £, p) € (0, 1) such that the
hypotheses 5.1 imply the conclusion of the above theorem.

Proof: The proof is based on the Tilt-excess Decay 4.5 of the previous section.
Throughout the proof C = C(n, £, p) > 0.

Take & € Bs,/2(0)Nspt V and o € (0,8p/2] and let Sy be an arbitrary n-dimensional
subspace of R"*+¢. By the Tilt-excess Decay Theorem 4.5 we then know that there
are § =8(n, ¢, p), n = n(n,£, p) so that 5.1 implies

E, (E’ no, Sl) = nZ(l—n/p) E. (év g, SO)

for suitable S;. Notice that this can be repeated; by induction we prove that if
£ € sptV N Bsp2(0), then, with o9 = 8p/2, there is a sequence Si, S, ... of n-
dimensional subspaces such that

(1) Ex(&n700,8;) < p? P EL (8,077 p/2,8;-1) < 'V E(€, 00, So)

for each j > 1.

Let To = T(0,200); then 2.5 tells us that E (0,09, Ty) < C8Y"*+1) and hence, with
the same C, E(£,00/2, Ty) < 2"C8Y+1) for each £ € spt ju N By, 2(0), so then the
above, always taking Sy = Ty (for each & € B,,/2(0) N spt ) implies

(2) E. (i‘-’ flon, Sj) = ﬁz(l_n/mE* (S, Uj_ldo/z, Sj_1) = ﬂz(l_n/p)on,

where, here and subsequently, Eg = E(0.00,7p). Notice in particular that this
gives (Cf. 4.6)

(3) |ij - ij—l |2 =< CE* (Ev nj_lo-()s Sj—l) =< an(l_n/p)jE* (EvUOvSO)-

for each j > 1.

By summation from j + 1 to ¢, (3) gives

(4) |pse —ps, i2 < an(l—n/P)jEO

for £ > j > 0. (4) evidently implies that there is S (¢§)(= lim— o S¢) such that
() pse) = ps; [ < CPUPIEg, j=0.1.2,....

In particular (setting j = 0)

(6) |pse) — PT0|2 < CE,.
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Now if o € (0,00/2] is arbitrary we can choose j > 0 such that n/0¢/2 < 0 <
n’~1o9/2. Then (1) and (5) evidently imply

(7) E.(£,0,8(8)) < C(0/00)* " PV Ey, C =C(n,L p),
for each & € B,,/2(0) Nspt V and each 0 < 0 < 09/2. Notice also that (6), (7) imply
(8) E.(£,0,Ty) < CEy < C8YC"2) 0 <5 <09/2.

Supposing without loss of generality that 7y = R” x {0}, we then see, by Corol-
lary 2.7 and (8), if Lo € (0, %] is given, and if § < §oLZ"*? for suitable §y =
8o(n, L, p), then

(9) spt V' N By, 4(0) = graph f N By, 4(0),

where f is a Lipschitz function B} ,,(0) — R¢ with Lip f < Lo.
With such an f, let G(f) = graph f and & = (¢/, f(§')) € G(f), and note that, in

view of (9), (7) implies

limo_"/ |pr, —pse))PdH" =0
al0 Bs (§)NG(f) TGt S

for H"-a.e. § € G(f) N Bg,y2(0), and at all such points ¢ it evidently follows that
S (&) is the approximate tangent space of G(f); i.e. S(§) = pr,Gy, so (7) can be
equivalently written

(10) a_n/ <5)nc<f)lpTxG<f>—PTgG<f>|2dH"SC(U/Uo)Z“_"“’)Eo

forall 0 < o < 69/2. Now the orthogonal projection pr,g(s) of R*** onto the sub-
space T¢G (f) is given by pr.c(s)(v) = X7, (% -v)7;, where 7; is an orthonormal
basis for T¢G(f'), and by the Gram-Schmidt orthogonalization process (starting
with the basis (e;, D; f(§')),j = 1,..., n, for T¢G(f), where (&', f(§)) = &)
shows that pr,c(r) has a matrix P¢ of the form
Tnxn Df(&) /
P = + F(D ;
; (wﬂwy O ) TTPIED)
where F(p) is a real analytic function of p = (pij)i=1.. nj=1..4 € R*™ with
F(0) =0, DpF(0) = 0 and hence | F(p1) = F(p2)| = C(n.£)(Ip1l + |p2l) 1 — p2l

for |p1],|p2| < 1. Evidently then (provided we choose Lo small enough, depending
only on n, £) we have

IDf(x")=Df(E)N <|precir) — Precin)> <3IDf(x") =D f(§)?
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and so (10) implies

N LR NCIREE

< C(a/cro)z(l*”/l’)Eo, 0 <o <og/4.

For p-a.e. x1,x2 € spt V N By, /8(0) we can use (11) with 0 = |x; —x2| and with § =
x1,X. Since | D f (x1) = D f(x2)[> <2|D f(x) =D f (x1)> +2|D f (x) = D f (x2)|?

for x € By (x1) N By (x2) D B}, ((x1 + x2)/2) we then conclude

IDf(x1) = Df(x2)| < C(Ix1 = xal/og) /7 EL?

for £"-ae. x1,x, € B” by ,(0). Since f is Lipschitz it follows from this that f €
C11=7/P and this holds for every x;,x, € B} ,(0). Thus, choosing suitable § =
8(n, ¢, p) to satisfy the smallness restrictions imposed in the above argument, the

theorem is established withu = f andy = §/4. O

6 Conical Approximation, Extension of Allard’s Th.

First we want to derive an important technical lemma concerning conical approxi-
mation of V in the annular region B;(0)\ B, (0) incase A € (0, ) and w, 'y (B1(0))

is close to w, A" uy (B (0)).

6.1 Theorem. Suppose A > 0, 1,6.5 € (0.1), € € 3B1_4(0), V = v(M,0) has
generalized mean curvature H € L1 (,u) inan open set U D B1(0), u = puy, and

‘H’(Bl(o)) _ ( “i‘ sup l’ n/ |ﬂ|dﬂf8,
wnl" ) B, (0)

and n(B1(0)) < A. Then

By
HB(uginp () — C8V41logal < B g e)) + 54 loga
forall p € (0,0] and all T € [2X, 1], where C = C (n, £, A).

6.2 Remark: Note in particular that if H = 0 and if , 'y (B1(0)) = ©(uy,0),
then by the monotonicity identity 3.6 of Ch.4 we would have w, 'y (B1(0)) =
0, 'A™" wy (B, (0)) and hence the above theorem (with § | 0) guarantees that the
density ©(puy, &) is a constant function of © € (0,1) for each § € 9B;(0), so
VL B1(0) is a cone: (10.04V) L B1(0) = V L B (0) for each ¢ € (0,1]. This does
indeed directly follow from the constancy of ©"(uy,x) on the rays R = {x :
x = 1€ : T € (0,1)}, because, by Remark 4.10 of Ch.4, we can write V L B;(0) =
v(S N B1(0),0), where S = spt uy and O(x) = O™ (uy, x).
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Proof of 6.1: First note that by 3.18 of Ch.4 we have
(1) / F =2\ DL P dp < C8|log Al
(0)\B(0)

and then another application of 3.18 of Ch.4 gives
B (0 B, (0
2) )/x( 1(0)) — n(B:(0))

S ‘ < Cé|logA|
for every 7 € [A.1]. Also, the hypothesis that r'™" [
together with Lemma 4.11 of Ch. 4, implies

3) / P H  ds < C5|log Al
(0)\B,.(0)

Let h : R**£\ {0} — [0,1] be a homogeneous degree zero C! function on R"*¢ \
{0} with |Dh(x)| < k/|x|, where k > 1 will be chosen below. Observe that x -

prom(Dh(x)) = prom(x) - Dh(x) = (x = proay (x)) - Dh(x) = =p(roany(x) -
Dh(x), so in fact

(4) 1x - proa (Dh(x))] < ko™ X7 pirany (%)

We now let 0 < s <t < 1, hy € (0,5),ha € (0,1 —1¢) and use the first variation
identity [divayr X dpu = — [ X - H dp with X\, = h(x)r—"y(r)x, where r = |x| and

y is defined by
1 ifrels]
y(r) = .

0 ifr<s—hiorr>t+hy

|H| < § for r € [A,1],

and y(r) is piecewise linear with slope i7! for r € [s — hy,s] and slope i3 for r €
[f t + hy). After letting hq,h | 0 (in any order) and observing that divas (r"x) =
" pireany (x)[* we see that this gives

d d
- h 1-n VM 2d __/ h 1-n VM Zd
05 oo B IV P = [ ) VY

+n/ hxr_"_2|pLx|2=—/ h(x)r~
B;(0)\Bs(0) (x) Tx( ) B;(0)\Bs(0) &)

where TF = (T M)*. Since

d

—/ h(x)r_”|VMr|2d,u:/ h(x)r™|VMr|0dH !
dt JB(0) 3B (0)

(by the co-area formula 2.9 of Ch.3) we see that, after using (3) and (4), this implies

AL
9B5(0) 9B (0)

< C5)log | +kp—1/
B

x-(H - Dh(x)) dp.

17"|VM7’| + n/
B;(0)\Bs(0)

r " g (x)] dpe.

hr 2| ()

1(0)\Bs(0)
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Now we let s = 77, T € [A, 1], thus giving

6) ‘fl—"/ h|er|—/ h|VMr|‘§n/ hr =2 s ()2
9Bz (0) 9B (0) B1(0)\B;(0) *

+ C8|logA| + kp™*
J B1(0)\Bx(0)

By using Cauchy-Schwarz and the bound 11(B;(0)) < A together with 3.18 of Ch.
4 in the last term on the right we infer

@) ‘fl—"/ h|er|—/ BT |
9B (0) 0B (0)

< CkA'? /
N ( B (0)\B(0)

Now for any p € (0, ] and £ € 3B;_(0) and for any 7 € (|&] — p, & + p) we select
the homogeneous function 4 so that 4 is identically 1 on 3B, (0) N By_g1/4),(£),
identically zero on 9B, (0)\ B,(£), and | Dh(x)| < (48'/*p|x|)~'. Then (7) implies

(8)

r " pry (x) ] dpe.

hr "2 2d i Cé|logA
P pra ()P dp) 4 C8llog .

V¥ <t | VM |

/zazat(o)nB(l_sw)p(g) 3Bz:(0)NBrp(T£)

< CsVApTIA2 log)L|1/2 (/

B (0)\B(0)
Then by integrating with respect to ¢ € (|&|—p, |&|+p) (hence 7t € (|t&|—7p, |T&|+
tp)), by the coarea formula we get

(9)
/ Ve [ v
3(1_51/4)0(5) Brp(t§)

crvgra(]
B1(0)\B, (0

and since [VMr|2 =1 — r_2|pTxJ_ (x)|? this implies
(10)

W(B(1_s1/4y,(§)) = " u(Brp(2€)) + C

1/2
r" 2 pry ()2 du) + Cép|logAl.

r_2|p 1(x |2
B1(0)\B; (0) re (%)

—1/4 5 1/2 1/2 —n—2 2 1/2
< C5 VA2 log | (/ 2 ppa (¥)Pdi) "+ CépllogAl.

B1(0)\B(0)
Using (1), we then have

(11) 1(By_s1/4),(E)) < T 1(Bup(z£)) + C8V4AV?|log Al
with C = C(n, ).

Similarly, choosing the homogeneous function % in (6) such that % is identically

1/2
r_"_2|pTxJ_(x)|2d,u) + C8llogA|.
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1 on 3B;(0) N B,(§), identically zero on dB,(0) \ B(;141/4),(§), and [Dh(x)| <
(484p|x])~1, we obtain

(12) " u(Bup(eE)) < pu(Bpyygny(€) + C8V4A 2 log . O

7 Some Initial Applications of the Allard Theorem

The Allard Theorem of the previous two sections is fundamental in the study of
the regularity and compactness properties of rectifiable varifolds (including also
smooth submanifolds) with prescribed (generalized) mean curvature, in particular
in the study of stationary varifolds. Here we discuss some initial applications. First
we have the following corollary of the version of the Allard theorem discussed in
the previous section:

7.1 Theorem. If V = v(M,0), of dimension n, has generalized mean curvature H
(as in 3.14 of Ch.4) in an open set U C R"** and if H is locally in LP (jy) for some
p>n,if0 > 1pyae inU andif§ € U with ©" (uy,§) = 1, then there is p > 0 and
an orthogonal Q and of R+ such that, up to a set of H" measure zero,

Q ot(M)N B,(0) = graphu, t:x—x—§,

where u : W — R¥, W open in R", is a C117"/P(W ,R¥) function with u(0) =
0, |Du(0)| = o.

In case 0 is positive integer-valued py-a.e. in U and H = h|sptV, where h is a C?*
function in U for someq € {0, 1,2, ...} and some o € (0, 1), then, for sufficiently small
p > 0, the above u is automatically C172*(W) and ©" (uy.x) = 1 on B,(£).
Finally, if 0 is positive integer-valued juy-a.e. in U, if N is an (n+{)-dimensional C113
submanifold of R"** and if V is stationary in U N N as in 2.7 of Ch.4 (so that V has
generalized mean curvature H = H 5, as in 3.14 of Ch.4), then again, for sufficiently
small p > 0, the above u is automatically in CI+2%(W ), this time for each a € (0, 1),
and ©" (py.x) = 1in B,(§) Nspt wy.

Proof: Since lim, o (p? ™" I8, |HI? d/,Lv)l/p = 0and lim, o (@, 0") v (B (£)) =
1, we can choose p > 0 such that the hypotheses of Theorem 5.2 hold, so, after ap-
plying the appropriate translation and orthogonal transformation, the required u
exists with

(1) graphu = spt V' N B, (0)
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with o = yp, y as in Theorem 5.2. Since 6 is integer valued and < 2 a.e., we have
6 = 1 H"-a.e. on graphu; but graphu is a C' submanifold so then ®" (uy,x) =1
at every point of graphu.

Let g9 € (0,1). Since Du(0) = 0, by choosing a smaller o if necessary, we can
assume that [Du| < &9 on B, (0) and so the analysis we made in §1 of the present
chapter is applicable and tells us that u satisfies a system of equations of the form 1.3;
Le.

(2) Au; = Z?ZIDJ(A,](DM)) +h,i=1,..., k,

with A;;(P) are C* functions of the variable P = (pym)e=1...nm=1...
|Aij(P)| < C|P|* and |DpA;;(P)| < C|P|, where C = C(n). Then by the
Schauder theory for elliptic equations we see that h; € C%*(By(0)) implies that

u € C9T2%(B,(0)) as claimed.

Finally, assume V is stationary in N. Then we can apply Theorem 5.2 for each p >
n so for each & € (0. 1) we have o such that (1) holds with u € C%(B,(0)). Then
(er, Diu(x)),i = 1,...,n, is a C% basis for T(x u(x))G, G = graphu, x € B,(0).
By the Gram-Schmidt orthogonalization theorem we then have functions F; (Du),
jo=1,..., n, such that Fj(P) is a smooth function of P = (pjj)i=1,...n,j=1,..k
and Fi(Du(x)),..., F,(Du(x)) is an orthonormal basis for T(, 4 (x))G for each x €
B, (0). Then, by 2.7 of Ch.4, G has generalized mean curvature at (x,u(x)) equal
to Z;le?u(x)(Fj(Du(x)), F;(Du(x))). Thus, in this case (1) can be written

(3) Au; =377 Dj(Aij(Du)) + X i_ienti - Bixu(x))(Fj(Du(x)), Fj (Du(x)))
fori =1,....k, and again standard elliptic theory implies u € C7+2%(B,(0)). O

7.2 Definition: If V = v(M, 0) is an n-dimensional rectifiable varifold, we say that
apoint £ € spt V is a regular point of V if there is a p > 0 such that B, (&) N'spt V is
an n-dimensional C! submanifold of R**¢. Then we let

regV = {& e sptV : £ is a regular point of V'}
sing V =sptV \ reg V.

Notice that then by definition reg V, sing V' are respectively relatively open in spt V
and relatively closed in U.

7.3 Corollary. If V = v(M,0), of dimension n, has generalized mean curvature H
in an open set U C R"*4, if H is locally in L? (juy) for some p > n, and if 0 is positive
integer-valued py-a.e. in spt'V, then regV is a relatively open dense set in sptV; i.e.
sing V' is nowhere dense in spt V, and spt V is the closure, taken in U, of reg V.
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7.4 Remark: It is an open question whether on not sing V' has H"-measure zero
under the general conditions of the above corollary, even if we assume H = 0; such
results (and more) are true in the special case when V is the varifold associated with
a minimizing current, as discussed below in Ch.7.

Proof of 7.3: Take any ball B,(¢§) C U and let

N =min{; :j € {1,2,...} and ©"(uy,x) = j for some x € B,(£)}.

Then V = v(M, N~'6) L B,(£) has density ©" (i, x) > 1 everywhere in spt V N
B,(£) and ©" (uy,x0) = 1 at some point of xo € B,(£). Such a point xo is in
reg V(= reg V N B,(£)) by Theorem 7.1, so we have shown reg V N B, (£) # @. O

The Allard theorem will play a key role later (in Ch.7) in establishing the regularity
theory for solutions of the Plateau problem in arbitrary dimensions.
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1 Preliminaries: Vectors, Co-vectors, and Forms

ei1,...,ep denote the standard orthonormal basis for RP. We let A!(R?) denote
the dual space of R?; thus A!(R?) is the space of linear functionals  : R? — R.
dx',....dx? € AV(R?) will denote the basis for A (R”) dual to the standard basis
e1,....ep of RP. Thus for v = (vy,...,vp) € R? we have

dxj(v)zvj, j=1,...,P.

For n > 2, A"(R?) denotes the space of alternating n-linear functions on R x

.-+ x R? (n factors). Thus w € A"(R?) means w(vy,...,v,) is linear in each v;
and w(v1, ... Vi, Ve 0g) = —0 (V1. VL Ve, 0y) Tor each i # L IE
w1,..., 0, € A(RP) we define w3 A wy A -+ A w, € A*(RP) by
1.1 W1 AWy A AWy (V1,...,0,) =

> 5 5800 @g(1) (V1) @6 (2) (V2) Do) (V) (= det(wi(v}))).
where the sum is over all permutations o of {1,...,n} and where sgno is the sign

of the permutation o : {1,...,n} — {1,...,n}. One easily checks that then any
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w € A" (RP) can be represented
- i i
w = Zl§i1<~-~<in5P Wi ...ip dx'm A Adx™

— o
- ZaEI,,_Pw‘xdx

where
1.2 Lnp={a=(i1.....in) €2}, 11 < iy <-+-<ip < P},
and where we use “multi-index” notation, with @ = (i1.....ix) € Z% (Z4 = the

set of non-negative integers), and where w;, . ;, = w(ei,,...,ei,). Thus {dx* 1« €
I,,p} are a basis for A”(R”) and the dimension is (¥).

Forw =) wedx® € AY(RP), n = > pel,, p npdxP € A™(RP) we can define

(XEI[_P

1.3 wAN= Z

aGIg’p,ﬂEIm.P

wenpdx® AdxP e AT(RP).

This is consistent with 1.1, and for , w1, w, € AY(RP), n € A™(RP),v € AP(RP)
we have

(cro1 + cowp) A= crw1 AN+ cowa AT
(wAm)Av=wA(nAv)

wAn=(-1)"nro.

If V is a subspace of R” of dim = n with basis vi,...,v, then A?(V) denotes
the subspace of A"(RP) with basis {v A--- A vE : (i1,....in) € Iy}, where
vF € A'(RP) is the element dual to v;, so that, for v € R”, v* € A'(R) is defined

by

1.4 v (w) =v-w, weR?.

Analogous to the definition of A”(RF), we could similarly define A"(A'(R?))
for n > 2 as the space of alternating n-linear functions on A!'(R?). In which
case, after making the identification of (dx/)* ~ e;, we have the space A, (R?) ~
A" (AY(RP)) of n-vectors

j— o
w = Z(Xelnva €as

where w* e Rand ey = ¢, A---Aej, fora = (j1,...,jn) € In,p,and

n=1V1j1V2j5 =" Unj,€jy N Nej,

.....

= (L1seestn)ely p det(vl‘[j ) €y ARERRA €y,

§1 or CHAPTER 6: PRELIMINARIES: VECTORS, CO-VECTORS, AND FORMS 133
for any vy, ..., v, € RP.
If V is a subspace of R? of dim = n with basis vy, ..., v, then A, (V) is the subspace

of A,(R?) spanned by {vi, A+--A v, 2 (i1,...,in) € Ing}

w € A"(RP) (respectively w € A,(RP)) is called simple if it can be expressed w; A
o A wy with o; € AY(R?) (respectively wy A -+ A w, with w; € RP).

We assume A, (R?), A"(RP) are equipped with the inner products naturally in-
duced from R? (making {e,} {dx*},e;, , orthonormal bases). Thus

(XEIn!p’
1.5 (ZO(EIn’Pw“dxa) : (Z(IEI,LP r]adxa) = Z(Xelnvaa No
and
L6 (Laer, ptea) - (Laer, p 0" €a) = Xaep, pu w*

The dual pairing between » € A"(RP) and w € A,(R?) will be denoted (w, w);
thus

1.7 (Xaer, p@adx®, Y geq, ,w%ea) = Z PRI

acl, p
Given £ : R? — R linear, the “pull-back” ¢# : A"(R2) — A"(R?) is defined by
1.8 K#w(vl,...,vn) =w(l(v1),...,4(vy)), v1,...,04 € RE,

and then the “push-forward” ¢4 : A*(RF) — A"(R2) is defined by duality accord-
ing to the requirement

1.9 <€#a),w> = <a),€#w>, w € A”(RQ), w e An(]RP),

where (,) is the dual pairing as in 1.7. More explicitly, ¢, £4 are then characterized
as the unique linear maps A" (R€) — A"(R?) and A, (R?) — A, (R?) respectively
such that

1.10 {E#(wl A-ee A wn)

= (w1 0l) A=A (wyol), wl,...,wneAI(RQ)
Le(vi A Avy) = L(vg) A A L(vy),

vl,...,vneRP.

For open U C R?, £"(U) = C®(U,A"(R?)) and the elements » € £"(U) are
called smooth n-forms on U. Thus » € £"(U) means @ = Y ¢, ,@adx® where
wg € C®(U).

The value of w(x) = Y 4es, ,@a(x)dx® at a point x € U will also at times be
denoted w|.
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The exterior derivative " (U) — £"T1(U) is defined as usual by

0dy

P .
1.11 do = Z_/=12aelnvadx1 A dx®

ifw =3, ,aedx®. By direct computation (using aiigi.f = aizj‘g"; - and dx' A
dx/ = —dx’ A dx") one checks that

1.12 d*0 =0 Vo € £"(U).

Givenw = Y7, ,@a(y)dy* € €*(V), V C R? open, and asmooth map f : U —
V, we define the “pulled back” form f*w € £"(U) by

B i in
1.13 f a)—Za:(l_l """" in)eln,gw“ofdfl Ao Adf,
where df 7 is Y1, %dxi sj=1..., Q. Equivalently this says

flole = (df) (0l ).

where the right side is defined as in 1.8 with £ = df.

Notice that the exterior derivative commutes with the pulling back:
1.14 df* = f*d.

We let D"(U) denote the set of = 3;, ,wadx® € £"(U) such that each w, has
compact support. We topologize D"(U) with the usual locally convex topology,
characterized by the assertion that wx = 3 ,c;, ,@kadx® — © = Y ey, ,Wadx®
if there is a fixed compact K C U such that sptwge C K Vo € I, p, k > 1, and if
lim DR wiy = DPw,y uniformly in K Va € I, p and every multi-index 8. For any

w € D"(U), we define

1.15 o] = sup y/o(x) - w(x)

xeU

If f:U — V issmooth (U, V open in R, R? respectively) and if f is proper
(i.e. f71(K) is a compact subset of U whenever K is a compact subset of V') then
ffw € D"(U) whenever w € D*(V).

2 General Currents

Throughout this section U is an open subset of R”.
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2.1 Definition: An n-dimensional current (briefly called an n-current) in U is a
continuous linear functional on D"(U). The set of such n-currents (i.e. the dual
space of D" (U)) will be denoted D, (U).

Note that in case n = 0 the n-currents in U are just the Schwartz distributions
on U. More importantly though, the n-currents, n > 1, can be interpreted as a
generalization of the n-dimensional oriented submanifolds M having locally finite
H"-measure in U. Indeed given such an M C U with orientation £ (thus &(x)
is continuous on M with &(x) = £1; A--- AT, VX € M, where 11,...,7, is an
orthonormal basis for T, M)}, there is a corresponding n-current [M] € D,(U)

defined by

2.2 [[M]](w)Z/ (0(x),§(x)) dH" (x), ©eD"(U),

M

where (. ) denotes the dual pairing for A" (R?), A, (R?) asin 1.7. (That is, the
n-current [M] is obtained by integration of n-forms over M in the usual sense of
differential geometry: [M](w) = [;;  in the usual notation of differential geome-
try.)

Motivated by the classical Stokes’ theorem ([}, do = [;,, @ if M is a compact
smooth manifold with smooth boundary) we are led (by 2.2) to quite generally
define the boundary 8T of an n-current T € D, (U) by

2.3 0T (0) = T(dw), @eD'(U)

(and T = 0if n = 0); thus 8T € D, (U) if T € D,(U). Here and subsequently
we define D1 (U) = 0 in case n = 0.

Notice that 327 = 0 by 1.12.

Again motivated by the special example T = [M] as in 2.2 we define the mass of

T,M(T),for T € D,(U) by

24 M(T) = sup T (w)
lw|<1,weD"(U)

(so that M(T) = H"(M) in case T = [M]] as in 2.2). More generally for any open
W C U we define

25 Mw (T) = sup T (o)
lw|<1,weD™(U),sptwCW

'Thus £(x) € A, (TxM); notice this differs from the usual convention of differential geometry
where we would take £(x) € A7 (TxM).
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2.6 Remark: We here adopt the definition of M(7') using the inner product norm
||, but notice that there is some flexibility in this; we would still get the “correct”
value H" (M) for the case T = [M] if we were to make the definition M(T') =
SUP | (x) | <1wepn (1) I (@), Where [ (x)]| denotes the comass norm of w at x; thus
ol = sup (0.§).
EeAn(RY),|E]=1,& simple

Indeed in general this works (for T = [M])) provided only that || || is a norm for
A" (R?) with the properties:

(a) (0,&) < || €] whenever & € A, (R”) is simple
(b)  For each fixed simple £ € A, (R?), equality holds in (a) for some w # 0.

Evidently the inner product norm and the comass norm are two such norms, but
the comass norm is the smallest possible norm for A" (R”) having these properties,
which gives maximality of the corresponding definition of M(T'). The reader is
warned that M(T') is usually defined in terms of the comass norm—this makes no
significant difference to later discussion here but of course there will be contexts in
which the difference becomes significant.

Notice that by the Riesz Representation Theorem 4.14 of Ch.1 we have that if
T € Dy (U) satisfies My (T') < oo for every open W CC U, then there is a Radon
measure 17 on U and pr-measurable function 7 with values in A, (RP), IT| =1
pr-a.e., such that

2.7 T(0) = /U<a)(x), T(x)) dur (x).
ur is characterized by
2.8 pur (W) =Mw(T) (= sup T(w))

weD"(U), |ol<1,sptwoCW
for any open W with W a compact subset of U. In particular
pr(U) =M(T).

Notice that for such a T we can define, for any j17-measurable subset A of U (and
in particular for any Borel set A C U), anew current 7 L 4 € D,(U) by

2.9 (TL A)(w) = /A<a),f>d,uT.

More generally, if ¢ is any locally p7-integrable function on U then we can define
TLgeD,(U)by

2.10 (TLg)(w) = /<w,g>¢dw.
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Given T € D,(U) we define the support, sptT, of T to be the relatively closed
subset of U defined by

2.11 sptT =U \UW

where the union is over all open sets W cC U such that T(w) = 0 whenever
w € D"(U) with sptw € W. Notice that if My (T') < oo for each W cc U and if
wr is the corresponding total variation measure (as in 2.7, 2.8) then

2.12 sptT = sptur

where spt pur is the support of 117 in the usual sense of Radon measures in U.

Given a sequence {T,} C D,(U), we write T, =~ T in U (T € D,(U)) if {T,}
converges weakly to 7' in the usual sense of distributions:

2.13 T,—~ T < limT,(0) =T(w) Yo € D"(U).

Notice that mass is trivially lower semi-continuous with respect to weak conver-
gence: if T, = T in U then
2.14 My (T) < liminf My (T;) YV open W C U.

q—00
We also observe that if sup, M (7;) < oo for each open W CC U then by 2.7
the distribution convergence 2.13 is equivalent to weak* convergence with respect
to continuous forms with compact support (i.e. T;(w) — T(w) for all continu-
ous n-forms ® on U with compact support), and hence by applying the standard
Banach-Alaoglu theorem [Roy88] (in the Banach spaces M, (W) = {T € D,(W) :
My (T) < oo}, W cC U) we deduce

2.15 Lemma. If{T,;} C Du(U) and sup,., Mw (T;) < oo for each W CC U, then
there is a subsequence {Ty/} and a T € Dy (U) such that

/U<a), Tq/> dMTq/ — /U <a), T> dur
for each continuous n-form » with compact support in U.

The following terminology will be used frequently:

2.16 Terminology: Given Ty € D,(U;), T € Dy(Us) and an open W C Uy N Ua,
wesay Ty = Tp in W if Ti(w) = T»(w) whenever o is a smooth n-form in R+
with sptw C W.

Next we want to describe the cartesian product of currents 77 € Ds(Uy), T» €
D, (U,), Uy C RP1, U, c RP2 open. We are motivated by the case when 71 = [M;]
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and T, = [M,] (Cf. 2.2) where M;, M, are oriented submanifolds of dimension s,
¢ respectively. We want to define 71 x T» € Dy, (U; x U,) in such a way that for this
special case (when T; = [M;]]) we get [M] x [M2] = [M; x M,]. Since My x M,
has the natural orienting (s +1)-vector ps(€§) Ag#(n), where & and 7 are the orienting
s-vector and t-vector for My, M, respectively, and where p(x) = (x,0), x € RP1,
and ¢(y) = (0,y), y € RP2, we are thus led to the following definition:

2.17 Definition: If v € Dt (U, x U,) is written in the form

w = Z(a,ﬂ)els&m xIys py,s'+t'=s+t daB (x,y)dx® A dy”

then we define

S x T(C{)) = T(Zﬁelf.P2S(ZaEIs_Plaaﬁ (.X, y)dxa)dyﬁ)’

which makes sense because if sptw = K then K € P(K)x Q(K), where P denotes
the projection (x, y) + x of Uy xU, — Uj and Q denotes the projection (x, y) >y
of Uy x U, — U, and one can check that S(Xaer, p, @ap(x.y)dx?) is a C(Us)
function of y with support in Q (K).

Notice in particular this gives, for w; € D*'(Uy), w, € D' (U,) with s’ + 1" = 5 + 1
and with P, Q as above,
S(01)T (w2) if (s,2") = (s,1)

218 SxT((P'wr) A (Q%wr)) = { 0 i (s".1) # (s.1)

One readily checks, using Definition 2.17 and the definition of 9 (in 2.3), that
2.19 (S xT) = (3S) x T + (—1)*S x oT.

(Notice this is valid also in case r or s = 0 if we interpret the appropriate terms as
zero; e.g. if s = 0then d(S x T') = § x dT.) Also, by 2.17 and 2.18,

2.20 Mw, xw, (S x T) = My, (S)Mw, (T)

for any open Wy cc U,, W, cC Us,.

An important special case of 2.19 occurs when we take 7 € D,(U), U C R?, and
we let [(0,1)] be the 1-current defined as in 2.3 with M = (0,1) C R ((0, 1) having
its usual orientation). Then 2.19 gives

221 A0, 0] x T) = ({1} — {0}) x T — [(0. )] x T
={1} xT —{0} xT —[(0,1)] x aT.
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Here and subsequently {p}, for a point p € U, means the O-current € Dy(U)
defined by

{pHo) =0(p). ©eD(U)(=C>2U)).
Thenifw = 3 e . ger, o,st+i=n wap (x,y)dx*dyP € D"(UxV)withU C RP,V C
R€ open, and if T € D, (V), then by Definition 2.17 in the case s = 0 we have

2.22 ({p} x T)(@) = T(Xper, o@as(p.y)dy?).

Next we want to discuss the notion of “pushing forward” a current T via a smooth
map f: U — V,U Cc RP, V c R2 open. The main restriction needed is that
Sf1sptT is proper; thatis f~'(K) Nspt T is a compact subset of U whenever K is a
compact subset of V. Assuming this, we can define

2.23 /T (0) = T(¢f0) Yo € D"(V),

where ¢ is any function € C2°(U) such that ¢ is identically equal to one in a neigh-
borhood of the compact set spt T N spt f#w. One easily checks that the definition
of f4T in 2.23 is independent of the particular choice of ¢.

2.24 Remarks: (1) Notice that 3fsT = f:0T whenever f, T are as in 2.23.

(2) f My (T') < oo for each W cC U, so that T has a representation as in 2.7, then
it is straightforward to check that f4T is given explicitly by

(@) = [(1*0. ) dur
= /<a)|f(x), a’fx#i“(x» dur(x).

Thus if My (T) < co VW CC U we can make sense of f37 in case f is merely C!
with f|spt T proper.

(3) If T = [M] as in 2.2, the above remark (2) tells us that if f/|M N U is proper,
then

T (@) = [ (0l ). dfest(x)) dH" ()

where £ is the orientation for M. Notice that this makes sense if f is only Lipschitz
(by virtue of Rademacher’s Theorem 1.4 of Ch.2). If f is 1:1 and if Jy is the
Jacobian of f as in 3.3 of Ch.2, then the area formula evidently tells us that (since
dfx#&(x) = Jr(x)n(f(x)), where n is the orientation for f(My), My = {x e M :
Jr(x) > 0}, induced by f)

KT(@) =

f(MH(w(y), n(y))dH" (y).
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(Which confirms that our definition of f;T is “correct.”)
We can now derive the important homotopy formula for currents as follows:

If g :U — V are smooth (V Cc R2)and / : [0,1] x U — V is smooth with
h(0,x) = f(x),h(l,x) = g(x),f T € D,(U), and if h|[0, 1] x spt T is proper, then,
by 2.21 and 2.22,

s ([(0. D] x T) = hpd([(0. )] x T)

— hy({1} x T = {0} x T = [(0.1)] x T)
= T — /T — hy([(0.1)] x 7).

Thus we obtain the homotopy formula
2.25 g T = fiT = 9y ([[(0, )] x T) + h#([(0, 1) x 8T).

Notice that an important case of the above is given by

2.26 h(t,x) =tg(x) + (1 =1)f(x) = f(x) +1(g(x) = f(x))

(i.e. h is an “affine homotopy” from f to g). In this case we note that if 2|spt T is
a proper map into V then W cC V = spt([(0,1)| x T) nh~"(W) cC [0,1] x U
and hence spt T N p(h~'(W)) cC U, where p is the projection (¢, x) + x. Then
by the integral representation 2.7 and Remark 2.24(2) above we have, for any open
W ccV,

2.27 M (h[[(0, D xT) = sup |f —gl-  sup (|dfx|+|dgx|)" Mw,(T),
x€spt TNWj xe€spt TNWy

. E— -
where W), = p(h='(W)), with p : (t,x) = x. Indeed [(0,1)] x T = e; A T and
K[, )]xT = L' x ur, so by 2.24(1) we have, for any w € D"(V),

(1001 % 7)) = [ [ oy dfin(er A T(x))) dur ()

—// Oph(e.x)» (8(x) = f(x))

tdgx + (1= 0)dfo)sT (x)) dpr(x)dt,

and 2.27 follows immediately.
We now give a couple of important applications of the above homotopy formula.
2.28 Lemma: If T € D,(U), Mw (T ), Mw (0T ) < co YW CcC U and if f,g: U —

Vare Clandifhisasin2.26 withh(spt T) C V and h|spt T proper, then f3T = g4T.
(Note that f4T, g+T are well-defined by 2.24(2).)
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Proof: By the homotopy formula 2.25 we have, with h(7,x) = tg(x) + (1—1) f (x),

g+T (0) = T (0) = 0hx([(0, ] x T') + h#([(0, 1)] x 9T ) (@)
= hs([(0, )] x T)(dw) + h#([(0, )] x 9T ) (),
so that, by 2.27,
| 4T (@) — 8T ()| < ¢(M(T)|do| + M(IT)|w|) SuPT lf—gl=0
XEspt

since f = gonsptT. O

The homotopy formula also enables us to define f47T in case f is merely Lipschitz,
provided f|spt T is proper and My (T'), My (3T) < co VW cC U. In the follow-

—-P 1

ing lemma we let f; = f x99, 9(9)(x) = 07y (o7 x), with ¢ a mollifier as in §2

of Ch.2.

2.29 Lemma. If T € D,(U), Mw(T), My (3T) < co YW CcC U, and if [ :
U — V is Lipschitz with f|sptT proper, then limg o fosT (@) exists for each w €
D"(V); f+T (w) is defined to be this limit; then spt fyT C f (sptT) and My (f+T) <
(esssupy—1 ) D f 1) My—1 () (T) YW CC V.

Proof: If o, t are sufficiently small (depending on ) then the homotopy formula
gives

JorT (@) = furT (@) = hx([(0, D] x T)(dw) + hx([(0, 1)] x IT) ()
where h : [0,1] x U — V is defined by h(r,x) = tf-(x) + (1 —1¢) fz(x). Then by

2.27, for sufficiently small o, 7, we have

| fosT (@) = fsT (@) =C  sup
S~ K)Nspt T

|f(r _ft| : (Llpf)nv

where K is a compact subset of V with sptw C interior(K). Since f; — f uni-
formly on compact subsets of U, the result now clearly follows. O

Next we want to define the notion of the cone over a given current T € D, (U). We
want to define this in such a way that if 7 = [M] where M is a submanifold of
SP~1 c R? then the cone over T isjust [Cy]l, Cyy = {Ax :x e M, 0 < X < 1}. We
are thus led generally to make the definition that the cone over T, denoted 0% T, is
defined by

2.30 0XT = hy([(0.1)] x T

whenever T € D,(U) with U star-shaped relative to 0 and spt 7 compact, where
h:[0,1] xRP — R? is defined by h(z, x) = rx. Notice that / is an affine homotopy
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tg(x) + (1 —1)f(x), where g(x) = x and f(x) = 0. Thus 0XT € Dy41(U) and
(by the homotopy formula)

2.31 3(0XT) = T — 0XaT.
Notice in particular that, with R = 0% T, we have thus established that

2.32 U star-shaped relative to 0 and 7 € D, (U)
with spt T compact and 37 =0 = IR € Dy41(U) withdR =T.

As a final application of the homotopy formula we have the following lemma which
is useful for checking if a given current of locally finite mass is conical—i.e. invariant
under homotheties 7 ;:

2.33 Lemma. Suppose C € D, (R"**) with M, 0) < oo for each R > 0, 3C = 0,
and x A Clyx = 0 pc-a.e. Then no#C = C foreach A > 0.

Proof: We apply the homotopy formula 2.25 with f(x) = x and g(x) = A7 'x, and
h(t,x)=1g(x)+ (1 —1)f(x). Then

noa#C —C = dhs([(0,1)] x C).
The right side here is zero because [(0,1)] x C = e; A C, and hence

—_— . . "
hele ) [(0. D] x Clee = (1 +t(A7 =1))"(A7 =1)x AC|, =0.0

The following Constancy Theorem is very useful:

2.34 Theorem. If U is open in R" (i.e. P = n), if U is connected, if T € D,(U) and
dT = 0, then there is a constant ¢ such that T = c[[U] (using the notation of 2.2 in
the special case P = n, M = U; U 1s of course equipped with the standard orientation
e1 A Aep).

Proof: Let ¢(9)(x) = 67"¢(c7'x), with ¢ a mollifier as in §2 of Ch.2. For any
ball B,(xo) C U first pick R > p with Bg(x¢) C U and take a € L'(R") with
a=0o0nR"\ B,(xo). Then we have a;, € CX®(U) for o < R — p) (a5 = ¢') x a),
and DPa, = (DP'9)) x a for each multi-index B, so if a; — a in L'(B,(xo)) with
aj = 0on R\ B,(xo) then ajodx' A--- Adx" — agdx® A--- Adx" in D*(U),
and hence T (ajodx' A+ Adx") — T(agdx' A--- A dx"). Thus the functional
Fy : L'(B,(x0)) — R defined by F,(a) = T(agdx' A--- A dx") is a bounded
linear functional on L'(B,(xo)) for ¢ < R — p, and by the Riesz representation
theorem for L'(B,(xo)) there is a bounded measurable function 6(°) in B, (xo)
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with Fy(a) = [ (a0 dL" fora e L'(B,(xo)), and hence
m Tagds' noeend) = [a09dL", a e CE(0W).

Now let a € C2®(B,(x0)) and for j = 1,..., nlet wjo = (=1)lagdx! A+ A
dx/7V A dx/ TV Ao A dx™, and observe that dwj, = (Dja)gdx' A -+ A AdxX", sO
(1) with D;a in place of a implies

2) /Dja 0 dL" = T(dw;o) = 0T (wj0) =0, j =1.....n.

Ift < R—pand x € B,(xo), then a; = ¢(* xaxisa C®(B,(xo)) function of x and
hence a legitimate choice for a in (2), so in fact in that case (2) says D;(6(°)), =0
on B,(xo) hence (6(°)), is constant on B,(xo), hence (letting | 0) we see that

0(©) is constant ¢, on B,(xp). Letting o | 0 we deduce that T = ¢, x,[B,(x0)]
(¢p.xo constant) on each ball B, (xo) with B,(x¢) C U, and the result follows. O

2.35 Remark: Notice that if we merely have My (0T') < oo for each W cC U then
the obvious modifications of the above argument give first that

‘/Dja O d "

< C sup |a|M(3T)

with C independent of o, for a € C2°(U) such that dist(spta,dU) > o. Next we
must justify that 65, is bounded in £'(B) for each open ball B cC U. Indeed by
2.7 of Ch.2 and M3 (3dT) < o0, there are constants A such that 65, — A4 is bounded
in £'(B), and hence T,, — A [B]] has bounded mass in B. But T, — T and hence
{Ax} is bounded. Thus (see §2 of Ch.2 and in particular 2.6 of Ch.2) we deduce
that 6;, — 6 in L] (U) (for some sequence oy | 0), with 6 € BVj,(U), and

(%) T(w):/a@d[,”, w=adx' A Adx" € D'(U).

Using the definition of M(d7T"), we easily then check that My (aT) = |D6|(W) for
each open W Cc U (and M (T') = [y, 161 dL"). Indeed in the present case n = P,
any o € D" (U) can be written w = Y 7_; (—=1)7a; dx' A--- Adx/78 AdxT A
-+ A dx"™ for suitable a; € C®(U), and do = divadx' A --- A dx" for such w
(a = (a1,...,an)). Therefore by (}) above we have

0T (0) = T(dw) = /divg@ ac

and the assertion My (37') = |DO|(W) then follows directly from the definition of
Mw (dT) and | DO| (in §2 of Ch.2).
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In the following lemma, for « = (iy,...,iy) € Z" with 1 <iy <ip <---<i, < P,
we let py denote the orthogonal projection of R? onto R” given by

(xl,...,xlp)b—>(xi1 ..... xi").

2.36 Lemma. Suppose E is a closed subset of U, U open in R, with L™ (py(E)) =0
for each multi-index o = (iy, ..., in), | <ij<ipa<-+<inp<P.ThenT_E =0
whenever T € Dy (U) with My (T), My (3T) < oo for every W cC U.

2.37 Remarks: (1) The hypothesis £" (po(E)) = 0 is trivially satisfied if H"(E) =
0, so in particular we deduce T L E = 0if T € D, (U) with My (T), My (3T) < oo
VW cc U and H"(E) = 0. Since pu7 is Borel regular and finite on compact subsets
of U, 1.15 of Ch.1 implies that u7(C) = supg joed ecc 47 (E), hence the lemma
implies that if C is a Borel set with #"(C) = 0 then p7(C) = 0. That is, ur is
absolutely continuous with respect to H" in U provided My (T), My (dT) < oo
YW ccU.

(2) Let Q be any orthogonal transformation of R?. Since T € D,(U) = QT €
D, (QU) and My (T) = Mow (Q4T) for each W C U. So if My (T') < oo for each
W cc U we have po,7(Q(A)) = pur(A) for each A C U, hence the above lemma
guarantees L"(Q(E)) = 0 for eacha = ur(E) =0

Proof of 2.36: Let w € D"(U). Then we can write 0 = Y
C>(U), so that

T(w) =Y T (wadx®) =Y (T L wg)(dx*)

o
ael, p@adx® wo €

=3 (T Lwy)pl dy.
(dy = dy' A--- Ady™, y', ..., y" the standard coordinate functions in R”.) Thus
(1) T(0) = Y ypat (T L) (dy)

(which makes sense because spt T L wy C sptw, = a compact subset of U). On the

other hand

because for any n € D" (U)
T Lwy)(n) = (T Lwy)(dn)
= T (wadn)
=T(d(wegn)) — T (dws A7)
=0T (wgn) — T (dwe A 1);
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thus in fact
Mw (0(T L wg)) <Mw (3T )|wo| + Mw (T)|dwy].
Therefore by 2.35 we have 6, € BV (pa(U)) (depending on both & and w,) such
that
Par(T Lwy)(n) = fpa(U) (ne1 Ao Aey) By d L,

and hence pos(T L wy) L pa(E) = 0 because L£"(py(E)) = 0. Then, assuming
without loss of generality that E is closed,
(2) M(pa# (T L wa)) < M(pas(T L wa) L (R"\ pa(E)))

= M(por (T L wa) L (RP\ p3 ' pa(E))))

< M((T La)a) L (RP \p(;lpaE))

<My (TL (R"\ pg' paE)) - el

<My (T L (RP\E)) o]
for any W such that sptw c W C U.
Combining (1) and (2) we then have
(3) Mw (T) < CMw (T L (R” \ E))
so that in particular

Mw (T L E) < CMw (T L (RF \ E)).
which says
(4) pr(WNE)<Cur(W\E)
Letting K be an arbitrary compact subset of E, we can choose { W, } so that W, cc
U, Wgs1 C Wy, N52, W, = K; using (4) with W = W, then gives M(T LK) =0,
e, ur(K) = 0. Since
pr(E) = sup  pur(K),
K compact , KCE

by 1.15 of Ch.1, we thus have u7(E) =0. O

3 Integer Multiplicity Rectifiable Currents

In this section we want to develop the theory of integer multiplicity currents 7' €
D, (U), which, roughly speaking are those currents obtained by assigning (in a
H"-measurable fashion) an orientation to the tangent spaces T, V' of an integer mul-
tiplicity varifold V. (See Ch.4 for terminology.)



146 CHAPTER 6: CURRENTS

These currents are precisely those called locally locally rectifiable currents by Federer
and Fleming [FF60], [Fed69].

Throughout this section n > 1, k > 1 are integers and U is an open subset of R"**.

3.1 Definition: If T € D,(U) we say that T is an integer multiplicity rectifiable
n-current (briefly an integer multiplicity current if it can be expressed

*) T(0) = [ (0(x).6(x)) 0(x)dH"(x). @ <D"(U).

where M is an H"-measurable countably n-rectifiable subset of U, 6 is a locally
H"-integrable positive integer-valued function, and & : M — A, (R"*¢) is a H"-
measurable function such that for H"-a.e. point x € M, §(x) can be expressed in the
form 7y A--- A1y, where 71, ..., 7, form an orthonormal basis for the approximate
tangent space Ty M. (See Ch.3 and Ch.4.) Thus &(= T') orients the approximate
tangent spaces of M in an H"-measurable way. The function 6 in 3.1(%) is called
the multiplicity and ¢ is called the orientation for T. If T is as in 3.1(f) we shall
often write

T =1(M.0.%).

In this case
V=v(M,0)

will be referred to as the integer multiplicity varifold associated with T.

3.2 Remarks: (1) If 77, 7> € D,(U) are integer multiplicity, then so is p1T1 +
D215, p1, p2 € Z.

(2) It T] = ‘_L'(M],Ql,fl) € Dr(U), T2 = Z(Mz,ez,gz) € DS(W) (W C RQ open),
then T} x Ty € Dy45(U x W) is also integer multiplicity, and in fact

Ty x T, = 1(My x M>, 0105, ps(&1) A qs(£2)).

where p(x) = (x,0) and q(y) = (0, y) and (6162)(x.y) = 01(x)62(y).
B)UT =1(M,0,&) € D,(U) is an integer multiplicity current then

Mw (T) = / 0dH" =Mw (V) Yopen W C U,
M
where V = v(M, 0) is the rectifiable varifold associated with 7.

Next we want to discuss pushing forward an integer multiplicity T = (M, 0,§) €
D,(U) (M c U) by a Lipschitz map f : U — W such that f|sptT is proper.
First, if f is C1, 1:1, f|sptT is proper, M is an embedded C! submanifold, ¢ is
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any H"-measurable orientation for M, and 6 is any H"-measurable positive integer
valued function on M, then we have, by Remark 2.24(3),

3.3 £T (o) =/M<f#w,§>0(x)d7-t”
=/1;4<dfjw\f(x)’§|x>9(x)d7'in
=/M<w|f(x>7dfx#$|x>9(X)d"H”-

Now &y = 71 A-++ A Ty, Wwhere 71,..., 7, is an orthonormal basis for the tangent
space TxM, so

3.4 dfx#Slx = :l:dfx#fl ARERRAN dfx#rn

= +Dq, f(x) A+ A Dr, f(x)
which = 0 at points x € M where JM (x) = 0, because J M (x) = 0 & rank(d¥ fi) <
n. On the other hand at points where JM(x) > 0 the rank is n and hence there
is p > 0 such that f|M N B,(x) is a diffeomorphism onto an n-dimensional em-

bedded C! manifold N, and at the image point y = f(x) we let n1,..., nn be an
orthonormal basis for 7, N. Then, since D, f(x) € TyN, we have D f;, f(x) =

27:1 D f;, - njn;, and so
Dy f(x) A< A Dy, f(x) =det(Dg; - nj)ni Ave+ A .
On the other hand
TP (x) = \/det(Dz,;f(X) Dy, f(x)) = \/(det(Dzif(x) )2
= [det(Dy; f(x) - 1;)I-

Thus we see that 3.4 implies, at points x € M where JM (x) # 0,

3.5 df sl = JM (x)n.

where 7 is an orienting n-vector for N (so n = £n1 A --- A n,). 7 is called the
orientation for N induced by f at each point x where JM (x) # 0.

Now suppose f : U — W is Lipschitz, T = z(M,0,§) € D,(U) (M C U) is
an integer multiplicity current, and f|spt7 is proper, then we can define f;T €
Du(W) by

FT@) = [ (0150 d"frsb(x)) 0(x) dH" (x).
Since |dMfy4&(x)| = JM f(x) (as in §2 of Ch.3) by the area formula this can be

written

M
3.6 f#T(w) z‘/f( d fx#g(x)

|dex#S(x)|>d’H"(Y)’

M) <w\yv erf—l (y)ﬂM+9(x)
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where My = {x € M : Juy f(x) > 0}. Furthermore at points y where the approx-
imate tangent space T, (f (M )) exists (which is H"-a.e. y by virtue of the fact that
f(M) is countably n-rectifiable) and where Tx M, dMf, exist Vx € f~1(y) (which
is again for H"-a.e. y because Ty M, dMf, exist for H"-a.e. x € M), we have

M
3.7 d}\lfx—#S(X)Zifl/\.../\Tn,
|dMfr48 (x)]|
where 71, ..., 7, is an orthonormal basis for T}, (f (M)). Hence (a) gives

FT() = |

f(M)<w(y)7 n(y)N(y)dH"(y)

where n(y) is a suitable orientation for the approximate tangent space T, (f (M ))
and N (y) is a non-negative integer. N, 7 in fact satisfy

dMfes€(x)

3.8 erf_l(J’)nMJre(x)|dex#g):(x)| :N(y) 77()’)»

so that for #"-a.e. y € f(M) we have

N(y) < erffl(y)mm@(x)
and
N(y) = erf*l(y)ﬂMJre(x) (mOd 2)
Thus we have proved
3.9 Lemma. If f : U — W is locally Lipschitz and f|sptT is proper, with T =

T(M,£,0) € Dy (U) an integer multiplicity current, then f4T is an integer multiplicity
current in W in fact fyT = t(f(M),n, N), wheren, N are as in 3.8 above.

Notice in particular by applying 3.9 to the current R = 0%T in 2.32, we have

3.10 U star-shaped relative to 0, T € D, (U ) integer multiplicity, spt T compact,
and 9T = 0 = 3 an integer multiplicity R € Dy (U) withdR =T.

Observe that, in case f is C!, fyT agrees with the previous definition in 2.23 (see
also 2.24(2)). Notice also that if f : U — W is Lipschitz and if V = v(M, 0) is the
varifold associated with 7 = (M, &, 0), then

LT = Wiy

(in the sense of measures) with equality if and only if, for H"-a.e. y € f(M), the
sign in 3.7 above remains constant as x varies over f1(y) N M. In particular we
have g7 = ppyv in case f is 1:1.
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A fact of central importance concerning integer multiplicity currents is the follow-
ing compactness theorem, first proved by Federer and Fleming [FF60]:

3.11 Theorem. (Federer-Fleming Compactness Theorem.) If {T;} € D,(U) isa
sequence of integer multiplicity currents with

sup(Mw (Tj) + Mw (3T;)) < oo YW CcC U,

Jj=1
then there is an integer multiplicity T € D,(U) and a subsequence {T;:} such that
Tj/ —~TiwmnU.

We shall give the proof of this in §8. Notice that the existence of a 7 € D, (U) and
a subsequence {7/} with T;» — T is a consequence of the elementary 2.15; only
the fact that 7' is an integer multiplicity current is non-trivial.

3.12 Remark: Notice that the proof of 3.11 in the codimension 1 case (when P =
n) is a direct consequence of Remark 2.35 and the Compactness Theorem for BV
functions (§2.6 of Ch.2).

In contrast to the difficulty in proving 3.11, it is quite straightforward to prove that
if Tj converges to T in the strong sense that imMy (T; —T) = 0 VW cc U, and
if T are integer multiplicity Vj, then T is integer multiplicity. Indeed we have the
following lemma.

3.13 Lemma. The set of integer multiplicity currents in D, (U) is complete with respect
to the topology given by the family {Mw }wccu of semi-norms.

Proof: Let {Tp} be a sequence of integer multiplicity currents in D, (U) and {Tp }
is Cauchy with respect to the semi-norms My, W cC U. Suppose

To =1(Mog.b0.¢0)
(0o positive integer-valued on Mg, Mo countably n-rectifiable, H" (Mo N W) < oo
for each W cc U). Then

(1) MW(TQ—TP)E./Wwpgp—ngQmH” <ew(0)

VP > Q,whereew (Q) | 0as Q — oo and where we adopt the convention £p = 0,
6p =0on U \ Mp. In particular, since |ép| = 1 on Mp, we get

2) /Wwp — 0| dH" < ew(Q) VP > Q.

and hence 0p converges in L' (H") locally in U to an integer-valued function 6. Of
course (2) implies

(3) H'((My \ M) U (Mg \ My)) N W) < ew(Q).
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where My = {x € U : 6(x) > 0}. (1), (2) also imply

[ orlér — ol am < 20w (0) VP = 0.
and hence by (3) ép converges in L' (H") locally in U to a function § with values
in A, (R"*¢) with |¢| = 1 and & simple on M.
Now &;(x) € Ay(TxMg), H"-a.e. x € Mo, and (by (3)) Tx My = Ty M except for
a set of measure < ey (Q) in My NW. Tt follows that £ (x) € A, (T M) for H"-a.e.

x € My and we have shown that My (Tp — T) — 0, where T = t(M4,6,§) is an
integer multiplicity n-current in U. O

Finally, we shall need the following useful decomposition theorem for codimension 1
integer multiplicity currents.

3.14 Theorem. Suppose P = n + 1 (i.e. U is open in R") and R is an integer
multiplicity curvent in Dy11(U) with My (0R) < oo VW cC U. Then T = 3R is
integer multiplicity, and in fact we can find a decreasing sequence of L' -measurable
sets {U; } of locally finite perimeter in U such that (in U)

R=335L1U] - Yj-—lVi]. Vi=U\U;. j <o
T =372 olusl.
BT = 270 MU
and in particular

Mw(T) = Zoo MW(B[[U,]]) VW ccU.

j=—c0

(&)
j=—o00

3.15 Remark: Let * : C2(U;:R**!') — D"(U) be defined by
xg = Y01 (=1)/ g dx Avee ndxI T AdxI T A A dxT
sothat d * g = div gdx' A--- A dx"*1. Then for any £"*'-measurable 4 C U we
have
AL (xg) = [4] (d + )
=/)(Adiv gd"t!,
U

and hence by definition of |D y4| (in §2 of Ch.2) and M(T') (in §2 of the present
chapter) we see that

A has locally finite perimeter in U <= My (3[A])) < oo VW cC U,
and in this case
My (04]) = [ 1Dxal YW cc U
% W .
A[A] = *va4, |Dyal a.e.inU.
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Here vy4 is the inward unit normal function for A (defined on the reduced boundary
0*A4 as in 4.3 of Ch.3).

Proof of 3.14: R must have the form
R=1(V,0,8),

[,n+1

where V is an -measurable subset of U and £(x) = +e; A -+ A ey41 for each

x € V. Thus letting

O(x) whenx e Vand&(x) = +e; A+ Aentr
O(x) =<—60(x) whenxeVand&(x) =—e; A+ Aepyq
0 when x ¢ V,

we have

(1) R(w)z/vaédﬁ"“,

o =adx' A--- Adx"t1 € D"(U) and (cf. 2.8)

(2) My (R) = /W|§|d£"+1, My (T) = /W|D§| VW cc U

(and 6 € BV, (U)).
Define

Uj:{er:g(x)zj},jEZ
Vj=U\U_,~={er:§(x)§—1—j},j§0.
Then one checks directly that
0 =320 — Y0y,

(x4 = indicator function of A, A C U), and hence by (1)

(3) R=332[Uj] - Yj——slV;]in U.

Since T'(w) = 0R(w) = R(dw), w € D"(U), we then have

) T =R = £2, 000, - 0= 01V)]
= 717008[[(]}}]’
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so we have the required decomposition, and it remains only to prove that each U;
has locally finite perimeter in U and that the corresponding measures add. To check
this, take ¥; € C!(R) with

Yi(t)=0 for t<j—1+4e y;t)=1 t>j—¢
0<y; <1, sup|ly/| <1+3s

where ¢ € (0,1). Thenifa € C(U) and g = (g'.....g"""), g/ € CZ°(U), with

1) =
gl < a, we have (since yy; = ¥ 06 V) that forany M < N

(5) /U divg Yy v, dL = /U divg SN vy 0 Bd L
_1; : N n n+1
= Ef& /U divg 355y ¥y 0o d L

= —lim /Ug -V, v} (50) dcrtt

al0
< (1+ 3¢)lim a|V§a| dchtt,
ol0JU
On the other hand
/aIV@;| = sup / divg 6y d ", and
(6) v geCt(U)lglsa”Y

/ divg G, d.C" =/ divgs 8dL" = R(dwy) = T(wy) < M(T)|w,
U U

where wo = Y/ (=1)/ "' gjodx' Ao Adx/TH AdxI Ao Adx™. Thus, taking
M = N, we deduce from (5) and (6) that My (3[U;]]) < Mw(T) < oo for each j
and each open W cc U.

By taking M = —N in (5) and defining Ry = ZJN=1 u;l- Z;;_N [V;] we see that
(with g as in 3.15)

|Rw(d % g)| < (1+ 38)/Uad,LLT,

and hence, with Ty = 0Ry,
(7) /ad/LTN §/aduT VN > 1,
U U

a>0,a € C®(U). On the other hand by 4.1 of Ch.3 we have

8 —_ ’.V__/ g dH",
0 Y
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where v; is the inward unit normal for U; and 8*U; is the reduced boundary for U;
(see §4 of Ch.3 and in particular 4.3 of Ch.3). By virtue of the fact that U; 1, C U;
we see from 4.3 (11) of Ch.3 that v; = vx on 9*U; N 9*Uy Vj, k. Hence (8) can be
written

Tn(xg) = —/Uv -ghy dH”,

0o
Jj=—00

where hy = YV

j=
9*U;. Since |v| = 1 on U ___9*U; this evidently gives

Jj=—00

_wnXo+u; and where v is defined on U *U; by v = v; on
/a dury = /ahN dH"
N
= . dHn
j__N/a*Uja
= Z}I'V=—N/a duau;1-
Letting N — oo we thus have (by (7))

IT = 3072 oMU,
Since the reverse inequality follows directly from (4), the proof is complete. O

3.16 Corollary. Let R be integer multiplicity € Dy1(U), U CRP, P > n + 1, and
suppose there is an (n + 1)-dimensional C* submanifold N of RY withspt R ¢ NNU.
Suppose further that T = R and M(T) < co VW CC U. Then T (€ D,(U)) s integer
multiplicity and for each point y € N N U there is an open Wy, cC U, y € Wy, and
H"! measurable subset {U;}52._, with Uj+y C U; € N NU, Mw, (3[U;]]) < oo
V j, and with the following identities holding in W,:

R=3%2,[U]- Y- [U\U]
T =372 Ul
1T = 3720 HalU;]-

Proof: The proof is an easy consequence of 3.14 using local coordinate representa-
tions for N. O

4 Slicing

We first want to define the notion of slice for integer multiplicity currents. Prepara-
tory to this we have the following lemma:
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4.1 Lemma. If M is H"-measurable, countably n-rectifiable, f is Lipschitz on R"+*
and My = {x € M : |VM f(x)| > 0}, then for L -almost all t € R the following
statements hold:

(1) M, = f='(¢t) N My is countably H" ' -rectifiable
(2) ForH" '-a.e.x € My, TxM, and Ty M both exist, Ty M, is an (n—1)-dimensional
subspace of Ty M, and in fact

(%) TxM={y+)LVMf(x):yeTxM,,)teR}.

Furthermore for any non-negative H" -meammb[e unction g on M we bave
Y & 8

([ gamw)ar= [ [947]gan

Proof: In fact (1) is just a restatement of 2.10(2) of Ch.3, and (2) follows from 1.6
of Ch.3 together with the facts that for £'-a.e. # € R and H" '-a.e. x € M,

VMf(x) e TxM (by definition of VM f in §2 of Ch.3)
and
(VMf(x),7) =0Vt e TM,.

(This last follows for example from Definition 2.1 of Ch.3.)

The last part of the lemma is just a restatement of the appropriate version of the
co-area formula (discussed in §2 of Ch. 3).

4.2 Remark: Note that by replacing g (in 4.1 above) by gxcharacteristic function
of {x: f(x) <t} we get the identity

t
/ |VMf|gd7-L"=/ / gdH"\ds
Mn{f(x)<t} —o00 J My

so that the left side as an absolutely continuous function of 7 and

d

—/ VM f1g dH" =/ gdH" !, aer eR.
dt JMn{f(x)<t} M;

Now let T = (M, 6, &) be an integer multiplicity current in U (U open in R"*+¢,
M c U), let f be Lipschitz in U and let 6, be defined H"-a.e. in M by

0 if VM f(x) =0
6(x) if VM f(x) #£0.

§4 orF CHAPTER 6: SLICING 155

For the (£'-almost all) 7 € R such that Tx M, T M; exist for H" '-a.e. x € M; and
such that 4.1(2)(%) holds, we have

VM £ (x

4.3 g(X)Lm

issimple € Ap—1(TxM;) C Ay (Tx M)

and has unit length (for " '-a.e. x € M,). Here we use the notation that if v €
An(TxM)and w € TyM, then v w € Ay (Tx M) is defined by

(viw,a) =(v,wAa), aecA,—1(TxM).

Using this notation we can now define the notion of a slice of T' by f; we continue
to assume 7 € D, (U) is given by T = (M, 6, ) as above.
4.4 Definition: For the (£!'-almost all) ¢ € R since that T, M, Ty M, exist and
Lemma 4.1(2)(}) holds #"'-a.e. x € M,, with the notation introduced above (and
bearing in mind 4.3) we define the integer multiplicity current (T, f,7) € Dp—1(U)
by
(T. fit) = 1(M:.6:.61),

where

\APAC))
[VMf(x)|
So defined, (T, f, 1) is called the slice of T by f at¢.

E(x)=¢§(x)L . 0 =064|M,.

4.5 Lemma. (1) For each open W C U
/ooMW(<T,f,t)) dt = / VM £10 dH" < (esssup| VM f|)Mw (T).
—00 Mnw MOW
(2) If My (dT) < 0o YW CC U, then for L -ae.t € R
(T,f,t) =0[TL {f <t}]—@T){f <t}
(3) If 9T is integer multiplicity in Dy—1 (U), then for L'-a.e. t € R
(3T, f, )y = —o(T, f.1).

Proof: (1) is a direct consequence of the last part of 4.1 (with g = 6.).
To prove (2) we first recall that, since M is countably n-rectifiable, we can write (see
Remark 1.3 of Ch.3)

M = U_/(?ioMja
where M\i N M; = @ Vi # j, H'(My) = 0, and M; C N; j > 1, with N;
an embedded C! submanifold of R"*¢. By virtue of this decomposition and the
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definition of VM (in §2 of Ch.3) it easily follows that if 4 is Lipschitz on R"*¢ and
if 1) are the mollified functions (as in §2 of Ch.2) then, as o | 0,

(1) v-VMp©) v . VM) (weak convergence in L2(pur))

for any fixed bounded H"-measurable v with values in R"*¢. (Indeed to check this,
we have merely to check that (1) holds with N; in place of M; and with v vanishing
on R\ M;; since N; is C! this follows fairly easily by approximating v by smooth
functions and using the fact that (%) converges to 4 uniformly.)

Next let ¢ > 0 and let y be the Lipschitz function on R defined by

1, s<t—eg¢
y(s) = { linear, t—e<s<t
0, s>t

and apply the above to & = y o f. Then letting w € D"(U) we have

IT (W' w) = T (d (K w))
=T (dh') Aw) + T (hdw).

Then using the integral representations of the form 2.7 for 9T we see that

(2) (3T L k) (0) = E%T(dm@ Aw) + (T L h)(do).
Since £ (x) orients Ty M, we have
(£(x).dh® nw) = ((x), (ah(x))" noT)
= (£(x), (@h)(x))" A o)
(where ()7 denotes the orthogonal projection of A7 (R"**) onto A?(TM)). Thus
T (dh®) A ):/ (£(x). (dn ()" nw) 0 dH"

_/ X)L VM @)y )a)>9d’H”

so that by (1)

3 lim T (dh'®)
(3) lim 7' (d4* A

w) = /M <§(x) LVMh(x),a)>9d”H".

By 2.1 of Ch.3 of VM} and by the chain rule for the composition of Lipschitz
functions we have

(4) VMph =y (F)VM™F H'ae.on M
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(where we set y/(f) = 0 when f takes the “bad” values ¢ or t — ¢; note that
VMp(x) = VM f(x) = 0 for H"-ae. in {x € M : f(x) = c}, ¢ any given con-
stant).

Using (3), (4) in (2), we thus deduce

(T L 1) () = —g—l/M e (§LVY fw)0dH" + (T L h)(do).

Finally we let ¢ | 0 and we use 4.2 with g = 6 <§ L v Mf a)> in order to complete
the proof of (2); by considering a countable dense set of w € D"(U) one can of

course show that 4.2 is applicable with g = 6 <S L B ; K w> except for a set F of

t having £'-measure zero, with F independent of w.

Finally to prove part (3) of the theorem, we first apply part (2) with 97 in place of
T. Since 3°T = 0, this gives

(0T, f.1) =d[(dT) L {Sf <1}].

On the other hand, applying 9 to each side of the original identity (for T') of (2),
we get

A[OT)LA{f <1} =T, f1)
and hence (3) is established. O
Motivated by the above discussions we are led to define slices for an arbitrary cur-

rent € D,(U) which, together with its boundary, has locally finite mass in U.
Specifically, suppose My (T') + Mw (dT) < oo VW CcC U. Then we define “slices”

4.6 (T fit) = (T L{f <t})—(@T)_{f <1}
and
4.7 (T, fity) =—d(TL{f >1})+OT)L{f >1}.

Of course (T, f.t+) = (T, f,t—) (and the common value is denoted (T, f,1)) for all
but the countably many values of 7 such that M(T L {f =1}) + M((dT)L {f =
t}) > 0.

The important properties of the above slices are that if f is Lipschitz on U (and if
we continue to assume My (T') + My (3T) < oo VW cC U), then

4.8 spt (T, fity) CsptT N{x: f(x) =1}
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and, V open W C U,

My ((T', f.t1)) < esssupy, |D f| lir}ﬁ%}nfh_lMW(T L{r<f <t+h})

4.9
My ((T, f.1-)) < esssupy,|D f| lir}%%)nfhflMW(T L{t—h<f<t}).

Notice that My (T L {f < }) is increasing in 7, hence is differentiable for £'-a.e.

b
teRand/ IMy (T L{f <t})dt <Mw (T L {a < f <b}). Thus 4.9 gives

4.10 /*bMW(<T, firs)) dr < esssupy | D f| M(T L {a < f <b})

for every open W C U.
To prove 4.8 and 4.9 we consider first the case when f is C! and take any smooth

increasing function y : R — R4 and note that

4.11
B(TLyof)(a))— ((3T)Lyof)(a)) = (TLyof)(da))—((3T)Lyof)(a))
=T(yofdo)-T(d(yo fw))
— TGS df no).

Now let ¢ > 0 be arbitrary and choose y such that

1+¢

y(t) =0fort <a, y(t) =1fort >b, 0<y'(r) < p fora <t <b.

Then the left side of 4.11 converges to (T, f,a4) if we let b | a, and hence 4.8
follows because spty’ C [a,b]. Furthermore the right side R of 4.11 evidently
satisfies

I+¢
R D

IR| < (sg/pl MG—

YMw (T {a < f <b})|o| (sptw C W)

and so we also conclude the first part of 4.11 for f € C!. We similarly establish the
second part for f € C!. To handle general Lipschitz f we simply use () in place
of f in 4.6, 4.7 and in the above proof, then let o | 0 where appropriate.

5 The Deformation Theorem

The deformation theorem, given below in 5.1 and 5.3, is a central result in the
theory of currents, and was first proved by Federer and Fleming [FF60].

The special notation for this section is as follows:
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n,ke{l1,2,...},
C =[0,1] x---x[0,1] (standard unit cube in R***¢)
7+t = {z = (z4..., z"*) 1 2/ € Z} (integer lattice in R +¢)

L; = j-skeleton of the decomposition U, ¢znt¢(z + C) of R

L; = collection of j-facesin L;
={z+ F:zeZ"" Fisaclosed j-face of C}

Li(p)={pF:FeLli},p>0

Ste....Sy (N = ("1 = (311)) denote the (n + 1)-dimensional subspaces of

R"*+¢ which contain an (n + 1)-face of the standard cube C.

p; denotes the orthogonal projection of R"** onto S}, j = 1,...,n.

5.1 (Deformation Theorem, unscaled version.) Suppose T is an n-current in R"*+*
(i.e. T € Dy, (R*"*4)) with M(T) + M(3T) < oo. Then we can write

T—P=0R+S
where P, R, S satisfy
P =3 re,BrlF] (Br €R),
with
M(T), M(3P) < CM(3T)
M(T), M(S) < CM(3T)

=
=
I
a 0

(C =C(n,k)), and
spt P UsptR C {x:dist(x,sptT) <2 n+£}
sptdP UsptS C {x s dist(x,sptdT) < 2v/n + E} .

In case T is an integer multiplicity current, then P, R can be chosen to be integer
multiplicity currents (and the Br appearing in the definition of P are integers). If in
addition 3T is integer multiplicity?, then S can be chosen to be integer multiplicity.

5.2 Remarks: (1) Note that this is slightly sharper than the corresponding theorem

in [FF60], [Fed69], because there is no term involving M(d7') in the bound for

M(P).

(2) It follows automatically from the other conclusions of the theorem that M((dS) <
CM(3T). Also, it follows from the inequalities M(dP), M(S) < CM(3T) that

S =0and 3P = 0 when T = 0.

2 Actually if M(3T') < oo then 8T is automatically integer multiplicity if T is—see 6.3 below.
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The following “scaled version” of 5.1 is obtained from the above by first changing
scale s — p~1x, then applying 5.1, then changing scale back by x — px.

5.3 (Deformation Theorem, scaled version.) Suppose T, T are as in 5.1, and
o > 0. Then
T—P=0R+S

where P, R, S satisfy
P = Yrer, i BrlF]
M(P) < CM(T), M(dP) < CM(3T)
M(R) = CpM(T), M(S) = CpM(IT),

(BF € R)

and
spt P UsptR C {x sdist(x,sptT) < 2v/n —i—ﬁp}
sptdP UsptS C {x s dist(x,sptdT) < 2+/n + ¢ }

Asin5.1, in case T 1s integer multiplicity, so are P, R; if 0T is integer multiplicity then
50 15 8.

The main step in the proof of the deformation theorem will involve “pushing” T
onto the n-skeleton L, via a certain retraction map ¥. We first have to establish the
existence of a suitable class of retraction maps. This is done in the following lemma,
in which we use the notation

q = center pointof C = (3.4...., 3)
Li—1(a) =a+ Lg_y (a agiven point in By4(q)),
Li_y(a;p) = {x e R 1 dist(x, Li—1(a)) < p} (pe(0.%))
Note that dist(L—1(a), L) >  for any point a € By4(q).
5.4 Lemma. For every a € By (q) there is a locally Lipschitz map
YR Ly (@) > RO\ L (a)
such that
Y (C\ Lg-1(a)) =C N Ly, y|CN Ly = lcnL,,

c 1
|IDy(x)] < o L' ae x € C\ Ly—y(a;p), p € (0, Z),

(c = c(n,k)), and such that
Y(z+x)=z+y(x), x eR"™N\ L _y(a), z € 2",
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Proof: We first construct a locally Lipschitz retraction ¥ : C \ Li—;(a) onto the
n-faces of C. This is done as follows:

Firstly for each j-face F of C, j > n + 1, let ar € F denote the orthogonal
projection of a onto F, and let ¥ denote the retraction of F \ {ar} onto aF
which takes a point x € F \ {ar} to the point y € 3F such that x € {ar + A(y —
ar) : A € (0,1]}. (Thus ¥ is the “radial retraction” of F with ar as origin.) Of
course Yr|0F = 1yr. Notice also that for any j-face F of C, j > n + 1, the line
segment aar is contained in Li_;(a); in fact if Jr denotes the set of € such that S,
(see notation prior to 5.1) is parallel to an (n + 1)-face of F, then (because aar is
orthogonal to F, hence orthogonal to each Sy, £ € Jr) we have

(1) @ar C Neesppy ' (pela)),

and this is contained in Ly_; (a), because (by definition)
(2) Li—y(a) = Uply Upegnre (24 pi' (pe(a))).
Next, for each j > n + 1, define
Yy U{F\{ar}: Fisajfaceof C} - U{G:Gisa(j —1)-Hface of C}

by setting

yUIF\{ar} = vr.
(Notice that then ¥(/) is locally Lipschitz on its domain by virtue of the fact that
each Y r is the identity on 9F, F any j-face of C.)

Then the composite " +1) o y("+2) o ... 0 3 ("+8) makes sense on C \ Li_;(a) (by
(1)), so we can set

Yo =y " oyt ooy HOIC\ Ly (a).
Notice that ¥ has the additional property that if
zeZ' " and x, z 4+ x € C, then Yo(z + x) =z + Yo(x).

(Indeed x, z + x € C means that either x, z + x are in L, (where ¥ is the identity)
or else lie in the interior of parallel j-faces Fy, F, = z+ F; (j > n+1) of C withz
orthogonal to Fy and ap, = z+apr,.) It follows that we can then define a retraction
v of all of C \ Lg_;(a) onto L, by setting

Y(z+x)=z+vo(x), x € C\ Liy(a), z € 2",
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We now claim that

(3) sup [Dy| s%onR””\Lk_l(a,p), ¢ =c(n.k).

(This will evidently complete the proof of the lemma.)

We can prove (3) by induction on k as follows. First note that (3) is evident from
construction in case £ = 1. Hence assume k > 2 and assume (3) holds in case £ — 1
replaces £ in the above construction. Let x be any point of interior (C)\ L¢—1(a; p),
let y = ¢+ (x) (y"**¢ is the radial retraction of C \ {a} onto dC, and let F be any
closed (n + ¢ — 1)-face of C which contains y.

Suppose now new coordinates are selected so that F c R*~1 x {0} ¢ R**¢, and
alsolet Li_5(a) = Li_y(a)NR" 1% {0}). By virtue of (1) we havear € Li_;(a),
hence

(4) |y —ar| = dist(y. Li-1(a)).

Let pr be the orthogonal projection of R**¢ onto R"*¢~1 x {0} (D F), so that

arp = pr(a). Evidently |pr(x) —ar| > dist(x, pr' (pr(a))) and hence by (2) we
deduce

(5) lpr(x) —ar| = dist(x, Lr—1(a)).

|y—al

+—a1(x —a) and hence,

Furthermore by definition of y we know that y —a =

applying pr, we have

|y —a|
y—ap = |x_a|pp(x—a).
Hence since |y — a| > 3/4, we have
lpF(x —a)l
6 — > 3P 7
(6) y—arlzg |x —al

Now let ¢ be the retraction of F \ Li_»(a) onto the n-faces of F ( defined as for
¥ but with (k — 1) in place of k, ar in place of a, R"**~! in place of R"** and
Li_s(a) = Lig_s(ar) in place of Li_;(a)). By the inductive hypothesis, together
with (4), (5), (6) we have

o c o [V (z) = v ()
e dist(y, Lg—2(a))’ 1Dy (] = hrzn—f;lp lz =yl )
(4 1 |x —a|
=(3) |y —ar||pr(x —a)l
4 |x—a|
) = 5 Gatte Los (@)’
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when k = 2. For general k, we label L = Ly_,(ar) and note that M
dlst(x,p;'(L))
% by similarity, and pz' (L) C Lg—1(a). So | Dy (y)| < m as required.

Also, by the definition of ¥ ¢ we have that

¢ ’51//"+((x)| = lim sup W"M(y) -y (x)|

8 5 n+{ ,
&) 1PVl = =g e vl

Since ¥ (x) = ¥ o y"*+¢(x), we have by (7), (8) and the chain rule that

B . 5yt ()| < c lx —al
[ Dy (x)| < [DY ()] |[DY" T (x)] = |x —a| dist(x, Lr_1(a))

= dist(x. L1 (a))

|

Proof of the Deformation Theorem:

We use the subspaces Si,..., Sy and projections py, ..., pn introduced at the be-
ginning of the section. Let F; = C N S (so that F; is a closed (n + 1)-dimensional
1,..., N define a

face of C), let x; by the central point of F;, and for each j =
(x;) and

“good” subset G; C F; N By (x;) bygeG; < geF; ap:
1

(1) M(TL Uyepntens, pj ' (Bolg +2))) < Bo"TIM(T) Vp € (0, Z)

(B to be chosen, G; = G, (B)).

We now claim that the “bad” set B; = F; N B1(xj)\ Gj in fact has £"*!-measure
(taken in S;) small; in fact we claim

(@) LBy =20t (3) (0nan = £7(B1(0))),

which is indeed small if we choose large B. To see (2), we argue as follows. For each
b € B; there is (by definition) a pj, € (0, 1) such that

(3) M(T L Uzezn+lnsj pj_l (pr (b + Z))) > IBPZ"'IM(T),

and by the 5-times Covering Lemma 3.4 of Ch. 1 there is a pairwise disjoint subcol-
lection { B, (be)}y—y ... (pe = py,) of the collection { By, (b)},¢p, such that
(4) B; C UyBsp,, (by).

But then, setting b = by in (3) and summing, we get

B TM(T) =M(T) (e 0™ < B7Y),
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using the fact that{ 1B, (b + 2 } 1s a pairwise disjoint
(using p; ' By (be +2) (=2 zezHns, P j

collection for fixed j). Thus by (4) we conclude
L"N(B;) = B " wng,
which after trivial re-arrangement gives (2) as required. Thus we have
L(Gy) = (1=201 B o ()",
and it follows that

,
1) = (1= L e ()

(5) £ (p (G N B
where g is the center point (3....,3) of C. (So p;(q) = x;.)

Then selecting B large enough so that 20" w, 1 N ™! < w,4¢/(n+1L), we see from
(5) that we can choose a point a € NN, p71(G;) N B (q). Next let Ly_y(a) =
a+ Lig_1, Lg—1(a:p) = {x e R"** : dist(x, Ly—s(a))
and note that in fact

< p} (as in the proof of 5.4)

Li-1(a;p) = UJN=1 Uzezntens; P; " (Bo(pj(a) +2)).
Then since pj(a) € G; we have (by definition of G;)
(6) M(T L Li—y(a:p)) < NBp""'M(T)  Vpe (0,%).

Indeed let us suppose that we take B such that 20" 1w, 1 NB™! < wpye/2(n + £).
Then more than half the ball B 1(q (¢) is in the set N, p7!(G;) and hence, repeating
the whole argument above with 97 in place of T we can actually select a so that,
in addition to (6), we also have

(7) M(T L Lg—1(a:p)) < NBp"t'M(dT)  Vpe (0,1).

Now let ¥ be the retraction of R"*¢\ L;_;(a) onto L, given in 5.4, and let
(8) To=TL Li—1(a:p), (3T)p, = 0T L Li—1(a:p),
so that by (6), (7)

(9) M(T,) < cp"T'M(T), M((3T),) < cp"t'M(3T), ¥Yp e (0,5).

Furthermore by 4.10 we know that for each p € (0,1) we can find p* € (p/2.p)
such that

(10) M((T.d,p")) < ng —Tpy2) < cp"M(T).
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where d is the (Lipschitz) distance function to Ly (a) (d(x) = dist(x, Lg—1(a)),
Lip(d) = 1) and (T, d, p*) is the slice of T by d at p*. (Notice that we can choose
p* such that (10) holds and such that (T',d, p*) is integer multiplicity—see 4.5 and
the following discussion.)

We now want to apply the homotopy formula 2.25 to the case when h(x,t) =
x +t(¥(x) —x), e R**\ Ly_y(a;0), 0 > 0. Notice that / is Lipschitz on R* T4\
Li_1(a;0), so we can define hy, ¥4 as in 2.29. (We shall apply hs, ¥4 only to
currents supported away from [0, 1] x Lg_;(a) and Li_;(a) respectively.)

Keeping this in mind we note that by 5.4, (6) and (7) we have

(11) M(y#(T, — Tp/z))<p—p"+1M(T)§cpM(T)
and
(12) M(v#((0T ), — (3T) py2)) < =g p" ' M(3T)) < coM(dT).

-
Similarly by the homotopy formula 2.25, together with 2.27 and (6), (7) above, we

have

(13) M (A4 ([(0. 1)] x (Tp — Ty/2))) = coM(T)
and

(14) M(h4([(0, 1)] x ((9T)p — (9T ) p2)) < cpM(T).

Notice also that by (6), (10) and 2.27 we have

(15) M(y#(T.d,p*)) < coM(T)
and
(16) M (ke ([0, D] x (T.d, 67))) < coM(T).

Next note that by iteration (11), (12) imply

(17) M(y#(T, — Tpjav)) < 2coM(T)
M(y#((dT )p — (3T ) p/2v)) < 2cpM(IT)

for each integer v > 1, where ¢ is as in (11), (12) (¢ independent of v). Selecting
p = 3 and using the arbitrariness of v, it follows that

(18) { w#( >> c <>
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for each o € (0,1) (with ¢ independent of o).
Now select p = p, = 27" and p} € [27771,277] such that (10), (15), (16) hold with
pX in place of p*; then by (15), (16), (17), (18) we have that

V(T = Tpg). he([(0. D] x (T = T)).

V(0T =0T, ). ([0, 1)] % (T ~ Ti))

are Cauchy sequences relative to M, and M((T'.d, p})) + M(y4 (T.d.p})) — 0.
Hence there are currents 0, St € D, (R"*4) and Ry € D1 (R*H*) such that

ImM(Q —yu(T = Ty)) =
(19) lim M (S1 — ks ([(0.1)] > 0 ( Tp;))) =0
limM(Ry — Ay ([(0. D] x (T = Ty;))) = 0.

Furthermore by the homotopy formula and 2.27 we have for each v

T =Ty = (T = Tpz) = (ke ([(0. )] x (T = T}y)))
(20) —he ([0 )] x (T = Tyy)).
Since T« = (3T'),x —(T'.d., p;) (by the definition 4.6, 4.7 of slice) we thus get that
(21) T—Q=8R1+S1.

(Notice that Q, R are integer multiplicity by (19), 4.4, 4.5 and 3.13 in case T is
integer multiplicity; similarly S; is integer multiplicity if 37 is.)

Using the fact that ¢ retracts R"*¢ \ L;_,(a) onto L, we know (by 2.27) that
spt ¥4 (T — T,x) C Ly, and hence

(22) sptQ C L.
We also have (since ¥ (z + C) C z + C Vz € Z"*%) that
spt Ry Uspt O C {x : dist(x,sptT) < +/n + £}
{ spt Sy C {x : dist(x,sptdT) < v/n + £}
and, by (18), (19), we have

(23)

(24) M(Q) < ¢M(T), M(Ry) < ¢M(T), M(S;) < cM(3T).

Also by (18) and the semi-continuity of M under weak convergence, we have

(25) M(0Q) < liminf M (0y(T — T,3))
= hmme(w#E)(T — Tp:))
< cM(aT).
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Now let F be a given face of L,(i.e. F € £,)and let F = interior of F. Assume for
the moment that F C R” x {0} (C R"**), and let p be the orthogonal projection
onto R” x {0}. By construction of ¥ we know that p o = ¥ in a neighborhood
of any point y € F. We therefore have (since Q is given by (18)) that

(26) (QLF)=0QLF.

It then follows, by the obvious modifications of the arguments in the proof of the
Constancy Theorem (2.34) and in 2.35, that

(27) (QLF) = [Ller A men o)) (x) L (x)
Yo € D" (R"), for some BV, (R") function 6F, and
= [ lor]acr. 1

(28) M(QL F) (3Q)L F)

)= [.|D0x|.

Furthermore, since

(29)  (QUE=BIF)(@) = [ (05 =) (er o nem0lx) dL7(x)

(by (27)), we have (again using the reasoning of 2.35)

M(Q L F—B[F
M(3(QL F — ﬂﬂF

/|0F—ﬂ|d£”
)= [ 10 (s - B)).

(30)

where y # = characteristic function of F. Thus taking B = BF such that

(31) min{gn{xeﬁzerﬂ},gn{xeﬁzep(x)gﬂ}}z%

(which we can do because £" (F ) = 1; notice that we can, and we do, take fr € Z
if O is integer-valued), we have by 2.7 and 2.9 of Ch.2, (28) and (30) that

M(Q L F - B[F]) < c./%]D9p| = cM(9Q L F)

(32) V V
M((Q L F = pIF])) <c [ |Dor| = eM(aQ L F).

We also have by 2.37(1)

(33) QL dF =0.
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Then summing over F € £, and using (32), (33) we have, with P = 3" . Br[F],
that

M(dQ —9P) < cM(3Q).
Actually by (31) we have
(39) Br| =2 lor|ac.

and hence (using again the first part of (28)), since M = Yz |BF]|,
(36) M(P) = cM(Q).

Notice that the second part of (34) gives

(37) M(aP) < cM(dQ).

Finally we note that (21) can be written

(38) T—P=0R +(S1+(Q—-P)).

Setting R = Ry, S = S1 + (Q — P), the theorem now follows immediately from
(23), (24), (25) and (34), (36), (37), (38); the fact that P, R are integer multiplicity
if T is should be evident from the remarks during the course of the above proof, as
should be the fact that S is integer multiplicity if 7', 8T are. O

6 Applications of the Deformation Theorem

We here establish a couple of simple (but very important) applications of the de-
formation theorem, namely the isoperimetric theorem and the weak polyhedral
approximation theorem. This latter theorem, when combined with the compact-
ness 3.11, implies the important “Boundary Rectifiability Theorem” (6.3 below),
which asserts that if 7' is an integer multiplicity current in D, (U ) and if My (37') <
oo VW cC U, then dT (€ D,—1(U)) is integer multiplicity. (Notice that in the case
k = 0, this has already been established in 3.14.)

6.1 (Isoperimetric Theorem.) Suppose T € D1 (R"+*) is integer multiplicity, n >
2, spt T is compact and 3T = 0. Then there is an integer multiplicity current R €
Dy, (R"+) with spt R compact, IR = T, and

n—1

M(R)"" < eM(T),
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where ¢ = c(n, k).

Proof: The case T = 0 is trivial, so assume T # 0. Let P, R, S be integer multi-
plicity currents as in 5.3, where for the moment p > 0 is arbitrary, and note that
S = 0 because aT = 0. Evidently (since H" ' (F) = p"~' VF € F,_1(p)) we have

(1) M(P) = N (p)p""!

for some non-negative integer N (p). But since M < ¢M(T) (from 5.3) we see that
necessarily N (p) = 0 in (1) if we choose p = (ZCM(T»ﬁ. Then P = 0, and
5.3 gives T = dR for some integer multiplicity current R with spt R compact and
M(R) < coM(T) = ¢/(M(T)) ™. O

6.2 (Weak Polyhedral Approximation Theorem.) Given any integer multipliciry
T € D,(U) with My (T),Mw (dT) < oo VW CC U, there is a sequence { Py} of
current of the form

®) Pi=Trer,pofi IFl. (bR €Z). pi 0.
such that Py — T (and hence also 9 Py — 9T ) in U (in the sense of 2.13).

Proof: First consider the case U = R"** and M(T'), M(dT) < oc. In this case we
simply use the deformation theorem: for any sequence px | 0, the scaled version of
the deformation theorem (with p = pi) gives Py as in (1) such that

(1) T — P, =0R, + Sk

for some Ry, Sy such that
(2)

and
M(Py) < cM(T), M(dP;) < cM(0T).

Evidently (1), (2) give Px(w) — Tk (w) Yo € D" (R"*), and 9P, = 0if 9T = 0, so
the theorem is proved in case U = R"** and T, 9T are of finite mass.

In the general case we take any Lipschitz function ¢ on R"*¢ such that ¢ > 0 in
U, ¢ = 0in R""*\ U ans such that {x = ¢(x) > A} cC U VA > 0. For L'-a.e.
A > 0, 4.5 implies that Ty = T L {x : ¢(x) > A} is such that M(d7)) < oo. Since
spt Ty CC U, we can apply the argument above to approximate 7) for any such 1.
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Taking a suitable sequence A; | 0, the required approximation then immediately
follows. O

6.3 (Boundary Rectifiability Theorem.) Suppose T is an integer multiplicity cur-
rent in Dy, (U) with M(3T) < oo VW CC U. Then 9T (€ Dy—1(U)) is an integer
multiplicity current.

Proof: A direct consequence of 6.2 above and the Compactness 3.11.

6.4 Remark: Notice that only the case 37; = 0 Vj of 3.11 is needed in the above
proof.

7 The Flat Metric Topology

The main result to be proved here is the equivalence of weak convergence and “flat

metric”? convergence (see below for terminology) for a sequence of integer multi-

plicity currents {7} } C D, (U) such that sup; ., (Mw (T;) +Mw (3T;)) < oo VW C
cU.

We let U denote (as usual) an arbitrary open subset of R+,
I ={T €D,(U): T is integer multiplicity and My (dT) < oo YW cCc U} .
and
Iuw ={T eZT:sptT CW, M(T)+M(@OT)<M}.
for any M > 0 and open W cC U.
On 7 we define a family of pseudometrics {dw }wccu by
7.1 dw(Ty.Tz) = inf{Mw (S) +Mw(R) : Ty = T> = IR + S, where
R € Dys1(U), S € D,(U) are integer multiplicity }.
We henceforth assume 7 is equipped with the topology given (in the usual way) by
the family {dw }wccu of pseudometrics. This topology is called the “flat metric
topology” for Z: there is a countable base of neighborhoods at each point, and
T; — T in this topology if and only if dw (7;,T) - 0 VW cC U.
7.2 Theorem. Let T, {T;} C D,(U) be integer multiplicity with
sup (M (T;) + Mw (3T;)) < oo YW cC U.

Jj=1

3Note that the word “flat” here has 70 physical or geometric significance, but relates rather to Whit-
ney’s use of the symbol b (the “flat” symbol in musical notation) in his work. We mention this because
it is often a source of confusion.
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Then T; — T (in the sense of 2.13) if and only if dw (T;, T) — 0 for each W cC U.

7.3 Remark: Notice that no use is made of the Compactness 3.11 in this theo-
rem; however if we combine the compactness theorem with it, then we get the
statement that for any family of positive (finite) constants {c¢(W)}wccu the set
{T €eZ:Mw(T;) +Mw (3T;) <c(W) VW cC U} is sequentially compact when
equipped with the flat metric topology.

Proof of 7.2: First note that the “if” part of the theorem is trivial (indeed for a
given W CC U, the statement dw (T;, T) — 0 evidently implies (7; — T)(w) — 0
for any fixed w € D"(U) with sptw C W).

For the “only if” part of the theorem, the main difficulty is to establish the appro-
priate “total boundedness” property; specifically we show that for any given & > 0
and W cc W cc U, wecan find N = N (e, W, W.M ) and integer multiplicity
currents Py, ..., Py € D,(U) such that

N
(1) Iuw C Lj=1 By (P)).

where, for any P € Z, B, j;(P) = {S € Z:dy(S, P) < &}. This is an easy conse-
quence of the Deformation Theorem: in fact for any p > 0, 5.3 guarantees that for
T € Iy, w we can find integer multiplicity P, R, S such that

T—P=0R+S

(2) P =3 rerpPrlFl BreZ
spt P C {x :dist(x.sptT) < 2+v/n + £p}

M(P) (= X rer, (n|Brlo") < cM(T) <cM
(3) spt RUspt S C {x :dist(x,sptT) <2vn+4Lp}
M(R) + M(S) < ¢pM(T) < cpM.

Then for p small enough to ensure 2+/n + £p < dist(W, W), we see from (2),(3)
that

dW(T, P) < cpM.
Hence, since there are only finitely many Py, ..., Py currents P as in (2) (N de-
pends only on M, W, n, k, p), we have (1) as required.

Next note that (by 4.5(1),(2) and an argument as in 6.7 (2) of Ch.2) we can find a
subsequence {7/} C {7} and a sequence {W; }, W; cC Wj41 cc U, U2\ W; = U,
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such that sup;,_, M(3(T;/ L W;)) < oo ¥i. Thus from now on we can assume
without loss of generality that W cc U and

(4) sptT; C W V.

Then take any W such that W cc W cc U and apply (1) with ¢ = 1,

1
27 etc. to
from {T;} such that

extract a subsequence {7}, },_, ,

Ay (Tj, 41, Tj) <277
and hence

(5) Tj,o, —Tj, = dR, + S,

where R,, S, are integer multiplicity,
spt R, Uspt S, C w

M(R,) +M(S,) < Zi

Therefore by 3.13 we can define integer multiplicity R®), S() by the M-absolutely
convergent series
RY =322 Ry, S =302,S,;

then
M(R(K)) —i—M(S(é)) E2—£+1

and (from (5))
T—Tj, =dRY + 80,

Thus we have a subsequence {7}, } of {7} such that dy; (T, T},) — 0. Since we can
thus extract a subsequence converging relative to dy from any given subsequence
of {T;}, we then have dy (T, T;) — 0; since this can be repeated with W = W,
W = Wity Vi (W; as above), the required result evidently follows. O

8 The Rectifiability and Compactness Theorems

Here we prove the important Rectifiability Theorem for currents T which, to-
gether with 97, have locally finite mass and which have the additional property
that ©®*"(u;, x) > 0 for pr-a.e. x. The main tool of the proof is the Structure The-
orem 3.8 of Ch.3. Having established the Rectifiability Theorem, we show (in 8.2,
8.3) that it is then straightforward to establish the Compactness 3.11. Although
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this proof of the Compactness Theorem has the advantage of being conceptually
straightforward, it is rather lengthy if one takes into account the effort needed to
prove the Structure Theorem. Recently B. Solomon [Sol82] showed that it is possi-
ble to prove the Compactness Theorem (and to develop the whole theory of integer
multiplicity currents) without use of the structure theorem.

8.1 (Rectifiability Theorem.) Suppose T € D, (U ) is such that My (T )+ My (T ) <
oo forall W cC U, and ©*" (ur,x) > 0 for pur-a.e. x € U. Then T is rectifiable; that
s

T=1(M.0%)*

where M is countably n-rectifiable, H"-measurable, 0 is a positive locally H"-integrable
function on M, and & (x) orients the approximate tangent space Tx M of M for H"-a.e.
x € M (i.e |y isa measurable function of x and &|x, = 11 A+ A1y, where Ty, ..., Ty is
an orthonormal basis for the approximate tangent space Ty M of M, for H"-a.e. x € M)

Proof: First note that (by 3.3 of Ch.1)

(1) H' {x € A: 0" (ur,x) >t} <t 'pur(A) <t ur(W)

for any subset A C W and any open W cC U and ¢ > 0. In particular

(2) H' {x eU: 0" (ur,x) =00} =0.

Notice that the same argument applies with 97 in place of T in order to give
(3) H' {x eU:0"(uyr,x) =00} =0.

(Notice we could also conclude #¢ {x € U : ©*¢(ppr,x) = 0o} = 0forany d > 0
by 3.3 of Ch.1.)

Next notice that, because of (2), (3), and the fact that My (T) + My (3T) <
oo YW cC U, we can apply Remark 2.37(1) to deduce

(4) pr{x e U :©*" (ur,x) = oo} =0,
and

(5) pr {x € U : ©"(puyr,x) = 00} = 0.
Now let

M={xeU:0"(ur,x)>0}.

*The notation here is as for integer multiplicity rectifiable currents as in §3 of the present chapter.

Thatis, 7(M,6,§)(w) (&, w)0 dH", although 0 is not assumed to be integer-valued here.

Y
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Since we can write M = USZ, M;, where M; = {x e M : ©*"(ur,x) > 1/j}, we
see from (1) that M is the countable union of sets of finite H"-measure. Suppose P
is an H"-measurable purely unrectifiable subset of M. By the Structure Theorem 3.6
of Ch. 3 we have an orthogonal transformation Q of R”*¢ such that H" (p(QP)) =
< ip < n + £ (where pqy is the
projection (x!,...,x%) > (x71,...,x)). Then, by Remark 2.37(2), we conclude
pr(P) =0 and hence

0 for each @ = (i1,...,ip) with 1 < iy <ip < ---

(6) H"(P) =0 Vpurely unrectifiable P ¢ M

Then by Lemma 3.2 of Ch.3 we conclude M is countably n-rectifiable. Thus we
have proved that

(7) ur =ur L M,

with M C U is countably n-rectifiable.

Since pr is absolutely continuous with respect to H" (by Remark 2.37(1)), we can
use the Radon-Nikodym Theorem 3.24 of Ch.1 to conclude that

(8) pr =H"L 0,

where 6 is a positive locally H"-integrable function on M and 6 = 0 on U \ M.
Then by the Riesz Representation Theorem 4.14 of Ch. 1 we have

(9) T(w) = [ o)

for some H"-measurable, A, (R"*¢)-valued function £, |£] = 1.

It thus remains only to prove that £(x) orients Tx M for H"-a.e. x € M (i.e. §(x) =
+71 A+ ATy for H'-ae. x € M, where 11,..., 7, is any orthonormal basis for the
approximate tangent space TxM of M. ) To see this, write M = U2 M;, M;
pairwise disjoint, #"(My) = 0, M; C N;, N; a C! submanifold of R"**, j > 1.
Now, by 3.6 of Ch. 1, if j > 1 we have, for H"-a.e. x € M;,

(10) @*"(,LLTL((Nj\Mj)U(Uk¢ij)),x) =0.

Hence, writing as usual ny1(y) = A71(y — x), we have for any » € D" (R"*Y)
that, for all x € M; such that (10) holds, and for A small enough to ensure that
sptw C nx 2 (U),

nx,A#T(w) = T(nx,/\#w)
=/ (Eneafo)0dH" + (),
Nj
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where e(1) —> 0as A | 0. (e(1) depending on x and w.) That is, after the change of
variable z = 9, 2 (y) (le. y = x + A2),

NeaT (©) = /

Nx A(N;)

(E(x+Az,0(2))0(x + Az)dH" (z) + e())

H"-a.e. x € M;. Since N; is C', this gives
(m limn, 207 (@) = (x) [ (£(x). 0(2) 43" (2)

for H"-a.e. x € M; (independent of w), where L is the tangent space Tx N; of N; at
x. Thus (by definition of Ty M —see §2 of Ch.3) we have (11) with L = T M for
H"-a.e. x € M;. On the other hand by (5) we have, provided sptw C Bg(0),

—_
(12) 2T (@) = 02,2007 () = 0T (1 10) = | o s () e 1) ditor
AR(X

< Clo|A" ™" nar (Bar(x)) = 0asd | 0
for H"-a.e. x € M; (independent of w), because
O (uar,x) = limsup A ™" uyr (B, (x)) < oo for H"-a.e. x € M; by (3).
A40
Thus, by (11) and (12), for H"-a.e. x € M, we can find a sequence A, |, 0 such that
nx,A@#T - Sx, an =0,

where S, € D, (R"**) is defined by

(13) Sy () =9(x)/L<$(x),w(z)>dH"(z),
w € D*"(R"), L = TyM. We now claim that (13), taken together with the fact
that 9Sx = 0, implies that £(x) orients L (L.e. §x = £11 A+~ AT, With 71,..., 75

an orthonormal basis for L). To see this, assume (without loss of generality) that
L = R" x {0} C R"** and select € D" (R"*) so that w(y) = y/e(y)dyt A
o Adyn=1, where y = (y',..., y"“),j >n+1,{i1,..., in-1} C {1,..., n+4},
and ¢ € C°(R"**). Then since y; = 0 on R" x {0} we deduce, from (13) and the
fact that S, =0,

0 =095 (w) = Sx(do) = G(X)/Lw(y) (E(x),dy’ Ady™ A---Adyin—1)
B e(x)./;g"(y)f(x) (ej neiy A ne, ) dH(y).

That is, since ¢ € C° (R*+¢) is arbitrary, we deduce that £(x)-(e; Ae;, A-+Aei, ) =
0 whenever j > n+1and {iy,..., in—1} C{1,....,n+£}. Thus we must have (since
|E(x)] = 1), &(x) = £ey A--- A ey as required. O
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We can now give the proof of the Compactness 3.11. For convenience we first re-
state the theorem in a slightly weaker form. (See Remark 8.3(2) below for the proof
of the previous version 3.11.)

8.2 Theorem. Suppose {T;} C D,(U), suppose T;, dT; are integer multiplicity for
each j,
) sup (M (Ty) + My (3T))) < o0 YW CC U,

Jj=1

and suppose Ty — T € D, (U). Then T is an integer multiplicity current.

8.3 Remarks (1) Note that the general case of the theorem follows from the special
case when U = R? and spt T; C k for some fixed compact K; in fact if 7} are as in
the theorem and if £ € U, then by 4.5(1), (2) and an argument like that in 6.7(2)
of Ch.2 we know that, for £'-a.e. r > 0, 3(T;/ L B,(£)) are integer multiplicity
and 8.2 (%) holds with 7;/ L B, (&) in place of T; for some subsequence {;'} C {,}
(depending on r).

(2) The previous (formally slightly stronger) version 3.11 of the above theorem
follows by using 6.3. (Note that the proof of 6.3 needed only the weaker version
of the Compactness Theorem given above in 8.2; indeed, as in mentioned in 6.4, it
used only the case 977 = 0 of 3.11.

Proof of 8.2: We shall use induction on n with U ¢ R? (U, P fixed independent
of n). First note that the theorem is trivial in case n = 0. Then assume n > 1 and
suppose the theorem is true with n — 1 in place of n.

By the above 8.3(1) we shall assume without loss of generality that spt 7; C K for
some fixed compact K, and that U = RP. Furthermore, by 8.3(1) in combination
with the inductive hypothesis, for each £ € R? we have

(1) (T L Br(¢§)) isan integer multiplicity current

(in Dy—1 (RP)) for £'-ae. r > 0.

From the above assumptions U = R?, sptT; C K we know that 0%dT — T zero
boundary and is the weak limit of 0%97; —T7; since 0% 9T is integer multiplicity (by
the inductive hypothesis) we thus see that the general case of the theorem follows

from the special case when 97 = 0. We shall therefore henceforth also assume
oT = 0.

Next, define (for £ € R? fixed)

F£(r) =M(T L B, (), r > 0.
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By virtue of 4.9 we have (since a7 = 0)
(2) M(3(T L B, (£))) < f'(r), L'a.e.r > 0.

(Notice that f/(r) exists a.e. r > 0 because f(r) is increasing.) On the other hand
S (o)

wp p"

it @*" (ur,£) < n(n> 0agiven constant), then limsup,, < 1, and hence for

each § > 0 we can arrange
®) L) <200
dr -
for a set of r € (0,8) of positive £'-measure. (Because %f%(fl/"(r)) dr <
0
571 F1n(8) < wh/™y for all sufficiently small § > 0.)
Now by (1) and the Isoperimetric Theorem, we can find an integer multiplicity
Sy € D, (R?) such that 3S, = 9(T L B,(£)) and
M(S,) "7 < eM((T L By (%))
< enM(T L B,(§))"

1

(by (2), (3))
for a set of r of positive £'-measure in (0,8).> Since § was arbitrary we then have
both (1), (4) for a sequence of r | 0. But then (since we can repeat this for any & such
that ©*" (ur. &) < ) if C is any compact subset of {x € R” : ©*"(ur, x) < n}, by
22(2) of Ch.1 for each given p > 0 we get a pairwise disjoint family B; = B, (§;)
of closed balls covering p7-almost all of C, with

UjB; C {x :dist(x,C) < p}
and with
(4) M(S;”) < enM(T L B;)

for some integer multiplicity S j(p) with

(5) 8s\” = (T L B)).

Now because of (5) we have S;m =TLB; =3({&}x% (S;m —T L Bj)), and hence
(by 2.27, 2.30) we have for v € D" (RF)
(S —T L B) ()] < coM(S”) —T L B;) dol|
< coM(T L B,)ldo]  (by (4)).

Incase n = 1, (1), (2), 3) (for n < 1) imply (T L B, (§)) = 0, hence we get, in place of (4),
M(S,) < M(T L B, (§)) trivially by taking S, = 0.
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Therefore we have )" (S;p) —TL Bj) —~0asp|0,and hence
(6) T+Y,(S” -TLB;)~T

as p | 0. However since the series ;S /.('0 Jand ;T L B; are M-absolutely conver-
gent (by (4) and the fact that the B; are disjoint), we deduce that the left side in (6)
can be written T L (RP\U; B;) +)_; S ;p) and hence (using (4) again, together with
the lower semi-continuity of My (W open) under weak convergence)

ur ({x :dist(x,C) < p}) < ur({x :dist(x,C) < p} \ C)
+ enur ({x : dist(x, C) < p}).

Choosing 7, such that cn < 1, this gives
pr({x :dist(x,C) < p}) <2ur({x :dist(x,C) < p}\ C)

Letting p | 0, we get u7(C) = 0.

Thus we have shown that ®*"(ur,x) > 0 for ur-a.e. x € RP. We can therefore
apply 8.1 in order to conclude that 7 = (M, 6,£) as in 8.1. It thus remains only
to prove that 6 is integer-valued. This is achieved as follows:

First note that for £"-a.e. x € M we have (Cf. the argument leading to (11) in the
proof of Theorem 8.1)

(7) NeatT = 0(x)[TxM] as 410,

where [T is oriented by &(x). Assuming without loss of generality that TxM =
R" x {0} C RP and setting d(y) = dist(y,R" x {0}), by 4.5(1) we can find a
sequence A; | 0 and a p > 0 such that (9, ,4T.d. p) is integer multiplicity with

(8) Mg ((nx,2,4T.d.p)) < ¢ (independent of j)

where Q@ = B?(0) x RP™ ¢ RP. Next, we choose {j’}  {j} and p > 0 so that
Nxa,#Tj0 — 0(x)[Tx M] (which is possible by (7) and the fact that T; — T), and so
that (8) remains valid with 7}/ instead of 7' (which is justified by 4.5(1) and a selec-
tion arguments in 6.7(2) of Ch.2). Then by 4.5(2) we have S; = (n.,4,47;) L {y :
d(y) < p} is such that

(9) sup(Mq(S;) +Mgq(3S))) < oo

Jj=1

with @ = B7(0) x RP™ < RP. Now let p denote the restriction to  of the
orthogonal projection of R? onto R”; and let S; be the current in D, () obtained
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by setting S;(w) = S;(@), w € D"(R), @ € D"(RF) such that & = o in 2 and
@ = 0 on R” \ Q. Then we have psS; € D,(B}(0)), and hence, by 2.35 and (9)
above,

p#Si(w)Z/ aejdﬁn’wzadxl/\“-/\dx",aeC:C’(Rn),
' B} (0)
for some integer-valued BV, (B7(0)) function 6; with

Mé;'(O)(P#gj) =/Bn(0)|9j|d£"

Mé?(m (al’#gj) = /B”

1

(10)
DO
(0)

Then by (9), (10) we deduce fB{'(O) |DO;| + fB?(()) |0;|dL" < ¢, ¢ independent of
Jj» and hence by the Compactness Theorem 2.6 of Ch.2 we know 6; converges
strongly in L! in B?(0) to an integer-valued BV function 6. On the other hand
S) — 0(x)[R" x {0}] by (7), and hence psS; — 0(x) p[R" x {0}] = 6(x)[R"] i
B! (0). We thus deduce that 6, = 6(x) in B}(0); thus 6(x) € Z as required. O
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1 Basic Concepts

Suppose A4 is any subset of R"*¢, 4 C U, U open in R"**, and T € D,(U) an
integer multiplicity current.

1.1 Definition: We say that 7' is minimizing in A if
My (T) < Mw (S)

whenever W cc U, 89S = 9T (in U) and spt(S — T) is a compact subset of AN W.

There are two especially important cases (in fact the only cases we are interested in
here) of this definition:

(1) when A =U
(2) when A = N NU, N an (n + £)-dimensional embedded C? submanifold of
R”*¢ (in the sense of §4 of Ch.2).

Corresponding to the current T = t(M,0,§) € D,(U) we have the integer mul-
tiplicity varifold V = v(M,0). As one would expect, V is stationary in U if T is
minimizing in U and 97 = 0:

1.2 Lemma. Suppose T is minimizing in N N U, where N is an (n + £)-dimensional
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C? submanifold of R" (€ < k,so N = R"*¢ is an important special case) and suppose
0T = 0in U. Then V is stationary in N N U in the sense of 2.6 of Ch.4, so that in
particular V has locally bounded generalized mean curvature in U (in the sense of 3.14

of Ch.4).
In fact V is minimizing in N N U in the sense that
() M (V) = Mw (¢#V),

whenever W CC U and ¢ is a diffeomorphism of U such that (N NU) C N NU and
¢|U\ K = 1y\k for some compact K C W N N.

1.3 Remark: In view of 1.2 (together with the fact that 6 > 1) we can represent
T = t(My, 04, &) where M, is a relatively closed countably n-rectifiable subset of U,
and 6y is an upper semi-continuous function on M, with 6, > 1 everywhere on M,

(and 6, integer-valued H"-a.e. on M.,).

Proof of 1.2: Evidently (in view of the discussion of §2 of Ch.4) the first claim in
1.2 follows from 1.2 (%) (by taking ¢ = ¢, in 1.2(%), ¢; isin 2.1 of Ch.4 with U N N
in place of U).

To prove 1.2 (1) we first note that, for any W, ¢ as in the statement of the theorem,
(1) My (@4V) = Mw (04T
by 3.2(3) of Ch.6. Also, since 37 = 0 (in U, we have

(2) dpsT = @udT = 0.
Finally,
(3) spt(T —pyT) C K C W.

By virtue of (2), (3) we are able to use the inequality of 1.1 with § = ¢47. This
gives 1.2 (%) as required by virtue of (1). O

We conclude this section with the following useful decomposition lemma:

1.4 Lemma. Suppose Ty, T € D, (U) are integer multiplicity and suppose Ty + T is
minimizing in A, A C U, and

Mw (T1 + T2) = Mw (T1) + Mw (T>2)
foreach W cC U. Then Ty, T, are both minimizing in A.
Proof: Let X € D, (U) be integer multiplicity with spt X C K, K a compact subset
of AN W, and with X = 0. Because 7} + T» is minimizing in A we have (by 1.1)
Mw (Ty + T> + X) = My (T} + T>).
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However since My (T + T2) = Mw (T1) + My (T2), and M(Ty + T» + X) <
M (T + X ) + Mw (T), this gives

Mw (Th) < Mw (T1 + X).

In view of the arbitrariness of X, this establishes that 7} is minimizing in A N W
(in accordance with 1.1). Interchanging 71, T» in the above argument, we likewise
deduce that 75 is minimizing in AN W. O

2 Existence and Compactness Results

We begin with a result which establishes the rich abundance of area minimizing
currents in Euclidean space.

2.1 Lemma. Let S € Dy,—i(R"*Y) be integer multiplicity with spt S compact and
3S = 0. Then there is an integer multiplicity current T € Dy (R"*Y) such that spt T
is compact and M(T) < M(R) for each integer multiplicity R € D, (R"*) with spt R
compact and IR = S.

2.2 Remarks: (1) Of course T is minimizing in R"** in the sense of 1.1.

(2) By virtue of 1.2 and the convex hull property (Theorem 6.2 of Ch.4) we have
automatically that spt T C convex hull of spt S.

n—

(3)M(T)"#" < ¢M(S) by virtue of the Isoperimetric Inequality 6.1 of Ch.6.
Proof of 2.1: Let

Is = {R € D, (R"™*) : R is integer multiplicity, spt R compact, dR = S} .
Evidently Zg # @. (e.g. 0%S € Zs.) Take any sequence {R,} C Zg with

(1) lim M(R,) = inf M(R),

q—>00 ReZg

let Bg(0) by any ball in R**+¢ such that spt S € Bg(0), and let f : R"*¢ — Bg(0)
be the nearest point (radial) retract of R”*¢ onto Bg(0). Then Lip f = 1 and hence

(2) M(f¢Ry) < M(Ry).

On the other hand 4R, = f4dR; = f4S = S, because f|Br(0) = lg,(0) and
spt S C Bg(0). Thus f4R,; C Zs and by (1), (2) we have

(3) lim M(fiR,) = inf M(R).

q—00
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Now by the Compactness Theorem 3.11 of Ch. 6 there is a subsequence {¢'} C {¢}
and an integer multiplicity current 7' € D, (R"**) such that f;R,» — T and (by (3)
and lower semi-continuity of mass with respect to weak convergence)

(4) M(T) < inf M(R).

However spt T C Br(0) and 97 = limdfy R, = lim f40R, = S, so that T € Tg,
and the lemma is established (by (4)). O

The proof of the following lemma is similar to that of 2.1 (and again based on 3.11
of Ch.6), and its proof is left to the reader.

Lemma. Suppose N is an (n + £)-dimensional compact C' submanifold embedded in
R+ and suppose Ry € Dy (R") is given such that IRy = 0, spt Ry C N and

IR, = {R € Du (R") 1 R — Ry = 3S for some integer multiplicity
S € Dyi1 (R"M) with spt S C N} # Q.
Then thereis T € I, such that

M(T) = inf M(R).
Ry

2.3 Remarks: (1) R — Ry = 8S with S integer multiplicity and spt S C N means
that R, R, represents homologous cycles in the n-th singular homology class (with
integer coeflicients) of N (See [Fed69] or [FF60] for discussion.)

(2) It is quite easy to see that T is locally minimizing in N; thus for each & € spt T
there is a neighborhood U of ¢ such that T is minimizingin N N U.

We conclude this section with the following important compactness theorem for
minimizing currents:

2.4 Theorem. Suppose {T;} is a sequence of minimizing currents in U with
sup; -, (Mw (T;) + Mw (3T;)) < oo for each W cC U,
and suppose Tj — T € D,(U). Then T is minimizing in U and pr; — pr (in the

usual sense of Radon measures in U).

2.5 Remarks: (1) Note that 47, — 7 means the corresponding sequence of vari-
folds converge in the measure theoretic sense of §1 of Ch. 4 to the varifold associated
with 7. (T is automatically integer multiplicity by 3.11 of Ch.6.)

(2) If the hypotheses are as in the theorem, except that spt7; € N; C U and
T; is minimizing in N;, {N;} a sequence of C! embedded (n + ¢)-dimensional
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submanifolds of R"** converging in the C! sense to N, N C U an embedded
(n 4 ¢)-dimensional C! submanifold of R"*¢,! then T minimizes in N (and we still
have ur; — pr in the sense of Radon measures in U). We leave this modification
of 2.4 to the reader. (It is easily checked by using suitable local representations for
the N; and by obvious modifications of the proof of 2.4 given below.)

Proof of 2.4: Let K C U be an arbitrary compact set and choose a smooth ¢ :
U — [0,1] such that ¢ = 1 in some neighborhood of K, and sptgp C {x € U :
dist(x, K) < e}, where 0 < ¢ < dist(K, dU) is arbitrary. For 0 < A < 1, let

Wy={xeU:¢(x)>21}
Then
(1) KcWw,ccU

foreach 1,0 <A < 1.

By virtue of 7.2 of Ch.6 we know that dw (T;,T) — 0 for each W cC U, hence in
particular we have

(2) T —T; = 0R; +S;, Mw,(R;) + M, (S;) -0

(Wo ={xeU:¢p(x)>0}).
By the slicing theory (and in particular by 4.5 of Ch.6) we can choose 0 < « < 1
and a subsequence {j’} C {j} (subsequently denoted simply by {, }) such that

(3) O(R; L Wy) = (0R;) L Wy + P;
where spt P; C 0W,, P; is integer multiplicity, and

(4) M(P;) — 0.

We can also of course choose « to be such that

(5) M(T; L aW,) = 0 ¥ and M(T L 3W,) = 0.
Thus, combining (2), (3), (4) we have

(6) TL Wy=T; L Wy+03R, +5;

"Thus 3y; : U — U, ¢ |N; in a diffeomorphism onto N, and y; — 1y locally in U with respect
to the C'! metric.
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with R;, S; integer multiplicity (R, = R; L Wy, S; = S; L W, + P;) with
) M(Ry) +1(5)) = 0.

Now let X € D,(U) be any integer multiplicity current with X = 0 and spt X C
K. We want to prove

(8) M, (T) < M, (T + X).

(In view of the arbitrariness of K, X this will evidently establish the fact that T is
minimizing in U.)
By (6), we have
M, (T + X) = Mw, (T; + X + 9R; + S;)
= My, (T) + X +0R;) = M(S;).
Now since T} is minimizing and §(X + dR;) = 0 with spt(X + dR;) C W,, we

have

(9) M, (Tj + X + 0R;) = M, (T})

for A > a. But by (3) we have M(3R; L W, ) = M(P;) — 0,and by (5) M(T; L 8W,) =

0, (T L dWy) = 0. Hence letting A | 0 in (9) we get

(10) M, (Tj + X + 0R;) = M, (T}) = M(P)).
and therefore from (9) we obtain

(11) M, (T + X) = Mw, (T;) —¢;. & 0.
In particular, setting X = 0, we have

(12) Mw, (T) = Mw, (T;) —¢;, & 0.

Using the lower semi-continuity of mass with respect to weak convergence in (11),
we then have (8) as required.

It thus remains only to prove that 7, — pr in the sense of Radon measures in U.
First note that by (12) we have

lim sup M, (T;) < My, (T),
so that (since K € W, C {x : dist(x, K) < ¢} by construction)

limsup pr; (K) < Myxdise(x,k)<e} (T).
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Hence, letting & | 0
(13) limsup ur; (K) < ur(K).

(We actually only proved this for some subsequence, but we can repeat the argument
fora subsequence of any given subsequence, hence it holds for the original sequence
{T3})

By the lower semi-continuity of mass with respect to weak convergence we have
(14) pr(W) < liminfpur, (W) ¥V open W cC U.

Since (13), (14) hold for arbitrary compact K and open W C U, it now easily
follows (by a standard approximation argument) that [ f dur, — [ f dur for each
continuous f with compact support in U, as required. O

3 Tangent Cones and Densities

In this section we prove the basic results concerning tangent cones and densities of
area minimizing currents. All results depend on the fact that (by virtue of 1.2 the
varifold associated with a minimizing current is stationary. This enables us to bring
into play the important monotonicity results of §4 of Ch.4.

Subsequently we take N to be a smooth (at least C?) embedded (n + £)-dimensional
submanifold of R"*¢ (¢ < k), U open in R"*+ and (N \ N) N U = @. Notice that
an important case is when N = U (when ¢ = k).

3.1 Theorem. Suppose T € D,(U) is minimizingin U N N, sptT C U NN, and
x €sptT \ sptdT. Then

(1) ©"(ur, x) exists everywhere in U and O™ (ur, - ) is upper semi-continuous in U
(2) For each x € sptT and each sequence {A;} | 0, there is a subsequence {\;:}
such that x5, 4T — C and Honxa, o7 = IC in R+, where C € D, (R")

is integer multiplicity and minimizing in R"*¢, no;4C = C YA > 0, and
O"(uc,0) = 0" (ur, x).

3.2 Remarks: (1) If C is as in 3.1(2) above, we say that C is a tangent cone for
T at x. If sptC is an n-dimensional subspace P. Notice that since C is integer
multiplicity and C = 0, it then follows from 2.34 of Ch. 6 that, assuming we chose
an appropriate (constant) orientation for P, C = m[P] for some m € {1,2,...}.
In this case we call C a multiplicity m tangent plane for T at x.
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(2) Notice that is 7ot clear whether or not there is an unigue tangent cone for T at
x; thus it is an open question whether or not C depends on the particular sequence
{A;} or subsequence {A;} use in its definition. The work of [Sim83] shows that
if C is a tangent cone of T at x such that ®" (uc,x) = 1 forall x € sptC \ {0},
then C is the unique tangent cone for T at x, and hence 7,47 — C as A | 0.
Also B. White [Whi82] has shown in case n = 2 that C is always unique with spt C
consisting of a union of 2-planes.

Proof of 3.1: By virtue of 1.2 we can apply the monotonicity formula of 4.7 of
Ch.4 (with @ = 1) and 4.9 of Ch.4 in order to deduce that ®" (ur, x) exists for
every x € U and is an upper semi-continuous function of x in U.

Thus in particular
(1) (wan)flMéR(o)(Ux,A_,—#T) = (wnl;an)flMéij(x)(T) — ©"(ur, x)

for each R > 0, and hence sup; M ¢ (nx,2,#T) < oo for each R > 0, while
IMxa;4T = 0in Br(0) for sufficiently large j (because x ¢ sptd7T'), so we can apply
the compactness theorem 2.4 to give a subsequence j' such ny 4, 4T — C in R"*+
with C integer multiplicity minimizing?, so

(2) C =1(sptC.£,0"(uc,-)),
Mo, o = Hc in R+, and (by Lemma 1.2) the rectifiable varifold
3 Ve = u(sptC. O (uc.)

is stationary in R"*£, In particular for any p > 0 with uc (3B,(0)) = 0 (which is
true except for at most a countable set of p) we have

(4) Hone ;47 (Bp(0)) = pic (By(0)),

and together with (1) gives (w,p") ' pc (B,(0)) = ©"(ur, x) for each p > 0. Then
by the monotonicity formula 3.6 of Ch.4, applied to the stationary varifold V¢
of (3), we have D+r = 0 uc-a.e., where r = |x|, and Dr is orthogonal projection
of Dr = r~!x onto the normal space (T spt C)*+. That is x € T spt C for pc-a.e.
x, so in particular x AC = 0 pc-a.c. and hence we can apply Lemma 2.33 to deduce
that C is a cone. O

2See Remark 2.5; notice this establishes first that C is minimizing only in the (n + £)-dimensional
subspace Tx N C R"1¢. However since orthogonal projection of R” 1 onto Tx N does not increase
area, and since spt C C T N, it then follows that C is area minimizing in R” ¢ as claimed.
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3.3 Theorem.® Suppose T € D, (U) is minimizingin U N N, sptT C U N N, and
AT =0(inU). Then

(1) @ (ur,x) €Z forall x € U\ E, where H" >T*(E) = 0 Ya > 0;

(2) Thereisaset F C E (E as in (1)) with H">T*(F) = 0 Ya > 0 and such that

foreach x € spt T \ F there is a tangent plane (see 3.2(1) above for terminology)
for T at x.

Note: We do not claim E, R are closed.

The proof of both parts is based on the abstract dimension reducing argument of
Appendix A. In order to apply this in the context of currents we need the observa-
tion of the following remark.

3.4 Remark: Given an integer multiplicity current S € D, (R"*¢), there is an as-
sociated function gs = (@3, ¢L.....0Y) : R"Tt — RVF1 where N = (":Z), such
that (writing 05 (x) = ©*"(us, x))

93 (x) = Os(x). §(x) = Os(x)€f(x). j =1....N,

where £4(x) in the j-th component of the orientation S(x) relative to the usual
<ip < n+{for A, (R"HY)
(ordered in any convenient manner). Evidently, for any x € R**¢,

orthonormal basis e;;, A+~ Aej,, 1 <ip <ip < -+

0s(X +Ay) =@y, ,,s(y). y e R

and, given a sequence {S;} C Dy, (I + R"*) of such integer multiplicity currents,
we trivially have

o} dH" > @ldH"Vje{l.... N} < S =5

and
(pg[ dH" — (pg dH" ns; = Us
(where y; dH" —  dH" means [ fy; dH" — [fy dH" ¥V f € Cc(R'H)).

We shall also need the following simple lemma, the proof of which is left to the
reader.

3.5 Lemma. Suppose S is minimizing in R"*¢, 3S = 0, and

Ne1sS = S Vx € R™ x {0} c R+

3 Cf. Almgren [Alm84]
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for some positive integer m < n. (Recall 1 : y = y —x, y € R"*) Then
S = [R™] x So,
where 3So = 0 and S is minimizing in RV,

Furthermore if S is a cone (i.e. o 4SS = S for each A > 0), then so is Sy.

Proof of 3.3(1): For each positive integer m and g € (0, 3) let
(1) Unp={xelU:0"(ury) <m—p}.

Now T is minimizing in U N N, so by the monotonicity of 4.7 of Ch.4 (which can
be applied by virtue of 1.2) we have, firstly, that U, g is open, and secondly that for
each x € Uy, g, there is some ball B,,(x) C U, g such that

pr(Bs(y)) B
Tgnfm—z Vo < p, y € Bp(x).

(2)
We ultimately want to prove

3)  HTI(US_ {x € Uppim—14p<0"(ur.x) <m—B}) =0

for each sufficiently small o, B > 0 and, in view of (2), by a rescaling and translation
it will evidently suffice to assume

(4) B,(0) = U, ng—ﬁ Vo <1, y e By(0),
and then prove
(5) H'" 3T x € B1(0) : @ (ur,x) >m—1+ B} =0.

We consider the set 7~ of weak limit points of sequences S; = 1y, 2,4+T where |x;| <
1—2;,0 <A <1, withlimx; € B;(0) and limA; = A > 0 both existing. For any
such sequence S; we have (by (4))

(6) lim sup My (S;) < o0

for each W cC 1,4 (U) in case A > 0, an for each W cC R"*¢ in case A = 0. Hence
we can apply the Compactness 2.4 to conclude that each element S of T is integer
multiplicity and

(7) S minimizes in 9y U Ny a2 N in case S = limny, 3,47
with limx; = x and limA; = A > 0, and

(8) S minimizes in all of R**¢ in case S = lim Nx; a4 T
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with limx; = x and lim A; = 0. (Cf. the discussion in the proof of 3.1(2).)

For convenience we define

U i limA; >0 (asin (7
(9) Us = {nx,k in case limA; > 0 (as in (7))

R incase limA; = 0 (as in (8))

so that § € D, (Us) foreach S € T.
Now by definition one readily checks that

(10) e T =T, 0<A <1, |x|<1—=2,
and, by (4),
(11) (H)n(,us»)/)fm—ﬂ Vy e Us, SeT.

Furthermore by using the compactness theorem 2.4 together with the monotonicity
4.7 of Ch.4, one readily checks that if S; — S (S;, S € T) and if y, y; € B;(0) with
limy; = y, then

(12) ©" (s, y) = limsup ©" (us,, yi).

It now follows from (10), (11), (12) and 2.4 that all the hypotheses of Theorem A.4
(of Appendix A) are satisfied with

(13) F={ps:S €T} (using notation of Remark 3.4)
and with sing defined by
(14) singps = {x € Us : " (s, ) >m—1+ B}

for § € T. We claim that in this case the additional hypothesis is satisfied with
d = n — 3. Indeed suppose d > n —2; then thereis S € T and 9, 34S =S Vy € L,
A > 0 with L an (n — 2)-dimensional subspace of R"**, L C singgs. Since we can
make a rotation of R"*¢ to bring L into coincidence with R"~2 x {0}, we assume
that L = R"72 x {0}. Then by 3.5 we have

(15) S = [R"2] x So,

where Sy € D(RY), N = 2+ k, with Sy a 2-dimensional area minimizing cone
in RV, Then spt Sy is contained in a finite union U?_, P; of 2-planes, with P; N
P; = {0} Vi # j. (For a formal proof of this characterization of 2 dimensional
area minimizing cones, see for example [Whi82].) In particular, since ®" (us, -) is
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constant on P; \ {0} (by the Constancy 2.34 of Ch.6), we have that " (us,y) € Z
for every y € R"*, and by (11) it follows that ®" (s, y) <m—1 Vy € R"*¢. That
is, sing ps = @, a contradiction, hence we can take d = n — 3 as claimed. We have
thus established (5) as required. O

Proof of 3.3(2): The proof goes similarly to 3.3(1). This time we assume (again
without loss of generality) that

(1) U = B»(0),

and we prove that 7 has a tangent plane at all points of spt 7 N B;(0) except for a
set F CsptT N By(0) with

(2) H"2TY(F) =0 Ya > 0.

T is as described in the proof of 3.3(1), and for any S € T and B > 0 we let
Rg(S) = {x esptS: By(x) C Us and h(spt S, L.p,x) < fp
for some p > 0 and some n-dimensional subspace L of R” +£},

where Us is as in the proof of 3.3(1) (so that S € D, (Us)), and where we define

(3) h(sptS’L’p’x):SuPyEsptSﬁBp(x)|q(y_x)|’

with ¢ the orthogonal projection of R**¢ onto L*.
Now notice that (Cf. the proof of 3.3(1))

(4) M T =T VO<A<I, [x|]<1—=21,
and
(%) NxaRp(S) = Rg(nxasS), SeT.

Furthermore if §; — S, S;, S € T, then by the monotonicity 4.7 of Ch.4 it is quite
easy to check that if y € Rg(S) and if y; € spt S; with y; — y, then y; € Rg(S))
for all sufficiently large j. Because of this, and because of (4), (5) above, it is now
straightforward to check that the hypotheses of A.4 hold with (again in notation of
3.4)

(6) F={¢s:SeT}

(7) singps = spt ®" (us, -) N Us \ Rg(S).
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(Notice that Rg(S) is completely determined by ®”"(us, - ), and hence this makes
sense.) In this case we claim that d <n—2. Indeed ifd > n—2 (i.e. d = n—1) then
3S € T such that

(8) NxatS =8 Vx e L, A >0, and L C singgs

where L is an (n—1)-dimensional subspace. Then, supposing with loss of generality
that L = R"~! x {0}, we have by 3.5 that

(9) S = [R"'] x So.

where Sy is a 1-dimensional minimizing cone in R¥*1. However it is easy to check
that such a 1-dimensional minimizing cone necessarily has the form

(10) So = m[¢].

where m € Z and ¢ is a 1-dimensional subspace of R¥*!. Thus (9) gives that S =
m[[ L] where L is an n-dimensional subspace and hence sing 95 = @, a contradiction,
sod <n—2 as claimed.

We therefore conclude from A.4 that for each S € T

(11) H' 24 (spt S\ Rg(S) N B1(0)) =0 Yo > 0.
If B; | 0 we thus conclude in particular that

(12) H 2 (spt T\ US2, Rp, (T) N B1(0)) =0 Vo > 0.
However by (1) we see that

(13) x € U2 Rg, (T) <= T hasatangent plane at x,

and therefore (12) gives (2) as required. O

4 Some Regularity Results (Arbitrary Codimension)

In this section, for T € D,(U) any integer multiplicity current, we define a rela-
tively closed subset sing T of U by

4.1 singT =sptT \ regT,

where reg T denotes the set of points & € spt T such that for some p > 0 there is a
m € Z\ {0} and an embedded n-dimensional oriented C! submanifold M of R**+¢
with T = m[M] in B,(§).
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F.J. Almgren [Alm84] has proved the very important theorem that
H" 2T (singT) = 0Va > 0

in case sptT C N, 8T = 0 and T is minimizing in N, where N is a smooth
embedded (n + ¢)-dimensional submanifold of R"*+¢. The proof is very non-trivial
and requires development of a whole new range of results for minimizing currents.
We here restrict ourselves to more elementary results.

Firstly, the following theorem is an immediate consequence of The Allard Theo-
rem 5.2 of Ch.5 and Lemma 1.2 of the present chapter.

4.2 Theorem. Suppose T € D, (U ) is integer multiplicity and minimizing in U N N
for some embedded C? (n 4 £)-dimensional submanifold N of R"*+¢, (N\N)NU = @,
and suppose spt T C U NN, dT =0 (in U). Then regT is dense in spt T.

(Note that by definition reg T is relatively open in spt T'.)

The following is a useful fact; however its applicability is limited by the hypothesis
that " (ur,y) = 1.

4.3 Theorem. Suppose {T;} C Dn(U), T € D,(U) are integer multiplicity currents
with T; minimizing in U N N;, T minimizing in U N N, N, N; embedded (n + £)-
dimensional C? submanifolds, and spt T; C N;, sptT C N, T; = 9T = 0 (in U).
Suppose also that N; converges to N in the C? sense in U, T; — T in D,(U), and
suppose y € N NU with ©"(ur,y) = 1, y = limy;, where y; is a sequence such that
yj €sptT;Vj. Theny € regT and y; € regT; for all sufficiently large j.

Proof: By virtue of the monotonicity formula 4.7 of Ch.4 (which is applicable by
1.2) it is easily checked that

lim sup ©" (uTj,yj) 0 (MT,)’) =1,

hence (since ©" (ur;.y;) > 1 by 4.8 of Ch.4) we conclude that ©" (ur;.y;) —
®"(ur,y) = 1. Hence by Allard’s Theorem 5.2 of Ch.5 we have y € regT and
y;j € reg T; for all sufficiently large j. (1.2 justifies the use of 5.2 of Ch.5.)

Next we have the following consequences of A.4 of AppendixA.

4.4 Theorem. Suppose T is as in 4.2, and in addition suppose & € spt T is such that
O"(ur, &) < 2. Then there is a p > 0 such that

H" 2t (sing T N B,(£)) = 0 Vo > 0.
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Proof: Let o = 2 — ©"(ur, &) and let B, (&) be such that By, (§) C U and

(1) (0n0") " ur(Bs(2)) <2-a/2

V¢ esptT N B,(€),0 <o < p. (Notice that such p exists by virtue of the mono-
tonicity 4.7 of Ch.4, which can be applied by Lemma 1.2.) Assume without loss
of generality that ¢ = 0, p = 1 and U = B»(0), and define 7 to be the set of weak
limits S of sequences {S;} of the form S; = ny, 2,7, |xi]l <1—-21;,0 < X; <1,
where lim x; and lim A; = A are assumed to exist. Notice that

(2) lim sup My (S;) < o0

for each W cC 5, (U) in case A > 0 and for each W cc R"*¢ in case A = 0.
Hence by the Compactness 2.4 any such S is integer multiplicity in Ug

(3) (Us = 1y, U incase A > 0, Us = R"  in case A = 0)
and (Cf. the proof of 3.3(2))

(4) S minimizes in 7, AU Ny 2N incase A > 0

(5) S minimizes in R"*¢ in case A = 0.

One readily checks that, by definition of T,

(6) Nyl =T,0<t<1, |y|<l—7
Furthermore we note that (by (1))

(7) O"(us,x) =1, us-a.e. x € Us,

and by Allard’s 5.2 of Ch.5 there is § > 0 such that

(8) singS = {x e Us : 0" (us,x)>1+68}, SeT.

Now in view of (4), (5), (6), (7), (8) and the upper semi-continuity of ®”" as in
(12) in the proof of 3.3(1), all the hypotheses of A.4 of A are satisfied with 7 =
{¢s : S € T} (notation as in 3.4) and with singgs = {x € Us : ©" (g, x) > 1+ 8}
(= sing S by (8)). In fact we claim that in this case we may take d = n — 2, because
fd =n—135 € Tand ny 4SS = S Vx € L, A > 0, where L C singS is an
(n — 1)-dimensional subspace of R"*+¢, then (Cf. the last part of the proof of 3.3
(2)) we have S = m[ Q] for some n-dimensional subspace Q. Hence singS = @, a
contradiction. [
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The following theorem is often useful:

4.5 Theorem. Suppose C € D, (R"™) is minimizing in R"**, 9C = 0, and C isa
cone: 19 34C = C YA > 0. Suppose further that spt C C H where H is an open X-space
of R"* with0 e dH. Then sptC C 0H.

4.6 Remark: The reader will see that the theorem here is actually valid with any
stationary rectifiable varifold V in R"* satisfying no 44V = V in place of C.

Proof of 4.5: Since the varifold V' associated with C is stationary (by 1.2) in R"*+¢
we have 5.1 of Ch.4 (Since (Dr)* = 0 by virtue of the fact that C is a cone),

d —n _ —n—1 C
(1) G /R,,th(r/p) dpc) = p /wa- (VEh)g(r/p) duc
for each p > 0, where r = |x| and ¢ is a non-negative C! function on R with

compact support, and 4 is an arbitrary C!(R"**) function. (VCh(x) denotes the
orthogonal projection of Vg.+¢h(x) onto the tangent space TV of V at x.)

,x”H) cx!'> 0}
T

Now suppose without loss of generality that H = {x = (x',...
and select h(x) = x!. Then x - V€h = el - x = ;- xT

denotes orthogonal projection of v onto Ty V. Thus the term on the right side of

= rey - VCr, where v

(1) can be written — [gu4c (e1 - VEr) (re(r/p)) dic, which in turn can be written
— Janteer - V€Y, duc, where ¥,(x) = f‘fj ro(r/p)dr. (Thus ¥, has compact
support in R"+€.) But e - V€, = divy (Y€1), and hence the term on the right of
(1) actually vanishes by virtue of the fact that V' is stationary. Thus (1) gives

p_”/ x19(r/p)duc = const., 0 < p < co.
Rn+€
In view of the arbitrariness of ¢, this implies
p_”/ X1 duc = const.
B (0)

However trivially we have lim,y0 0™ [p o) ¥1dic = 0, and hence we deduce
,o_"/ x1duc =0Vp>0.
B,(0)

Thus since x; > 0 on spt C (C H), we conclude sptC € dH (= {x : x! =0}). O
The following corollary of 4.5 follows directly by combining 4.5 and 3.1(2).

4.7 Corollary. If T isasin 4.2, if € € sptT, if Q isa C' hypersurface in R"*+* such
that & € Q and if spt T is locally on one side of Q near &, then all tangent cones C of T
at & satisfy sptC C T¢Q N TgN.
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5 Codimension 1 Theory

We begin by looking at those integer multiplicity currents T € D, (U) withspt T C
N NU, N an (n + 1)-dimensional oriented embedded submanifold of R"*+¢ with
(N\ N)NU = @ and such that

5.1 T =90[E]

(in U), where E is an H"*!-measurable subset of N. (We know by 3.16 of Ch.6,
1.4 that all minimizing currents T € D,(U) with 9T = 0 and sptT in N can be
locally decomposed into minimizing currents of this special form.)

5.2 Remark: The fact that T has the form 5.1 and T is integer multiplicity evi-
dently is equivalent to the requirement that if V' C U is open, and if ¢ is a C2
diffeomorphism of V onto an open subset of R"** such that ¢(V N N) = G, G
open in R"*1 then ¢(E) has locally finite perimeter in G. This is an easy conse-
quence of 2.35 of Ch.6, and in fact we see from this and 4.3 of Ch.3 that any T
of the form 5.1 with My (T) < co VW CC U is automatically integer multiplicity
with

() O"(T,x) =1, ur-ae.xeU.

We shall here develop the theory of minimizing currents of the form 5.1; indeed we
show this is naturally done using only the more elementary facts about currents.
In particular we shall not in this section have any need of the Compactness 3.11
of Ch. 6 (instead we use only the elementary BV Compactness Theorem 2.6 of Ch.
2), nor shall we need the Deformation Theorem and the subsequent material of
Chapter 6.

The following theorem could be derived from the general Compactness 2.4, but
here (as we mentioned above) we can give a more elementary treatment. In this
theorem, and subsequently, we take U C R"** to be open and O will denote the
collection of (n + 1)-dimensional oriented embedded C? submanifolds N of R”*¢
with (N\N)NU = @, NNU # @. A sequence {N;} C O is said to converge
to N € O in the C? sense in U if there are orientation preserving C? embeddings
V¥; : NNU — N; with ¢; — 1ynp then ny 2 N converges to Ty N in the C? sense
in WasA |0, foreach W cc R**¢,

In the following theorem p is a proper C? map U — N N U such that in some
neighborhood V' c U of N NU, p coincides with the nearest point projection of V'
onto N. (Since the nearest point projection is C? in some neighborhood of N N U
it is clear that such p exists.)
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5.3 (Compactness Theorem for minimizing 7 as in 5.1). Suppose T; € D,(U),
T; = A[E;] (in U), E; H"'-measurable subsets of Ny N U, N; € O, N; - N € O in
the C? sense described above, and suppose T; is integer multiplicity and minimizing in
UNN;.

Then there is a subsequence {T;:} with T;» — T in D,(U), T integer multiplicity,
T =93[E] (inU), Xp(E;) = XE in Llloc (’H”H, U), W1, = T (in the usual sense of
Radon measures) in U, and T is minimizingin N N U.

5.4 Remarks: (1) Recall (from 5.2) that the hypothesis that T is integer multiplic-
ity is automatic if we assume merely that My (7;) < co YW cC U.

(2) We make no a-priori assumptions on local boundedness of the mass of T; (we
see in the proof that this is automatic for minimizing currents as in 5.1).

(3) Let h(x,t) = x +t(p(x) —x),x € U,0 <t < 1. Using the homotopy formula
2.25 of Ch.6 (and in particular the inequality 2.27 of Ch.6) together with the fact
that N; — N in the C? sense in U, it is straightforward to check that

Tj =T =9R;, R; = hs([(0. )] x T}) + pe[[E;] - [E]

with
Mw(Rj/) —0VW cc U,

provided that y,g,,) — xr as claimed in the theorem. Thus once we establish
Ap(E;)) = XE for some E, then we can use the argument of 2.4 (with S; = 0) in
order to conclude

(1) T is minimizing in U

(i) pr,, — prinU.
(Notice we have not had to use the deformation theorem here.) In the following
proof we therefore concentrate on proving y,(z,) = x& in L, (H"*',N nU) for
some subsequence {j '} and some E such that [ E] has locally finite mass in U. (T
is then automatically integer multiplicity by 5.2.)

Proof of 5.3: We first establish a local mass bound for the 7j in U: if £ € N and
By, (§) C U, then

(1) M(T; L B,(§)) < 1H"(9B,(§) N N). Llae. p e (0. po).

This is proved by simple area comparison as follows:

With r(x) = |x —&|, by the elementary slicing theory of 4.5(1),(2) of Ch. 6 we have
that, for £'-a.e. p € (0, po), the slice ([E;], . p) (i-e. the slice of [E;] by B, (¢)) is
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integer multiplicity, and (using 7; = 9[ E;]),
IE; N B,y(§)] =Tj L By(§) + ([Ej]. 7. p)-
Hence (applying 9 to this identity)
ATy L By(8)) = ~0([E;]. 7). L. p e (0.po).
and by Definition 1.1 of minimizing
M(T; L B,(§)) < M([E;]. . p).

Since —T} is also minimizing in N N U we then have
(2) MI(T; L B (€)) < min {M([E;].7. ). ([E;].r.p) }

for £'-a.e. p € (0, po), where E; = NN U \ E;.

Now of course [E]| + [E;]] = [N N U], so that (for a.e. p € (0, po))

([Ej].7.p) + ([E;].7.p) = (N.r.p)

and hence (2) gives (1) as required (because M((N,r,p)) < H"(N N dB,(§)) by
virtue of the fact that [Dr| = 1, hence [VVr| < 1).

Now by virtue of (1) and 5.2 we deduce from the BV Compactness 2.6 of Ch.2 that
some subsequence {x,(£,,)} of {xp(&;)} converges in L| (H""',N nU) to xE,
where E C N is H"1'-measurable and such that d[[E] is integer multiplicity (in
U). The remainder of the theorem now follows as described in 5.4(3). O

5.5 (Existence of tangent cones). Suppose T = J[E] € D,(U) is integer mul-
tpliciry, with E C N NU, N € O, and T is minimizing in U N N. Then for
each x € sptT and each sequence {A;} | 0 there is a subsequence {;/} and an in-
teger multiplicity C € D, (R"*Y) with C minimizing in R"¢, 0 € sptC C TxN,
0" (uc,0) = O (ur,x), C = [ F], F an H" " -measurable subset of Ty N,

(1) Hues, o1 = e in R 4 ) = A in LL (M TeN).,

(7 5 (E)
where p is the orthogonal projection of R"** onto Ty N, and

(2) nosC = C, noF = F YA > 0.

5.6 Remark: The proof given here is independent of the general tangent cone Ex-
istence 3.1.

Proof of 5.5: As we remarked prior to 5.3, 1,1, N converges to Tx N in the C? sense
in W for each W cc R"*+*. By the Compactness 5.3 we then have a subsequence 1,
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such that all the required conclusions, except possibly for 5.5(2) and the fact that
0 € spt C, hold. To check that 0 € spt C and that 5.5(2) is valid, we first note by 1.2
that the varifold V associated with T is stationary in N N U (and that V therefore
has locally bounded generalized mean curvature H in N N U). Therefore by the
monotonicity formula 4.7 of Ch.4, and by 4.8 of Ch.4, we have

O"(uy,x) exists and is > 1.

Since Iy, 6T = ICs We then have ®" (pc,0) = ©"(ur,x) > 1,50 0 € spt C, and
by Theorem 6.1 of Ch.4 we deduce that the varifold V¢ associated with C is a cone.
Then in particular x A C (x) = 0 for pc-a.c. x € R"¢ and hence, if we let & be the
homotopy & (t,x) = tx + (1 —t)Ax, we have h4([[(0,1)] x C) = 0, and then by the
homotopy formula 2.25 of Ch.6 (since C = 0) we have 79 ,4C = C as required.
Finally since spt C has locally finite #"-measure (indeed by 4.8 of Ch.4 spt C is the
closed set {y € R"™: ©"(uc,y) = 1}), we have

[F] = [F].

where F is the (open) set {y € TxN \ spt C : @"+1 ({"T1 T, N,y) = 1}. Evidently
no(F) = F (because 1o ; (spt C) = spt C). Hence the required result is established
with F in place of F. O

5.7 Corollary.* Suppose T isas in 5.5 and in addition suppose there is an n-dimensional
submanifold S embedded in R*+* with x € ¥ C NNU forsome x € spt T, and suppose
spt T'\ 2 lies locally, near x, on one side of . Then x € regT. (regT isasin 4.1)

Proof:] Let C = [ F]] (F C TxN) be any tangent cone for T at x. By assumption
spt[F] C H, where H is an open 1-space in TxN with 0 € 9H. Then, by 4.5,
spt C C 9H and hence the Constancy 2.34 of Ch.6 since C is integer multiplicity
rectifiable, it follows that C = +3[[H]. However spt[F] € H, hence C = +3[H].
Then ©"(puc,y) = 1 for y € 9H, and in particular " (puc,0) (= " (ur,x)) = 1,
so that x € reg T (by Allard’s Theorem 5.2 of Ch.5) as required.

We next want to prove the main regularity theorem for codimension 1 currents. We
continue to define sing T, reg T as in 4.1.

5.8 Theorem. Suppose T = [ E] € D,(U) is integer multipliciry, with E C N N U,
n € O, and T minimizing in N N U. Then singT = @ forn < 6, singT is locally
finitein U forn =7, and H" "% (singT) = 0 Va > 0 in casen > 7.

Proof: We are going to use the abstract dimension reducing argument of Ap-

pendix A (Cf. the proof of 4.4).
4Cf. Miranda [Mir67]
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To begin we note that it is enough (by re-scaling, translation, and restriction) to
assume that

and to prove that

singT N B1(0) =@ ifn <6, singT N By(0) discrete if n = 7,
H" "t (sing T N B1(0)) =0 Va > 0ifn > 7.

Let 7 be the set of currents as defined in the proof of 4.4°, and for each S € T let
¢s be the function : R*tt — R**1 associated with S as in 3.4. Also, let

.7:={(psiS€T}

and define
sing gs = sing S.

(sing S as defined in 4.1.)
By A.4 we then have either sing S = @ for all S € 7 (and hence sing T = @) or

dim B;(0) Nsing S <d,
where d € [0,n — 1] is the integer such that
dim B;(0) NsingS <d forall S e T
and such that there is § € 7 and a d-dimensional subspace L of R"** such that
NS =S VxeL, A>0
and
5.9 singS = L.
Supposing without loss of generality that L = R¢ x {0}, we then (by 3.5) have
5.10 S = [R] x So

where 39Sy = 0, Sp is minimizing in R"**~!  and sing S = {0}. (With S as in
5.10, sing So = {0} <= 5.9.) Also, by definition of T, sptS C some (n + 1)-
dimensional subspace of R”*¢, hence without loss of generality we have that Sy is
an (n — d)-dimensional minimizing cone in R*~¢*! with sing Sy = {0}. Then by

SWe still have ®” (s, x) — 1 for us-a.e. x € Us, this time by 5.3 and 5.2 (§)
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the result of J. Simons (see B) we have n —d > 6; i.e. d < n — 7. Notice that
this contradicts d > 0 in case n < 7. Thus for n < 7 we must have sing7 = @ as
required. If n = 7, sing T is discrete by the last part of A.4.

5.11 Corollary. If T is as in 5.8, and if Ty € D,(U) is obtained by equipping a
component of reg T with multiplicity 1 and with orientation of T, then 3Ty = 0 (in U)
and Ty is minimizingin U N N.

5.12 Remark: Notice that this means we can write
o0
T = Zj:lTj"

where each T; is obtained by equipping a component M; of reg T with multiplicity
1 and with the orientation of T'; then M; N M; = @ Vi # j, dT; = 0, and T is
minimizing in U Vj. Furthermore (since ur, (B,(x)) > cp" for B,(x) € U and
x € spt T; by virtue of 1.2 and the monotonicity 4.7 of Ch.4) only finitely many 7
can have support intersecting a given compact subset of U.

Proof of 5.11: The main point is to prove
(1) 9T, = 0in U.

The fact that 7 is minimizing in U will then follow from 1.4 and the fact that
Mw(Tl) + Mw(T — Tl) = Mw(T) VW ccU.

To check (1) let w € D"~1(U) be arbitrary and note that if { = 0 in some neighbor-
hood of spt 7'\ M,

(2) Ti(d(fw)) = T(d(fw)) = 0T ((w) = 0.

Now corresponding to any & > 0 we construct ¢ as follows: since H" ' (sing T) =
0 (by 5.8) and since sing 7T N sptw is compact, we can find a finite collection of
balls {By, (¢)},_, p with § € singT N sptw and f’:1p7—1

j =1....Plet g € CZ(R"*") be such that ¢; = 1 on B,,(§), ¢; = 0 on
R\ By, (&), and 0 < ¢; < 1 everywhere. Now choose ¢ = ]_[;ngoj in a
neighborhood of spt 71 and so that ¢ = 0 in a neighborhood of spt 7'\ spt 71. Then

dt = Y[ T1]..; 0 dei on spt Ty, and hence

< ¢e. For each

|d ((w) — tdw| < c|w|2f=1p;’_l < celw| on spt 7.

The letting ¢ | 0 in (2), and noting that {do — dw H"-a.e. in spt Ty N N N sptw
(and using |¢| < 1), we conclude T} (dw) = 0. That is 377 = 0 in U as required. O

Finally we have the following lemma.
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5.13 Lemma. If T, = 8[E\]}, T» = 8[Ez] € Du(U), U bounded, Ey, E; C U N N,
N of class C*, N € O, Th, T» minimizing in U N N, reg Ty, reg T» are connected, and
E1NV C E;NV for some neighborhood V of U, then spt[ E1] C spt[ Ex]| and either
[E1] = [E2] orspt Ty Nspt T, C sing Ty N sing T>.

Proof: Since H" ! (spt 7;) = 0 (in fact spt 7} has locally finite H"-measure in U by
virtue of the fact that ©” (ur,.x) > 1 Vx € spt T;), we may assume that £; and E;
are open with U NdE; = U NJE; =sptTj, j = 1,2.

Let S1,S2 € D, (U) be the currents defined by

Sy = 0[E1 N Es], S» = 3[E1 U Es].

Using the hypothesis concerning V' we have
(3) S;LVnNnU)=T,L(VnU), j=12.
On the other hand we trivially have

[Ex N Ex] + [E4 U Ex] = [E4] + [E2].
so (applying 9) we get
(4) Si+ 8, =Ti + T».
Furthermore E; N E, C E; U E5, so

(5) My (S1) + M(S2) = My (S1 + S2)
=Mw (T +T2) (by (4))
<My (T1) + Mw (T3)

VW cc U. On the other hand, choosing an open Vj so that dU C Vy cC V, and
using (3) together with the fact that 7} is minimizing, we have

My (S1) = Mw (T1). W =U \ V.
and hence (combining this with (5))
M (S2) < Mw (T2)

for W = U \ Vp. Thus (using (3) with j = 2) S, is minimizing in U. Likewise S,
is minimizing in U.

We next want to prove that either 71 = T, or reg 71 Nreg T> = @. Suppose reg T1 N
regT> # @. If the tangent spaces of reg 71 and reg 7> coincide at every point of
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their intersection, then using suitable local coordinates (x,z) € R” x R for N near
apoint & € regT1 Nreg T, we can write

reg7; = graphu;, j = 1.2,

where Duy = Dus, at each point where u; = u5, and where both uy, u, are (weak)
C! solutions of the equation

—(—(xu Du)) — %(xu Du) =0,

where F = F(x,z,p), (x,z,p) € R" x R x R", is the area functional for graphs
z = u(x) relative to the local coordinates x, z for N. Since N is C* we then deduce
(from standard quasilinear elliptic theory—see e.g. [GTO01]) that uq, up are C3“.
Now the difference u; — u, of the solutions evidently satisfies an equation of the
general form

Dj(ajjDiju) + biDju + cu =0,

where a;;, b;, ¢ are C?*. By standard unique continuation results (see e.g. [Pro60])
we then see that Duy = Dujy at each point where u; = u, is impossible if u; — u»
changes sign. On the other hand the Harnack inequality ([GTO01]) tells us that
either u1 = u, or |[u; —uz| > 0 in case u; — up does not change sign. Thus we
deduce that either T} = T, or reg Ty Nreg T, = @ or there is a point § € reg 7T N
reg T such that reg Ty and reg 7> intersect transversely at &. But then we would have
H" ! (sing [ E1 N E,]]) > 0, which by virtue of 5.8 contradicts the fact (established
above) that [ E; N E,] is minimizing in U.

Thus either T} = T; or reg T Nreg T, = @, and it follows in either case that E; C
E,. On the other hand we then have sing 71 Nreg T, = @ and sing T>Nreg T = @ by
virtue of 5.7. Thus we conclude that E; C E, and spt Ty Nspt T C sing T3 Nsing 7>
as required.
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1 Basics, First Rectifiability Theorem

We let G(n + £,n) denote the collection of all n-dimensional subspaces of R"*¥,
equipped with the metric p(S,T) = |ps — pr| = (Zf‘jil (pd — p’;)z) 2 Where_ Ps;
pr denote the orthogonal projections of R**¢ onto S, T respectively, and p3 =
ei - ps(ej), p7 = ei - pr(e;) are the corresponding matrices with respect to the

standard orthonormal basis eq, . . ., ente for R+

For a subset 4 ¢ R"t¢ we define
Guy(A)=AxG(n+4,n),

equipped with the product metric. Of course then G,(K) is compact for each
compact K C R"™. G, (R"*Y) is locally homeomorphic to a Euclidean space of
dimension n + £ + nk.

By an n-varifold we mean simply any Radon measure V on G, (IR"“). By an n-
varifold on U (U open in R"*%) we mean any Radon measure V on G,(U). Given

such an n-varifold V on U, there corresponds a Radon measure u = uy on U

(called the weight of V') defined by
pn(A) =V (z"'(4). AcCU,
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where, here and subsequently,  is the projection (x,S) — x of G,(U) onto U.
The mass M(V') of V is defined by

M(V) = uv(U) (= V(Ga(U))).

for any Borel subset A C U we use the usual terminology V L G, (A) to denote the
restriction of V to G, (A); thus

(VL Gu(A)(B) =V (BNGn(A)), BC Gy(U).

Given an n-rectifiable varifold v(M, 6) on U (in the sense of Ch.4) there is a corre-
sponding n-varifold V (also denoted by v(M, 8), or simply v(M ) in case 6 = 1 on
M), defined by

V(A) = n(x(TM N A)), AC G,(U),
where p = H" L0 and TM = {(x,TxM) : x € M.}, with M, the set of x € M

such that M has an approximate tangent space Tx M with respect to 6 at x in the
sense of 1.7 of Ch.3. Evidently V, so defined, has weight measure uy = H" L 6 =
W

The question of when a general n-varifold actually corresponds to an n-rectifiable
varifold in this way is satisfactorily answered in the next theorem. Before stating
this we need a definition:

1.1 Definition: Given T € G(n + {,n), x € U, and 6 € (0,00), we say that an
n-varifold V on U has tangent space T" with multiplicity 6 at x if

(i) I)LI?(')I Vx,l = ey(T)a

where the limit is in the usual sense of Radon measures on G, (R"*¢). In 1.1 (%) we
use the notation that V; ; is the n-varifold defined by

Ver(4) = AV ({(3y +x.8) : (1. S) € 4} 1 G (V)
for A c G, (R”M).
1.2 (First Rectifiability Theorem.) Suppose V' is an n-varifold on U which has a
tangent space Ty with multiplicity 6(x) € (0,00) for puy-a.e. x € U. Then V is n-

rectifiable; in fact M = {x € sptV : Ty and 0(x) both exist} is H" -measurable, count-
ably n-rectifiable, 0 is locally H"-integrable on M, and V = v(M . 9).

In the proof of 1.2 (and also subsequently) we shall need the following technical
lemma:
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1.3 Lemma. Let V be any n-varifold on U. Then for py-a.e. x € U there is a Radon

measure nif) on G (n + €, n) such that, for any continuous p on G (n + £, n),

. | /G i 1AV (S
S PS5 (5) = limm 1oy (B,(x))

Furthermore for any Borel set A C U,

= (x)
/w(A)ﬂ(S) AV(x.5) = /,4/G(n+€,n)ﬂ(s) dny " (S)dpy (x)
provided B > 0.

Proof: The proof is a simple consequence of the differentiation theory for Radon
measures and the separability of £(X,R) (notation as in §4 of Ch.1) for compact
separable metric spaces X. Specifically, write K = K(G(n + £,n),R), KT = {B €
K : B >0}, and let B1,B2,... € KT be dense in K. By the XXX Theorem 3.23
of Ch.1 we know that (since there is a Radon measure y; on R"*¢ characterized by
vi(B) = [g,8 Bi(S)dV(y.S) for Borel sets B C R )

[ s)avns)
(1) e(x7j) = lim Gn(Bp(x))

plo 1y (Bp(x))

exists for each x € R"*¢\ Z;, where Z; is a Borel set with uy(Z;) = 0 and e(x, j)
is a ;iy-measurable function of x, with

o) [ty duv () = [ pi(8)aV(r.8)

for any Borel set A C R+,

Now lete > 0, 8 € Kt, x € R"T\ (US2, Z;), and choose B; such that sup [8—B;| <
e. Then for any p > 0

(3)

‘/G,,(Bp(x))ﬂ(S)dV(y, S) ~ /Gn(Bp(x))IBj<S)dV(y’ S) <8V(Gn(Bp(x))) _,
v (Bp(x)) wv (Bo(x)) T wr(Be(x)) ’

and hence by (1) we conclude that

[ B(s)av(.s)
~3) (g — [iy L8 (Bo(x))
(4) nV (ﬁ) - 1p¢ /'LV(Bp<-x)>

exists for all B € Kt and all x € R4\ (U, Z;). Of course, since |ﬁ§f)(ﬂ)| <

sup|B| VB € KT, by the Riesz Representation Theorem 4.14 of Ch.1 we have
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’ﬁiﬁ(ﬂ) = /( . )ﬁ(S) dngf)(S), where n%f) is the total variation measure as-
n+t,n

sociated with ﬁg).

Finally the last part of the lemma follows directly from (2), (3) if we keep in mind
Ny E x)

that e(x, j) in (1) is exactly 7}, ('B'])/G(nM B (S )dr]V (S) O

We are now able to give the proof of 1.2.

Proof of 1.2: By definition 1.1, sy has approximate tangent space Ty with multi-
plicity 6(x) in the sense of 1.7 of Ch.3 for uy-a.e. x € U. Hence by 1.9 of Ch.3 we
have that M is H"-measurable countably n-rectifiable, 6 is locally #"-integrable on
M andinfact uy = H" L 0 inU (if weset 0 =0in U \ M).

(x)

Now if x € M is one of the p1y-almost all points such that 7y, exists, and if B is a

non-negative continuous function on G (n +£, n), then we evidently have ng) (B) =

6(x)B(Tyx) and hence by the second part of 1.3 we have
(1) [ W f SV Sy = [ BT duy ()

for any Borel set A C U. From the arbitrariness of A and B it then easily follows
that

(2) /n(U)f(x,S)dV(x,S) = /Mf(x’Tx)dMV(x)

for any non-negative f € C.(G,(U)), and hence we have shown V = v(M,6) as
required (because 1y = H" L 6 as mentioned above). O

2 First Variation

We can make sense of first variation for a general varifold V on U. We first need
to discuss mapping of such a general n-varifold. Suppose U, U open c R"*¢ and
f:U — UisC!with f|spt uy NU proper. Then we define the image varifold f;V/
on U by

2.1 £V (4) = /Fil(A)JSf(x)dV(x,S), ABorel, A C G,(0),

where F : GH(U) — G,(U) is defined by F(x,S) = (f(x).dfx(S)) and where

Js f(x) = (det((df|S)" o (dfc[S)))?. (x,
G, (U) ={(x,8) € G,(U) : Js f(x) #0}.

S) e G, (U).
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(Notice that this agrees with our previous definition given in §1 of Ch.4 in case
V =v(M,0).)

Now given any n-varifold V on U we define the first variation §V of V, which is a
linear functional on K (U, R"**) (notation as in §4 of Ch.1) by

2.2 SV(X) = %M(wt#v L Gu(K))

=0
where {¢;}—1<¢<1 is any 1-parameter family as in 5.6 of Ch.2 (and K compact is
as in 5.6 of Ch.2). Of course we can compute §V (X) explicitly by differentiation
under the integral in 2.1. This gives (by exactly the computations in §5 of Ch.2)

2.3 5V (X) = /an) divs X (x)dV (x. ),

where, forany S € G(n + €, n),

2.4 divs X = Y1 VS X = Y7 (5, Dy, X),

where 1, ..., 7, is an orthonormal basis for S and V5 = ¢; - VS, with VS f(x) =

ps (Vante f(x)), f € CH(U). (ps is the orthogonal projection of R"*¢ onto S.)

By analogy with 2.4 of Ch.4 we then say that V is stationary in U if §V(X) =
0VX e K(U.R" ).

More generally V is said to have locally bounded first variation in U if for each W C
C U there is a constant ¢ < oo such that [§V (X)| < csupy, |X| VX € K(U,R"+¢)
with spt | X| Cc W. Evidently, by the general Riesz Representation 4.14 of Ch.1,
this is equivalent to the requirement that there is a Radon measure ||§|| (the total
variation measure of §V) on U characterized by

25 18VI(W) = sup 5V (X)] (< o)
Xek (U, R0, |X|<1,spt | X|CW

for any open W cC U. Notice that then by 4.14 of Ch.1 we can write
2.6 5V(X)=/ divs X (x)dV(x, S)——/U-Xd||5V||,
G, (U) U

where v is ||§V|-measurable with |v] = 1 ||§V|-a.e. in U. By XXX Theorem 3.23
of Ch.1 we know furthermore that

I8VII(Bp(x))
fv (B (x)
Dy 18V (x)v(x))

2.8 /v-Xd||5V||=/ﬁ-Xd,uV+/v-Xda,
U U U

2.7 Dy 18V I(x) =

~——

exists jiy-a.e. and that (writing H (x) =
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with
29 o=|8V|LZ, Z={xeU:D,,|I8V|(x)=4o00}. (uv(Z)=0.)
Thus we can write
2.10 % =/ divs X (x)dV (x, S

(W)= [ divs X(x)dV(x.5)

z_/g-XdW—/u-Xda
U V4

for X e K(U,R").

By analogy with the classical identity 4.30 of Ch.2 we call H the generalized mean
curvature of V, Z the generalized boundary of V , o the generalized boundary measure
of V, and v|Z the generalized unit co-normal of V.

3 Monotonicity and Consequences

In this section we assume that V is an n-varifold in U with locally bounded first
variation in U (as in 2.5).

We first consider a point x € U such that there is 0 < py < dist(x,dU) and A > 0
with

3.1 I8V11(Bo(x)) < Apy (By(x)). 0. < p < po.

Subject to 3.1 we can choose (in 2.3 of Ch.4) X, = y(r)(y—x),r = |y—x|,y € U as
in §4 of Ch.4 and note that (by essentially the same computation as in §4 of Ch.4)
n+{ ijxi —y' Xl =y

3.2 divs X = ny(r) +ry'(r)2 2165 — _—

where (¢¥) is the matrix of the orthogonal projection ps of R**¢ onto the n-
dimensional subspace S. We can then take y(r) = ¢(r/p) (again as in §4 of Ch.4)
and, noting that Z?jﬁleﬁq’u AL = 1 — | psi (B2) |2, conclude (Cf. 4.7 of

r

Ch.4 with « = 1) that e2?p"uy (B,(x)) is increasing in p, 0 < p < po, and, for
0<0o=<p<po,

33 0"(,x) < o uy (Bo(x)) < e, p7" v (By(x))

n
- r 2 psi(y —x)[FdV(y,S).

—w,

/Gn (Bp(x)\Bs (x))
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In fact if A = 0 (so that V is stationary in B,,(x)) we get the precise identity
3.4 ©" (v, x) =w;1p‘"w(3p(X))—w;1/ 5.0 ))r_"_2|Ps¢(y—X)}2dV(yvS)
JGp(Bp(x

for 0 < p < po.

Using X, = h(y)y(r)(y —x) (r = |y — x]) in 2.3 of Ch.4 we also deduce that the
following analogue of 5.1 of Ch.4:

d

35 d_p

(p"T(p)) = p—ndip [lpse(v=x)/re(r/o)h(r) aV (3.5)
L SV (X) + /(y —x)-V3h(y)e(r/p)dV (y.S)).

where I'(p) = [ ¢(r/p)hdpy.

3.6 Lemma. Suppose V has locally bounded first variation in U. Then for uy-a.e.
x € U, O"(uy, x) exists and is real-valued; in fact ©" (uy, x) exists whenever there is
a constant A(x) < oo such that

18V II(By(x)) < A(x) ey (By(x)). 0 < p < %dist(x, aU).

(Such a constant A (x) exists for uy-a.e. x € U by virtue of XXX Theorem 3.23 of
Ch.1.)

Furthermore ©" (y, x) is a wy -measurable function of x.

Proof: The first part of the lemma follows directly from the monotonicity formula
3.3. The puy-measurability of ®"(uy, -) follows from the fact that py (By(x)) >
limsup, , uy(By(y)), which guarantees that 11y (B,(x))/(wnp") is Borel measur-
able and hence p1y-measurable for each fixed p. Since

0" (uy, x) = lp}g)l(wnp”)‘lw(Bp(X))
for py-a.e. x € U, we then have py-measurability of ®" (uy, -) as claimed.

3.7 Theorem. (Semi-continuity of ®" under varifold convergence.) Suppose
Vi — V (as Radon measures in G, (U)) and ©"(V;,y) > 1 except on a set B; C U
with py,(BiNW) — 0 foreach W CC U, and suppose that each V; has locally bounded
first variation in U with liminf |§V; | (W) < oo for each W cC U. Then ||§V (W) <
liminf |§V;[|(W) VW cC U and ©"(uy,y) > 1 py-a.e. in U.

3.8 Remarks: (1) The fact that |8V |[(W) < liminf||§V;|(W) is a trivial conse-
quence of the definitions of ||§V ||, |§V;| and the fact that V; — V, so we have only
to prove the last conclusion that " (uy,y) > 1 py-a.e.
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(2) The proof that ©"(uy,y) > 1 py-a.e. to be given below is slightly complicated;
the reader should note that if |§V|| < Auy in U (i.e. if V has generalized boundary
measure 0 = 0 and bounded H—sece 2.10 above—then the result is a very easy
consequence of the monotonicity formula 3.3.

Proof of 3.7: Set u; = v, u = uy,and take any W cC U and py € (0, dist(W,dU)).
Fori, j > 1, consider the set 4;,; consisting of all points y € W \ B; such that

(1) I8Vill(Bo(y)) = jui(Bo(y)), 0 < p < po,
andlet B; ; = W\ A, ;. Then if x € B; ; we have either x € B; N W or

(2) 1i(Bo(x)) < j~'18Vill(Bo(x)) for some o € (0. po).

Let B be the collection of balls B, (x) with x € B; j, 0 € (0,po), and with (2)
holding. By the Besicovitch Covering Lemma (§3.12 of Ch.1) there are families
Bi,....By C B with N = N(n + 6), with B,',J' \ B, C U?’:l (UBEBgB) and with
each By a pairwise disjoint family. Hence if we sum in (2) over balls B € U)_ By,
we get

wi(Bij) < Nj U SVill(W) + pi (B N W)

(W = {x e U : dist(x, W) < po}), so
i (Bij) <¢j ™' + wi(BinW),

with ¢ independent of i, j. In particular for each i, j > 1

(3) w(interior (NG, By j)) < liqrgi)rolfuq (interior (N2, By ;) < c¢j ",
since uq(BgNW) — 0asq — oo.
Now let j € {1,2,...} and consider the possibility that there is a point x € W such
that x € W\ interior(ﬂg":qu,j) foreachi =1,2,.... Then we could select, for
eachi = 1,2,..., y; € W\ N3, By,; with [y; — x| < 1/i. Thus there are sequences
yi = x and ¢; — oo such that y; ¢ By, j foreachi =1,2,.... Then y; € A,,,; and
hence (by (1))

182 1By (31)) < Jitas (Bo(3)). 0 < p < po,

foralli = 1,2,.... Then by the monotonicity formula 3.3 (with A = j) together
with the fact that ©” (114, yi) > 1 we have

1g; (Bo(3i)) = e Pwnp”, 0 < p < po,
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so that ®" (u,x) > 1 for such an x. Thus we have proved ©"(u, x) > 1 for each x
with x € W\ (U2, interior (N$2 By ;)) for some j € {1,2,...}. That is

(4) O"(u,x)>1VYxe W\ (ﬂ‘f-‘;l U2, interior (NG, By ;).
However
(5)  w(Ng2, UfL, interior(NG2; Be,;)) < p(Uf2, interior(NG2,; Be,j)) Vj = 1
= lli)rgo p(interior (NG, By ;))
<¢j by (3).

so u(N%2, U2, interior(N2,; By,;)) = 0 and the theorem is established (by (4)).
O

4 Constancy Theorem

4.1 (Constancy Theorem.) Suppose V' is an n-varifold in U, V is stationary in U,
and U Nspt wy C M, where M is a connected n-dimensional C? submanifold of R,
Then V = Bpv(M) for some constant 6.

4.2 Remarks: (1) Notice in particular this implies (M \ M) NU = @ (if V # 0);
this is not a-priori obvious from the assumptions of the theorem.

(2) J. Duggan in his PhD thesis [Dug86] has extended 4.1 to the case when M is
merely Lipschitz.

(3) The reader will see that, with only minor modifications to the proof to be given
below, the theorem continues to hold if N is an embedded (n + ¢)-dimensional C?
submanifold of R"*¢ and if V' is stationary in U N N in the sense that §V (X) =
0VX € K(U:R"™) with Xy € TN Vx € N, provided we are given sptV C
{(x,8) : x € Nand S c TyN}. (This last is equivalent to sptuy C N and
p#V =V, where p: U — U N N coincides with the nearest point projection onto
U N N in some neighborhood of U N N.)

Proof of 4.1: We first want to argue that V = v(M, 6) for some positive locally
H"-integrable function 6 on M.

To do this first take any f € C2(U) with M C {x € U : f(x) = 0} and note that
by 2.3

1) SV(IVS) = [Ips (VI av(x.s),
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because (using notation as in 2.3)
divs(fVf)=VSf.-Vf+ fdivgVf
= |ps(Vf)|" on M,
where we used f = 0 on M. Since §V = 0, we conclude from (1) that
(2) ps(Vf(x))=0 forall (x,S)esptV.

Now let £ € M be arbitrary. We can find an open W C U with § € W and
such that there are C2(U) functions fi,..., Ji with M c k_ {x : fj(x) = 0}
and with (Ty M )* being exactly the space spanned by V f1(x), ..., V fx (x) for each
x € MNW. (One easily checks that such W and f, ..., fi exists.) Then (2) implies
that

(3) ps((TeM)*Y) =0 forall (x,8) e G,(W)NsptV.

But (3) says exactly that S = Tx M for all (x,S) € G,(W) NsptV, so that (since &

was an arbitrary point of M), we have

@) [res)avies) = [ T dp). f € ColGa(U)).

On the other hand we know from monotonicity 3.3 that 6(x) = ©"(uy, x) exists

for all x € M N U, and hence (since ®"(H" L M,x) = 1 for each x € M, by

smoothness of M), we can use the XXX Theorem 3.23 of Ch. 1 to conclude from

(4) that in fact

() [rs)avins) = [
MU

(so that V = v(M,0) as required).

It thus remains only to prove that § = const. on M N U. Since M is C? we can

take X € IC(U,R"M) such that Xy € TxM Vx € M N U. Then by (5) and 2.3

divX 0 dH" = 0, where div X is the
MNU

classical divergence of X|M in the usual sense of differential geometry. Using local
coordinates (in some neighborhood U ¢ R”) this tells us that

S(x, TxM)0(x)dH"(x), f € Cc(Gn(U)),

8V (X) = 0 is just the statement that

8X: ~ . _
/~2;’:13—’9dc":o if XieCHO)i=1.....n.
U Xi

where 60 is 6 expressed in terms of the local coordinates. In particular

9¢ ~
/iedﬁnzov;ecc(U),izl ..... n
U 0x;

and it is then standard that 6 = constant in U. Hence (since M is connected) 0 is
constant in M. O
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5 Varifold Tangents and Rectifiability Theorem

Let V be a n-varifold in U and let x be any point of U such that

5.1 O"(uy,x) =6y € (0,00) and E%Pl_nHSVH(Bp(X)) = 0.

By definition of §V (in 2) and the Compactness Theorem 4.16 of Ch.1 for Radon
measures, we can select a sequence A; | 0 such that 7, ; ;#V converges (in the sense
of Radon measures) to a varifold C such that

C is stationary in R"
and

pc(Bp(x))
wn "

5.2 = 6y Vp > 0.
Since §C = 0 we can use 5.2 together with the monotonicity formula 3.4 to con-
clude

2
|PSL (x )}
————dC(x,5)=0Vp>0,
/Gnuap(o» e[+ (. 8) s
so that pgi(x) = 0 for C-ae. (x,S5) € G, (R"*), and hence pg.(x) = 0 for all
(x,S) € spt C by continuity of pg.(x) in (x, S). Then by the same argument as in
the proof of Theorem 6.1 of Ch.4, except that we use 3.5 in place of 5.1 of Ch.4,
we deduce that pc satisfies

5.3 A e (nop(A)) = pe(A4), ACR™E A >o.

We would like to prove the stronger result 79 ,#C = C (which of course implies 5.3,
but we are only able to do this in case ©" (puc, x) > 0 for uc-a.e. x (see 5.7 below).
Whether of not 79 44C = C without the additional hypothesis on ©" (jic, -) seems
to be an open question.

5.4 Definition: Given V and x as in 5.1 we let Var Tan(V, x) (“the varifold tangent
of V at x”) be the collection of all C = lim 7, 4V obtained as described above.

Notice that by the above discussion any C € Var Tan(V, x) is stationary in R"*+¢
and satisfies 5.3.

The following rectifiability theorem for n-varifolds is a central part of the theory of
n-varifolds with locally bounded first variation.

5.5 Theorem (Rectifiability Theorem.) Suppose V' has locally bounded first varia-
tion in U and ©"(uy,x) > 0 for py-a.e. x € U. Then V is an n-rectifiable varifold.
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(Thus V = v(M,0), with M a H"-measurable countably n-rectifiable subset of U
and 6 a non-negative locally H"-integrable function on U.)

5.6 Remark: We are going to use 1.2. In fact we show that V has a tangent plane
(in the sense of 1.1) at the point x where (i) ®"(uy,x) > 0, (ii) ng) (as in 1.3)
exists, (ii1) ©" (uy, - ) is y-approximately continuous at x, and (iv) [[§V||(B,(x)) <
A(x)puy (By(x)) for 0 < p < po = min{1, dist(x,dU)}. Since conditions (1)-(iv) all
hold py-a.e. in U (notice that (ii1) holds py-a.e. by virtue of the py-measurability
of " (uy, -) proved in 3.6), the required rectifiability of V' will then follow from

1.2

Before beginning the proof of 5.5 we give the following important corollary.

5.7 Corollary. Suppose x € U, 5.1 holds, and lim, o p™" v ({y € Bo(x) : ©" (uy, y) <
1}) = 0. If C € Var Tan(V. x), then C is rectifiable and

T]O’A#C =C VA>0.

Proof: From the hypothesis p™"uy ({y € By(x) : ®"(uy.,y) < 1}) — 0 and
the Semi-continuity 3.7, we have ©"(uuc,y) > 1 for uc-ae. y € R**t. Hence
by 5.5 we have that C is n-rectifiable. On the other hand, since ©"(uc.y) =
O"(uc,Ay) YA > 0 (by 5.3), we can write C = v(M,0) with no (M) = M VA >
0and (Ay) = 6(y) YA > 0, y € R**. (Viz. simply set 6(y) = ©"(uc,y) and
M = {y e R**:0(y) > 0}.) It then trivially follows that y € T, M whenever the
approximate tangent space 7y M exists, and hence 79 ;4C = C as required. O

Proof of 5.5: Let x be as in 5.6(i)-(iv) and take C € VarTan(V,x). (We know
Var Tan(V, x) # @ because 5.6(i), (iv) imply 5.1.) Then C is stationary in R"*+¢
and

1e(Bo(0))
wn "

(1) =60 Vp>0 (6p=0"(uy,x)).

Also for any y € R**¢ (using (1) and the monotonicity formula 3.3)
B 0 n
wp P wn R won (R + [y])
=0 (1+|y|/R)" — 6o as R } <.

That is (again using the monotonicity formula 3.3),

te(Bo(y))
wn "

(2) ®"(uc,y) < <6 Vy e R" p>o0.
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Now let V; = ny 4,4V, where A; | 01is such that limn, ; .4V = C and where we are
still assuming x is as in 5.6 (1)-(iv).

From 5.6(iii) we have (with e(p) | 0 as p | 0)

6) O (v, v) 2 60— £(p). v € G 1 By(x),

where G C U is such that

(4) wy (Bo(x)\ G) <&(p)p”, p sufhiciently small.

Taking p = A; we see that (3), (4) imply

(5) O" (uy;.y) <bo—¢;j. y € G; N B1(0)

with G; such that

(6) my; (B1(0)\ Gj) <&,

where ¢; — 0 as j — oo. Thus, using (5), (6) and the semi-continuity result of 3.7,
we obtain

(7) O©"(uc.y) = 0o for pc-ae. y e R**
(and hence for every y € spt uc by 3.4). Then by combining (2) and (7) we have

B
®"(/Lc,y) 590 = % Vy espt,LLC, )0>0
n

Then by the monotonicity formula 3.4 (with V = C), we have
psi(x—y)=0for C-ae. (x,5) € G, (R").

Thus (using the continuity of pgi (x —y) in (x, S)) we have

(8) x—y €S VyesptucandV(x,S) esptC.

In particular, choosing T such that (0,7) € spt C (such T such that (0,7) € spt C
(such T exists because 0 € sptpuc = n(sptC)), (8) implies y € T Vy € sptuc.
Thus spt uc C T, and hence C = 6yv(T') by Constancy 4.1.

Thus we have shown that, for x € U such that 5.6(1), (iii), (iv) hold, each element
of Var Tan(V, x) has the form 6ov(T), where T is an n-dimensional subspace of
R"*£. On the other hand, since we are assuming (5.6(ii)) that ng)
that for continuous B on G (n + ¢, n)

| BS)av(y.s)
: Gn(Bp(x)) _
©) S B

exists, it follows

S)dn'¥(8).
G(n%n)ﬂ( )dny ' (S)
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Now let 6pu(T) be any such element of Var Tan(V,x) and select A; | 0 so that
lim ny 3,4V = 6ov(T). Then in particular

S$)dV;(y,S
. Lo 310, () 4V (0.8
T (Bi0))

= B(T).

and hence (9) gives
B = [ B an(s),

thus showing that 6pv(T) is the unique element of Var Tan(V, x). Thus

li V = 6pv(T),
Alﬁ)l’?x,k# oy( )

so that T is the tangent space for V' at x in the sense of 1.1. This completes the
proof. O

The following compactness theorem for rectifiable varifolds is now a direct conse-
quence of the Rectifiability 5.5, the Semi-continuity 3.7, and the Compactness The-
orem 4.16 of Ch.1 for Radon measures, and its proof is left to the reader.

5.8 Theorem (Compactness theorem for n-varifolds.) Suppose {V;} is a sequence
of rectifiable n-varifolds in U which are locally bounded first variation in U,

sup(py; (W) + I8V (W) < 00 YW cC U,

Jj=1
and ©" (py,; . x) = Lon U \ Aj, where py; (Aj N W) — 0as j — oo VW cc U.
Then there is a subsequence {V;:} and a rectifiable varifold V of locally bounded first
variation in U, such that V;: — V (in the sense of Radon measures on G,(U)),
O"(puy,x) = 1for py-ae x € U, and ||SV (W) < liminfj o |8V} || (W) for each
W ccU.

5.9 Remark: An important additional result (also due to Allard [All72]) is the
Integral Compactness Theorem, which asserts that if all the V; in the above theorem
are integer multiplicity, then V' is also integer multiplicity. (Notice that in this case
the hypothesis ©” (uy;,x) > 1 on U \ 4; is automatically satisfied with an 4; such
that Hv; (A/) =0.)

Proof that V is integer multiplicity if the V; are: Let W cc U. We first assert
that for uy-a.e. x € W there exists ¢ (depending on x) such that

(1) liminf |§V;||(By(x)) < cuv (Bp(x)), p < min{l,dist(x,dU)}.
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Indeed otherwise 3aset A C W with puy (A) > 0 such that for each j > 1 and each
x € A there are px > 0, iy > 1 such that B, (x) C W and

1v (B, (x)) < jTHI8Vill(Bpy (%)), i = ix.
By the Besicovitch Covering Lemma (§3.12 of Ch. 1) we then have
v (A7) < ¢ THBVAI(W), €2 i,
where A; = {x € A:ix <i}. Thus

pv(A;) < ¢j = limsup [|8Vel|(W),

{—o00
and hence 4; t A asi 1 oo we have

py(A) <ej™!

for some ¢ (< 00) independent of j. That is, uy (A4) = 0, a contradiction, and hence
(1) holds. Since ®"(uy, x) exists uy-a.e. x € U, we in fact have from (1) that for
uy-a.e. x € U there is a ¢ = ¢(x) such that

(2) liminf |§V;||(By(x)) < cp”, 0 < p < min{l1,dist(x,dU)}.

Now since V = v(M, 0), it is also true that for uy-a.e. £ € spt uy we have ng 34V —
Bov(P) as A | 0, where P = T¢eM and 6y = 6(&). Then (because V; — V, and
hence ng 24V — nga#V for each fixed A > 0), it follows that for uy-a.e. § € U we
can select a sequence A; | 0 such that, with W; = ng 3,4V;,

(3) Wi — 6pv(P)
and (by (2)) for each R > 0
(4) |§W; 1l (B (0)) — 0.

We claim that 6 must be an integer for any such &; in fact for an arbitrary sequence
{W;} of integer multiplicity varifolds in R"*+¢ satisfying (3), (4), we claim that 6,
always has to be an integer.

To see this, take (without loss of generality) P = R" x {0}, let ¢ by orthogonal
projection onto (R” x {0})+, and note first that (3) implies

(5) pros(Wi L Gu{x € " 1 g(x)| < }) — 6ou(R")

for each fixed ¢ > 0. However by the mapping formula for varifolds (§1 of Ch.4),
we know that (5) says

(6) v(R". ¥i) > Gov(R"),
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where
vilx) = Zyel’n?nlxm}(x)ﬂ{zeR””:\q(Z)l<€}9i(y)

(6; = multiplicity function of W;, so that ¥; has values in Z U {oo}). Notice that
(6) implies in particular that

(7) /Rnfwi act - GO/RHfdﬁ” Vf e CORM).

(i.e. measure-theoretic convergence of ¥; to 6p.)

Now we claim that there are sets A; C B;(0) such that
(8) Yi(x) <00 +& Vx € Bi(0)\ 4;, L"(A;) =0, & | 0;

this will of course (when used in combination with (7)) imply that for any inte-
ger N > 6y, max{y;, N} converges in L'(B;(0)) to 6, and, since max{y;, N} is
integer-valued, it then follows that 6y is an integer.

On the other hand (8) evidently follows by setting W = W; in the following lemma,
so the proof is complete. O

In this lemma, p, ¢ denote orthogonal projection of R+ onto R” x {0} C R"*¢
and {0} x R¥ ¢ R"*¢ respectively.

5.10 Lemma. Foreach§ € (0,1), A > 1, thereis e = &(8, A, n) € (0,8?) such that if
W is an integer multiplicity varifold in B3(0) with

() o (B5(0)) = A ISWI(B5(0)) <, [

3
there there is a set A C B (0) such that L™ (A) < § and, Vx € B1(0) \ 4,
pw (B2(x))
wp 2"

5.11 Remark: It suffices to prove that for each fixed N thereisa o = §o(N) € (0, 1)
such that if § € (0,8¢) then 3 & = ¢(n, A, N,8) € (0,5%) such that 5.10 (f)implies
the existence of 4 C B} (0) with £"(A) < § and, for x € B}(0) \ A and distinct
Vi, yn € p Hx) Nsptuw N{z:|q(2)| < &},

pw (Ba(x))
Wy 2"

)Ilps —pldW(y.S) <e?

Zyep—l(x)ﬂsptuwﬂ{z:lq(z)ka}@n (/’LWv y) = (1 + 8) + 4.

(1) SN O (uw.y;) < (1+36) + 6.

Because this firstly implies an a-priori bound, depending only on n, k, A, on the
number N of possible points y;, and hence the lemma, as originally stated, then
follows. (Notice that of course the validity of the lemma for small § implies its
validity for any larger §.)
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Proof of 5.10: By virtue of the above Remark, we need only to prove 5.11 (f). Let
= uw, and consider the possibility that y € B;(0) satisfies the inequalities

(1) SIWI(Bo(y)) <eu(Bp(y)), pe(0,1),
) /. Ips = PIdW (2.8) < &', pe(0,1).
Let

A1 = {y € B2(0) nspt W : (1) fails for some p € (0,1)}
Ay = {y € B2(0) Nspt W : (2) fails for some p € (0,1)}.

Evidently y € sptuw N B2(0) \ Ay = (by the monotonicity formula 3.3)

1(Bo(y)) _ e t(B1(y))

wp p" - wp

(3)

<c¢, O<p<l,
(¢ =c(A,n)), while if y € A5\ A; we have (using (3))
(4) /. ps = PIaW (2.8) = 60} = cen(By, (1)

for some py, € (0,1). If y € A; then

(5) 1(Bp, (¥)) <& HISWI(B,, (¥))

for some py, € (0, 1).

Since then {B,, (y)}yeAlqu covers Ay U A, we deduce from (4), (5) and the Besi-
covitch Covering (§3.12 of Ch. 1) that

1(A1 U As) < ce™! (/WO)IIPS —pldW(a.S)+ [§WII(B5(0)))

by the hypotheses on W.

Our aim now is to show 5.11(f) whenever x € B7(0) \ p(41 U A2). In view
of (6) this will establish the required result (with 4 = p(A4; U Az)). So let x €
B! (0) \ p(A1 U A3). In view of the monotonicity formula 3.4 it evidently suffices
(by translating and changing scale by a factor of 3/2) to assume that x = 0 €
B! (0) \ p(A; U A). We shall subsequently assume this.

We first want to establish the two inequalities, that, for y € B} (0)\ p(A4; U A>) and
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>0,
U21:
(6) @”(,u,y)fe”w+cso/r, 0<o<l,
w,o"
U~? U2'r
(7) Uz () fewu( () +ceo/t, 0<o <p<lI,
wpo" wpo"
where

UF(y) = Bs(y)n{z e R"™* 1 |q(z —y)| < 7}

Indeed these two inequalities follow directly from 3.3 and 3.5. For example to
establish (6) we note first that 3.3 gives (6) directly if = > o, while if T < o then
we first use 3.3 to give O"(u, y) < e B ) 41 then use 3.5 with & of the form

wnth

h(z) = f(lg(z=y)|), f(t) =1fort <tand f(t) =0fort > 27.

Since |V8 £ (Ig(z—y)I)| = f'(l¢(z—y)|)|ps — p| (Cf. the computation in ?? of Ch.
4 we then deduce (by integrating in 3.5 from 7 to o and using (3))

w(B:(y)) _ 1n(Us"(y))

W, T" - w,o"

+ ceo/t.

(7) is proved by simply integrating 3.5 from o to p (and using (3)).

Our aim now is to use (6) and (7) to establish

N M(U;(Yj))

(8) 2 =1 <(l+ CSZ)M + 82

w, o™ wy 2"

with ¢ = ¢(n,k.N,A), provided 26%c < v < Imin;z¢|y; — yel, y; € sptpu N
p~H0) N {z : 19(z)| < &}, 0 ¢ p(A1 U Az). (In view of (6) this will prove the
required result 5.11 () for suitable §o(N).)

We proceed by induction on N. N = 1 trivially follows from (7) by noting that
UZ*(y1) C By(y1) (by definition of UZ*(y1)) and then using the monotonicity 3.3
together with the fact that |y;| < e. Thus assume N > 2 and that (8) has been
established with any M < N in place of N.

Let yy,..., y~ be as in (8), and choose p € [0, 1) such that min; ¢ [¢(y;) — q(ye)]
(= min;z¢ |y; — yel) = 48%p, and set T = 28%p (= 27). Then

Lz

w(Ug(y;)) 5 1(Us (3))

w(UZ(y)))
pn

<e®

+ce (by (7).
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¢ =c(n,k,8). Nowsince T = 1 min;2¢ lq(y;)—q(ye)| we can select {z1,....z9} C
{y1,...,y8} (Q <N —1) and T < 7 such that T > 3§2p and

~

U;v=l Up? (yj> C U2Q=1 Upr(l_;,_cgz) (ZZ)*

where ¢ = ¢(N), and such that T < ] min;»; |z; — z;|. Since ¢§? < 1/2 for § <
8o(N) (if 8o(N) is chosen suitably) we then T > 2§25 and

Zf-ilw <(1 H(SZ)Z’QZIW’

where p = (1 + ¢§%)p and ¢ = ¢(N). Since Q < N — 1, the required result then
follows by induction (choosing ¢ appropriately). O



Appendix A

A General Regularity Theorem

We here prove a useful general regularity theorem, which is essentially an abstrac-
tion of the “dimension reducing” argument of [Fed70]. There are a number of
important applications of this general theorem in the text.

Let P > n > 2 and let F be a collection of functions ¢ = (¢!, ..., 9?):RF - R
(Q = 1is an important case) such that each ¢/ is locally H"-integrable on R?. For
¢ € F,yeRP and A > 0 we let ¢, ; be defined by

Py (x) = (y + Ax), x e RP.

Also, for ¢ € F and a given sequence {gr} C F we write g — ¢ if [ ¢ f dH" —
[of dH" (in R?) for each given f € C2(RP).
We subsequently make the following 3 special assumptions concerning F:

A.1 (Closure under appropriate scaling and translation): If [y| <1-1,0 < 1 <
1,and if ¢ € F, then ¢, ; € F.

A.2 (Existence of homogeneous degree zero “tangent functions™): If |y| < 1,
if {Ax} | 0 and if ¢ € F, then there is a subsequence {Ax-} and ¥ € F such that
@y, — ¥ and Yo = ¥ for each 1 > 0.

A.3 (“Singular set” hypotheses): We assume there is a map

sing : F — C (= set of closed subsets of RY)
such that:

(1) singp = @ if ¢ € F is a constant multiple of the indicator function of an
n-dimensional subspace of R?,

(2) If|y| <1—=2,0<2A <1, thensingp, , = A7 (singp — y),
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(3) If ¢, g € F with g — ¢, then for each ¢ > 0 there is a k(&) such that
B1(0) Nsinggr C {x € RY : dist(singg,x) < &} Vk > k(e).

We can now state the main result of this section:

A.4 Theorem. Subject to the notation and assumptions A.1, A.2, A.3 above we have
(1) dim(B;(0) Nsingp) <n—1Ve € F.
(Here “dim” is Hausdorff dimension, i.e. () means H"~!'**(sing¢) = 0 Ya > 0.)

In fact either sing 9 N B1(0) = @ for every ¢ € F or else there is an integer d € [0,n—1]
such that

dimsingg N B1(0) <d Vg € F
and such that there is some Y € F and a d-dimensional subspace L C RY with

(1) singy = Land Yy =¥ VyeL, A>0.
Ifd = 0 then singp N B,(0) is finite for each ¢ € F and each p < 1.

A.5 Remark: One readily checks that if L is an n-dimensional subspace of R?
and y € F satisfies A.4 (1}), then ¥ is exactly a constant multiple of the indicator
function of L (hence singy = @ by A.3(1)); otherwise we would have P > n and
¥ = const. # 0 on some (n + 1)-dimensional half-space, thus contradicting the fact
that  is locally #"-integrable on R”.

Proof of A.4: Assume singp N B1(0) # @ for some ¢ € F, and let d = sup{dim L :
L is a d-dimensional subspace of R? and there is ¢ € F with singg # @ and
¢yr =9 Vy €L, A >0} Thenby A5 we haved <n—1.

Foragiven ¢ € F and y € B1(0) we let T (¢, y) be the set of ¥ € F with ¢, =
¥ VA > 0 and with limg, 5, = ¥ for some sequence Ax | 0. (T'(¢,y) # @ by
assumption A.2.)

Let £ > 0 and let

F={peF:H (singp N Bi(0) > 0}
Our first task is to prove the implication
(1) peF =3y eT(p.x)nF

for H%-a.e. x € singg N B, (0).

To see this, let 5 be the “size § approximation” of H as described in §2 of Ch.1
and recall #4(A4) >0 < HE (A) > 0, so that

Ft={o e F:Hl(singe n Bi(0) > 0}
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Also note that (by 3.6(2) of Ch. 1), for any bounded subset 4 of R?,
HE(A) > 0= O (HE L A,x) >0 for Hbae x e A
Thus we see that if ¢ € F* then for #*-a.e. x € singp N B} (0) we have
O (HS, L singgp,x) > 0.

For such x we thus have a sequence A | 0 such that

) i Moo (singe 0 By (x))

> 0,
k—00 Ai

and by assumption A.2 there is a subsequence {Ax+} such that ¢, ;,, = ¥ € T'(¢. x).
If now H: (singy) = 0, then for any & > 0 we could find open balls {B,, (x;)}
such that

sing ¥ C U; B, (x))

and

(3) Zja)gpf <e¢

(be definition of HY,). Now (2) in particular implies that K = B;(0)\U; B,,, (x;) is
a compact set with positive distance from sing . Hence by assumption A.3(3) we
have

sing gx.a,, N B1(0) C U; By, (x;)
for all sufficiently large k, and hence by (3)
HE (singx 2, N B1(0)) <& k > k(e).
Thus since A (sing ¢ — x) = sing ¢, 3, (by A.3(2)) we have
A HS (singe N By, (x)) <&
for all sufficiently large k, thus a contradiction for & < limy_e A7“HS (singe N

B;, (x)). (Such ¢ can be chosen by (2).)

We have therefore established the general implication (1). From now on take £ >
d — 1 so that F* # @ (which is automatic for £ < d by definition of d). By (1)
there is ¢ € F* with ¢y ; = ¢ YA > 0. Suppose also that there is a k-dimensional
subspace (k > 0) S of R such that ¢, , = ¢ Vy € S, 2 > 0. (Notice of course
this is no additional restriction for ¢ in case k = 0.) Now if k > d + 1 then, by
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definition of d, we can assert singg = @, thus contradicting the fact that ¢ € F*.
Therefore 0 < k < d,and if k < d —1 (< £), then H*(S) = 0 and in particular

(4) dx € B1(0) Nsingg \ S.

But by A.2 we can choose ¥ € T(¢,x). Since ¥ = limg, s, for some sequence
A; 1 0, we evidently have (since ¢ 4x 1 = ¢x.2 Yy € S,1 > 0)

Wy,l = lim‘py+x,/lj = lim‘ﬂx,lj = W Vy S\

and
Vpx1 =limeyya g, =¥ VB ER.

(All limits in the weak sense described at the beginning of the section.) Thus ¥, ) =
¥ for each A > 0 and each z in the (k +1)-dimensional subspace T of R? spanned by
S and x. singy # @ (by A.3(3)), hence by induction on k we can take k = d —1; i.e.
dim T = d, and hence singy C T by A.3(2). On the other hand if 3% € singy \ T
then we can repeat the above argument (beginning at (4)) with 7" in place of S and y
in place of ¢. This would then give a (d + 1)-dimensional subspace T and a ¢ € F
with singyy O T, thus contradicting the definition of d. Therefore singg = T.
Furthermore if £ > d then the above induction works up to k = d and again
therefore we would have a contradiction. Thus dim(B;(0) Nsingy) <d Vg € F.

Finally to prove the last claim of the theorem, we suppose that d = 0. Then we
have already established that

(5) H*(singg N B1(0)) =0 Vo >0, ¢ € F.

If singp N B,(0) is not finite, then we select x € B,(0) such that x = limx; for
some sequence x; € singg N B1(0) \ {x}. Then letting Ay = 2|x; — x| we see
from A.3(2) that there is a subsequence {Ax/} with ¢, , — ¥ € T(g,x) and
(xg—x)/|xgr— x| = & € 3B1(0). Now by A.3(2), (3) we know that {£/2} N {0} C
sing ¥ and, since ¥, = ¥, this (together with A.3(2)) gives L¢ C singy where Lg
is the ray determined by 0 and £. Then H'(singy N B;(0)) > 0, thus contradicting
(5), because v € F. O

Appendix B

Non-existence of Stable
Minimal Hypercones, n < 6

Here we describe J. Simons [Sim68] result on non-existence in R” ™1 of n-dimensional
stable minimal cones (previously established in case n = 2, 3 by Fleming [Fle62] and
Almgren [Alm66] respectively). The proof here follows essential Schoen-Simon-
Yau [SSY75], which is a slight variant of the original proof in [Sim68].

Suppose to begin that C € D, (R"*!) is a cone (194C = C) and C is integer
multiplicity with dC = 0. If singC C {0} and if C is minimizing in R"*! then,
writing M = spt C\{0} and taking M, as in §5 of Ch.2, we have £H" (M) l,_g=0
;%”H"(Mt) |,_o = 0. (This is clear because in fact H" (M) takes its minimum
value at 1 = 0, by virtue of our assumption that C is minimizing.) Notice that M is

and

orientable, with orientation induced from C, and hence in particular we can deduce
from 5.12 of Ch.2 that

B.1 /M(|VM;|2 — 2|APR) dH" > 0

for every ¢ € C}(M) (notice 0 ¢ M, so such ¢ vanish in a neighborhood of 0).
Here A is the second fundamental form of M and |A| is its length, as described in §
4 of Ch.2 and 5.12 of Ch.2.

The main result we need is given in the following theorem.
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B.2 Theorem. Suppose 2 < n < 6 and M is an n-dimensional cone embedded in R" !
with zero mean curvature (see §4 of Ch.2) and with M \ M = {0}, and suppose that
M is stable in the sense that B.1 holds. Then M is a hyperplane.

As explained above, the hypotheses are in particular satisfied if M = spt C \ {0},
with C € D,(R"*1) a minimizing cone with 3C = 0 and sing C C {0}.)

B.3 Remark: B.2 is false for n = 7; J. Simons [Sim68] was the first to point out that
the cone M = {(xl, ox®) eRE YT (62 = Z,-gzs(xi)z} is a stable minimal
cone. (Notice that M is the cone over the compact manifold (%83) x (%83) C
S” c R8.) The fact that the mean curvature of M is zero is checked by direct
computation. The fact that M is actually stable is checked as follows. First, by
direct computation one checks that the second fundamental form A of M satisfies
A = 6/|x|.

On the other hand for a stationary hypersurface M C R"*! the first variation
formula 5.3 of Ch.2 says [divyy X dH" = 0 if spt|X| is a compact subset of M.
Taking X, = (£%/r?)x, { € C®(M), r = |x|, and computing as in §4 of Ch.4, we
get

(n— 2)/ (&2/r?) dH" = —2/ er2x - VM e anr,
Im M
Using the Schwarz inequality on the right we get

(n—2)?

272 n - M 12 qn
[ @< [ v,

M
Thus we have stability for M (in the sense of B.1) whenever A satisfies |x|?*|A|> <
(n—2)%/4.

For the example above we have n = 7 and |x|?|4|?> = 6, so that this inequality is
satisfied, and the cone over S* x S is stable as claimed. (Similarly the cone over
S? x §7 1s stable for ¢ > 3; i.e. when the dimension of the cone is > 7.)

Before giving the proof of B.2 we need to derive the identity of J. Simons for the
Laplacian of the length of the second fundamental form of a hypersurface (B.8 be-
low).

The simple derivation here assumes the reader’s familiarity with basic Riemannian
geometry. (A completely elementary derivation, assuming no such background, is

described in [Giu84].)

For the moment let M be an arbitrary hypersurface in R"*! (M not necessarily a
cone, and not necessarily having zero mean curvature).
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Let 71,...,7, be a locally defined family of smooth vector fields which, together
with the unit normal v of M, define an orthonormal basis for R?*! at all points in
some region of M.

The second fundamental form of M relative to the unit normal v is the tensor
A = hijt ® 7, where hjj = (Dy;v, 7). (Cf. §4 of Ch.2.) Recall (see 4.26 of Ch.2)
that

B.4 hij = hji.

and, since the Riemann tensor of the ambient space R"*! is zero, we have the Co-
dazzi equations

B.5 hij,kZhik’j,i,j,kG{l,...,l’l}.

Here h;;  denotes the covariant derivative of A with respect to ti; that is, h;; x are
such that Vo, A = hyj 7 @ 7.

We also have the Gauss curvature equations
B.6 Rijke = hiehji — hixhjg,

where R = R;jx¢ti ® T; ® 1x ® ¢ 1s the Riemann curvature tensor of M, and where
we use the sign convention such that R;j;; (i # j) are sectional curvatures of M
(= +1,if M =8").

From the properties of R (in fact essentially by definition of R) we also have, for
any 2-tensor a;; t; ® Tj,

Qjj e = Qjjek + Qim Rmjok + amj Riniok

(where a;; k¢ means a;;x ¢—i.e. the covariant derivative with respect to t; of the
tensor a;;x 7 ® T; ® tx). In particular

B.7 hijie = hij o + himRmjox + hmj Rmick
= hij ek + him[hmehjx — hmichje) — hmj[hiehmic — hikhme)

by B.6, where, here and subsequently, repeated indices are summed from 1 to n.
B.8 Lemma. % the notation above,
1
Am (51AP) = 2 jahfix — VAP + hij Hij + Hhomihimjhij,

where H = hyy = trace A.
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Proof: We first compute h;; g

hijxk = hikjx  (by B.5)
= hiijk  (by B.4)
= hyixj + hxm[hmjhix — hmihij)
— hmi [hkjhmk — hkkhmj} (by B.7)
= hikj = (X sl ) i + hickhomi hom
= Ngk,ij — (Zm,khfnk)hij + hikhmihm;  (by B.5)

Now multiplying by h;; we then get (since hijhijix = 5 (X ;%) o — Zijuchiig)

B.9 (Zl ) e = Xt = (Xi; %) + hij Hyj + Hhmihmghi;,

which is the required identity.

We now want to examine carefully the term }~; ; 7, appearing in the identity
of B.8 in case M is a cone with vertex at 0 (i.e. no M = M VA > 0). In particu-
lar we want to compare Y-, ; ;47 with [VM|A4]|? in this case. Since [V |A]]> =
> keilAI72(hijhijx)?, we look at the difference

B.10 D= lekhljk ZZ=1|A|_2(hi/hij,k)2-

B.11 Lemma. If M is a cone (not necessarily minimal) the guantity D defined in B.10
satisfies
D(x) = 2|x|?|A(x)]*, x € M.

Proof: Let x € M and select the frame 74, ...,
the ray £, through x, and so (as vectors in R"*!) ry,...,

Then

1, so that 7, is radial (x/|x]) along
1, are constant along .

(1) hpj =hjn =0 on{y, j=1,....n,
and (since h;; (Ax) = A7 h;;(x), A > 0)

(2) hijn = —r_lh,-j on {y.
Rearranging the expression for D, we have

1 _
= EZZ=IZ?,j,r,s=1|AI 2(hrshij,k - hijhrs,k)zv

APPENDIX B: NON-EXISTENCE OF STABLE MINIMAL HYPERCONES 1 < 6 233

as one easily checks by expanding the square on the right. Now since

Z, JJrs= 1(hrshzjk hijhrs,k) > 421 jor= 1(hrshij,k _hijhrs,k)z»

S =n

we thus have
D > 2|A|_22k 121 JJr= l(hijhrn,k)z'

By the Codazzi equations B.5 and (2) this gives

D >27‘72|A| ZZk IZIJr 1h12/h$k

=2r2|A|? A" (by (1)
=224,

as required. O

Proof of B.2: Notice that so far we have not used the minimality of M (i.e. we
have not used H (= hyx) = 0). We now do set H = 0 in the above computations,
thus giving (by B.8, B.11)

1 -
(1) AM(§|A|2) + A" = 2r 2|4 + | V|47

for the minimal cone M. (Notice that |A| is Lipschitz, and hence |V|A|| makes
sense H"-a.e. in M.)

Our aim now is to use (1) in combination with the stability inequality B.1 to get a
contradiction in case 2 < n < 6.

Specifically, replace ¢ by ¢|A| in B.1. This gives
@ [ A= [ [veanf
= [ (VEPIAP + @IVI4IP) + 2 14195 V4]

M M

Now

2] GlAIve-vial =2 ¢V (314P)

= [ (v6)-v(114P)
= —/McZAM (314P)

= [ (4re -

2r 22 AP + 2|VIAIP) by (D),
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and hence (2) gives
3) 2] r22aP < [ JAPIVEP vee Clm).
Im M

Now we claim that (3) is valid even if ¢ does not have compact support on M,
provided that ¢ is locally Lipschitz and

4) /Mr_2é‘2|A|2 < 0.

(This is proved by applying (3) with ¢y, in place of {, where y, is such that y,(x) = 1
for [x| € (e,&71), |Vye(x)] < 3/|x| for all x, y.(x) = 0 for |x| < &/2 or |x| > 271,
and 0 < y, < 1 everywhere, then letting ¢ | 0 and using (4).)

Since M 1s a cone we can write
o0
(5) /(p(x)d’}—l"(x):/ r"—l/ o(re) dH" Y (w)dr
M 0 by

for any non-negative continuous ¢ on M, where ¥ = M N'S" is a compact (n — 1)-
dimensional submanifold. Since |A(x)|? = r~2|A(x/|x])|?, we can now use (5) to
check that ¢ = r1+8r11_”/2_2€, r1 = max{1,r}, is a valid choice to ensure (4), hence
we may use this choice in (3). This is easily seen to give

6) 2/ P22 412 < (10 5)2/ | A2r2n=28
M Mn{r>1}

+(1+g)2/ 1A% < 0.
Mn{r<1}

For 2 < n < 6 we can choose ¢ such that (3 —2+¢)? <2and (1 +¢)? < 2, hence
(6) gives |A|*> = 0 on M as required. O
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