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As a preliminary we need the following maximum principle for harmonic functions, which is of
great importance in itself; we only state and prove the maximum principle on a ball, but the reader
should note that an analogous theorem (with essentially identical proof) holds on any bounded
open subset of Rn.

In the statement, and subsequently, we use the notation

BR = {x ∈ Rn : ‖x‖ < R}, BR = {x ∈ Rn : ‖x‖ ≤ R}, ∂BR = {x ∈ Rn : ‖x‖ = R}.

Theorem (Maximum Principle for Harmonic Functions.) Suppose u : BR → R is continuous
and u|BR is C2 and harmonic (i.e. ∆u =

∑n
j=1DjDju ≡ 0) on BR. Then maxBR

u = max∂BR u.

Proof: Let ε > 0 be arbitrary and define

v(x) = u(x) + ε‖x‖2, x ∈ BR,

and observe that then u ≤ v in BR and v ≡ u+ εR2 on ∂BR.

We claim maxBR
v = max∂BR v(= max∂BR u + εR2). If this is false then there is a point a ∈ BR

with v(a) = maxBR
v > M + εR2, where, here and subsequently, we take M = max∂BR u. Pick

δ > 0 with Bδ(a) ⊂ BR, Then, for each j = 1, . . . , n, v(a + tej) is a C2 function of t for |t| < δ
and takes its maximum at t = 0. Hence from 1-variable calculus we have d

dt [v(a + tej)]|t=0 = 0

and d2

dt2
[v(a + tej)]|t=0 ≤ 0. But of course by definition of partial derivatives, this says exactly

that Djv(a) = 0 and DjDjv(a) ≤ 0. By taking the sum over j the latter inequality implies
∆v(a) ≤ 0, whereas by direct computation we have ∆v = ∆u + 2nε ≡ 2nε > 0 at each point of
BR, a contradiction. So indeed maxBR

v = M + εR2 and hence u(x) ≤ v(x) ≤ M + εR2 for each

x ∈ BR. Since ε > 0 is arbitrary this shows that u(x) ≤M for each x ∈ BR.

Theorem (Fundamental Theorem of Algebra.) Let P (z) = zn + an−1z
n−1 + · · ·+ a1z+ a0 be

a polynomial of the complex variable z = x + iy (where a0, . . . , an−1 are given complex numbers).
Then there are λ1, . . . , λn ∈ C with P (z) ≡ (z− λ1) · · · (z− λn) for all z ∈ C. (Thus λ1, . . . , λn are
the roots of P (z) = 0.)

Remarks: Before we start the proof we make 3 remarks about such polynomials P (z):

(i) λ ∈ C ⇒ P (z) − P (λ) = zn − λn +
∑n−1

j=1 aj(z
j − λj) and hence using the formula zj − λj =

(z − λ)(zj−1 + λzj−2 + · · ·+ λj−2z + λj−1) for j ≥ 2, we obtain P (z)− P (λ) = (z − λ)Q(z), where
Q(z) = zn−1 + λzn−2 + · · · + λn−1 +

∑n−1
j=1 aj(z

j−1 + λzj−2 + · · · + λj−2z + λj−1) is a polynomial
of degree n − 1. In particular if P (λ1) = 0 (i.e. if λ1 is a root of the equation P (z) = 0) then the
above with λ = λ1 implies P (z) ≡ (z−λ1)Q(z) for all z ∈ C. Thus to prove the above fundamental
theorem of algebra it suffices to prove we can always find one root, because then we can use induction
on n with the inductive hypothesis that the theorem is true with n− 1 in place of n for any n ≥ 2
(which guarantees that Q(z) = (z − λ2) · · · (z − λn) and hence P (z) = (z − λ1)(z − λ2) · · · (z − λn)
as required).

(ii) As we proved in Q.8 of hw9, the real and imaginary parts u, v of P satisfy the Cauchy-Riemann
equations ux = vy, uy = −vx, and in particular are harmonic functions.



(iii) At points where P (z) 6= 0 we claim that the real and imaginary parts of 1
P (z) satisfy the

Cauchy-Riemann equations, and hence are also harmonic. Check:

1

P (z)
=

1

u+ iv
= S + iT with S, T real ⇒ S =

u

u2 + v2
, T =

−v
u2 + v2

,

so by using the quotient rule for taking derivatives we have

Sx =
(u2 + v2)ux − 2u(uux + vvx)

(u2 + v2)2
=
ux(v2 − u2)− 2uvvx

(u2 + v2)2

Ty =
−(u2 + v2)vy + 2v(uuy + vvy)

(u2 + v2)2
=
vy(v

2 − u2) + 2uvuy
(u2 + v2)2

and since ux = vy and uy = −vx (by Remark (ii) above), we thus have Sx = Ty. Similarly (exercise)
Sy = −Tx.

Proof of the Fundamental Theorem of Algebra: As pointed out in Remark (i) above, it
suffices to prove that there is one root of P (z) = 0; that is, we simply have to show that P (z)
vanishes somewhere. Suppose on the contrary that P (z) 6= 0 for each z ∈ C. Then by Remark (iii)
above the real and imaginary parts S, T of 1/P (z) are harmonic on R2. Also by the triangle
inequality

|P (z)| = |zn +
∑n−1

j=0 ajz
j | ≥ |zn| − |

∑n−1
j=0 ajz

j | ≥ |zn| −
∑n−1

j=0 |ajz
j | = |z|n −

∑n−1
j=0 |aj | |z|

j ,

and so
|z| = R ≥ 1⇒ |P (z)| ≥ Rn −

∑n−1
j=0 |aj |R

j ≥ Rn(1−R−1
∑n−1

j=0 |aj |),

and hence

|z| = R ≥ max{1, 2
∑n−1

j=0 |aj |} ⇒ |P (z)| ≥ Rn

2
⇒ 1

|P (z)|
≤ 2

Rn
,

hence

ε > 0 and |z| = R ≥ max{1, 2
∑n−1

j=0 |aj |,
(2

ε

)1/n
} ⇒ 1

|P (z)|
≤ 2R−n ≤ ε.

So take any ε > 0 and let R0 = max{1, 2
∑n−1

j=0 |aj |, (
2
ε )1/n}. Since max{|S|, |T |} ≤

√
S2 + T 2 =

1
|P (z)| the above inequality tells us that

|z| = R ≥ R0 ⇒ |S|, |T | ≤ ε.

Since S, T are harmonic we can then use the maximum principle to conclude

max
BR

S = max
∂BR

S ≤ ε, R ≥ R0,

and (applying the maximum principle to −S)

max
BR

−S = max
∂BR
−S ≤ ε, R ≥ R0.

Thus |S| ≤ ε on BR ∀R ≥ R0 and hence supR2 |S| ≤ ε. Since ε > 0 was arbitrary this implies
S ≡ 0. Similarly T ≡ 0, so both S and T vanish identically, which of course is impossible because
1/P (z) = S + iT is in fact never zero. Thus P (z) must have a zero somewhere in C and the proof
is complete.


