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1(a) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets
U,C C R", and (ii) give the proof that R™ \ C' open implies C closed.

Note: In lecture we proved R™ \ C is open <= C is closed; in (ii) you are only being asked to
give the proof of “=."

Solution: U open means that for each y € U there is a p > 0 such that B,(y) C U. C closed
means that C' contains all its limit points. That is if {x} is a convergent sequence in R" and
xp € C for each k, then limx;, € C.

Suppose {z} is a convergent sequence, z3 € C for all k, x = lim zy, and R \ C' is open. Suppose
for the sake of contradiction that z ¢ C, i.e. x € R™ \ C. Since the latter set is open, there exists
d > 0 such that Bs(z) C R™\ C. By the definition of convergence, there exists N such that k > N
implies ||z — z|| < d. Thus, 2y € Bs(z) C R™\ C, contradicting zy € C. Thus proves that z € C,
i.e. C contains all of its limit points.

1(b) (4 points) (i) Give the definition of f : R” — R* being continuous, and (ii) show that if
f:R™ = R* is continuous and U C R¥ is open, C C R* is closed then f~Y(U) = {z: f(z) € U}
is open and f~1(C) = {x: f(z) € C} is closed.

Solution: (i) f is continuous if for all @ € R™ and ¢ > 0 there exists § > 0 such that |z —al| < ¢
implies || f(z) — f(a)|| <e.

(ii) Either of the two conclusions follows from the other as e.g. R® \ f~1(U) = f~Y(RF\ U), i.e.
the complement of f~1(U) is f~1(C) with C = R*\ U, so if the ‘closed’ claim is shown, the ‘open’
one follows as a set is open if and only if its complement is closed. However, we proceed directly
instead. To see the openness claim, suppose U is open, and a € f~Y(U), i.e. f(a) € U. As U is
open, there exists ¢ > 0 such that B.(f(a)) C U, i.e. if y € R* with ||y — f(a)|| < € then y € U.
By the definition of continuity there exists § > 0 such that ||z — a|| < J implies ||f(z) — f(a)|| < &,
so if z € Bs(a) then ||f(z) — f(a)|| < € and so f(z) € U, i.e. x € f~1(U). This shows that
Bs(a) € f71(U), so f~1(U) is open. To see the closedness claim, suppose that C is closed and {z;}
is a sequence in f~1(C) (i.e. f(z;) € C) converging to some z € R™. Since f is continuous, thus
sequentially continuous, lim f(z;) = f(z), so {f(z;)} is a convergent sequence of points in C, with
limit f(z). Since C is closed, f(z) € C, so z € f~1(C). Thus, f~1(C) contains its limit points, so
it is closed.
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2(a) (3 points.) Let f : R? — R be defined by f(z,y) = +(z° +y°) + 323 — 22 — y. Find all
the critical points (i.e. points where Vgn f = 0) of f, and discuss whether these points are local
max/min for f. Justify all claims either with proof or by using a theorem from lecture.

Solution: Df(z,y) = (z*+2%2-2,9*—1) = (22— 1)(2®+2), (1> +1)(y*> 1)) = (x—1)(z+1)(z>+
2), (y—1)(y+1)(y?+1)), so there are 4 critical points (1,1), (—1,—1), (1, —1),(—1,1). The Hessian
403 +2x 0

0 43
and negative definite quadratic form —6A? —4u? at (—1, —1). Hence by the Second Derivative test
from lecture (applicable because f is C2, in fact C™), we see that f has a a local minimum at (1,1)
and a local maximum at (—1,—1). At the point (—1,1) the Hessian quadratic form is —6? + 4p?
which changes sign (has positive max on S' and a negative min on S'), and hence, as we proved in
lecture/section, it is neither a local max nor a lcoal min for f. Similarly the point (1, —1) is neither
a local max nor a local min for f.

matrix at (z,y) is ( > which gives positive definite quadratic form 6% + 42 at (1,1)

2(b) (2 points.) Let f: R? — R be defined by f(z,y) = \/m Find the tangent space
of the graph of f at (2,2,3) € R3.

Solution: From lecture/homework the tangent space is Span{D;G(0), D2G(0)}, where G is the
graph map G(z,y) = (z,y,/1+ 22+ y?)". Thus D1G(z,y) = (1,0, \/#Ty?)T and DoG(z,y) =

Yy T . 237 2\
(0,1, 1+x2+y2) , and hence the tangent space is Span{(1,0, )", (0,1, 5)"}.
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3(a) (8 points): (i) State the definition of “}">° ; a, converges,” resp. “>">° ; a, converges abso-
lutely,” and (ii) show that if >~>° ja,c" converges then ) 7 ja,z™ converges absolutely for z € R
with |z| < |c|.
Solution: (i) > > ; a, convergent means that the sequence of partial sums {s, }n=12, . is conver-
gent, and in this case we say s = lim s, is “the sum of the series” (and we write s = Y o7 | a,).
> o2 | an absolutely convergent means that » 2, |a,| is convergent. (ii) We may assume ¢ # 0
since otherwise the conclusion is empty. Suppose > -7, a,c" converges. Since for any convergent
series the terms converge to 0, lima,c™ = 0, so as every convergent sequence is bounded, there
exists M > 0 such that |a,c"| < M for all n. Then |apz™| = |anc"||z/c|® < M|x/c|®. Now,
the series Y 2 M|x/c|™ is a convergent geometric series since |z/c| < 1, so its partial sums are
bounded (as they converge to the actual sum of the series). Correspondingly, the partial sums of
S lanz"| are also bounded: SN |a,z"| < SN M|z /c¢|". Since a series with non-negative
terms converges if and only if its partial sums are bounded, Y 7 |a,2z"| converges, i.e. Y~ ana™
converges absolutely.

3(b) (3 points) If cos z, sin x are defined by cos z = Zi‘;o(—l)k% and sinx = Zﬁo(—l)k%,

prove, for all x € R, % cosx = —sinz, % sinz = cosz, and sin®z + cos®z = 1.

Solution: First note that the series are convergent for all x € R (e.g. by the ratio test), and hence
by a theorem of lecture the series give C'! functions which can be differentiated simply by taking
the termwise differentiated series. Thus

% cosx = i(—l)k2kx2k_1/(2k)!
k=1
=— i(—l)k_lx%_l/(% —1)l=- i(—n%?’f“/(% +1)! =sinz
k=1 k=0
dsing = (~1)F(2k + 1)2°"/(2k + 1)!
k=0
= i(—l)kaz%/@k)! = CoS T.
k=0

2

and then %(sin2 x4 cos? z) = 2sinx cosx — 2 cos xsinx = 0, so that sin? z + cos? z is a constant C

on all of R. However cos) =1 and sin0 =0, so C' = 1.
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4(a) (4 points.) (i) Give the definition of a curve 7 : [a,b] — R™ having finite length, and for
curves of finite length state the definition of the “length of a curve 7 : [a,b] — R™.” (ii) Show that

if 7 : [a,b] — R™ has the property that 7(q is C! and lim,_,, f |7/ (t)]| dt exists then 7 has finite
length, equal to hmc_mf I/ (t)|| dt.

Hint: Any curve is continuous by definition. Use this, and the definition of length together with the theorem from
lecture for C* curves.

Solution: (i) A curve (a continuous map) 7 : [a,b] — R™ has finite length if the set {{(~,P) :
P partition of [a,b]} is bounded above, in which case ¢() is the supremum of this set. Here
(v, P) = Z] 1 1v(t5) = a(tj=1)||, where P is the partition a =ty < t; < ... <ty =b.

(ii) For ¢ > a, 7[p) is C! by assumption, so by the theorem from class, it is finite length with

(A ep) = f |2/(t)|l dt. In particular, for any partition P’ of [c,b], £(2]jcp), P') < f I/ (t)]| dt.
Now, 1f’P1sanypart1t10na—to <t <...<tn :bOf[a,b],letC—tl,SOC—tl <t2 <...<ty=

bis a partition P’ of [c, b], and so £(y, P) = [[v(¢) = (@)l +£(z, P) < 2(c) = v(a) | + [ llﬂ )|l dt.
Since 7 is continuous on [a,b], so is the function f(t) = ||v(t) — y(a)|l (belng the composite of
continuous functions)' since [a, b] is compact, f is bounded, say f(t) < M for all t € [a, b]. Moreover,
as S(1 f I7/(t)]], dt is a decreasing function of 7 (as the integrand is non-negative),

= }gri S(e),

which exists by assumption, is actually sup{S(7) : 7 € (a,b]}, so is in particular > fcb lv/(2)] dt.
Thus, (v, P) < M + ¢, proving that the length of the polygonal approximations is bounded above
by M +¢, and thus 7 has finite length. In particular, for any ¢ € (a,b), £(7) = £(¥][a,q) +£(V[c,p)) s
shown on the problem set, so £(y) is an upper bound for {£(y|j.4) : ¢ € (a,b]}, and thus £(y) > £.
Now, by the continuity of 7, given € > 0 there is 6 > 0 such that t < a+J implies ||y(t) —v(a)| < e.
If P is a partition of [a,b] as above, add a new division point o € (tp, min(¢1,4)) to obtain a new
partition Q. Then

0y, P) = |la(tr) = a(to) | + £ty 5, P') < Nlv(o) = a(to) | + I (t1) — ()| + €, 00, PT) = €7, Q),

and
(7, Q) = [l7(0) = 3(to) | + (Ao}, Q) < € + (o)) < €+ L

So for any € > 0, £ 4 ¢ is an upper bound for the lengths of the polygonal approximations to 7,
so () <l +e,ie. as e > 0 is arbitary, ¢(7) < £. Since the opposite inequality is already shown,
l(y) =¢.

Note: One can streamline the argument somewhat to show the bound ¢(y,P) < ¢+ ¢ directly,
without showing ¢(v,P) < ¢+ M first.

4(b) (3 points.) (i) Show that the map ~ : [0, 1] — R? given by 7(0) = 0, y(¢) = (¢ coslog t, tsinlog t)
is continuous, C'! on (0, 1], but not on [0, 1], and (ii) show that 5 has finite length, and compute it.

Note: v is called a logarithmic spiral. You may use the results of 4(a) even if you have not proved them.

Solution: (i) The given map is C! in (0, 1] by the chain rule, and continuous at 0 since sin, cos are
bounded by 1; in fact, 0 < t <  implies ||y(t)|| = t\/cos?logt + sin?logt = t < . On the other
hand, it is not C! since for t > 0 7/(t) = (coslogt — sinlogt,sinlogt + coslogt), and lim; o ~'(t)
does not exist as is shown by taking ¢, = e "™ with 7/(t,) = (1,1) while for t/ = e 2"+,
~'(t]) = (—1,-1), with lim¢,, — 0, lim¢,, = 0, while if the limit existed, it would have to be equal

n
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to both of the unequal limits lim~/(¢,) and lim~'(¢]). Thus, the derivative cannot be continuous
at 0, so v is not C'. (A different way to argue is that v is not even differentiable at 0: one needs
to evaluate the difference quotients (¢)/t, ¢ > 0, and let ¢ — 0; since v(¢)/t = (coslogt,sinlogt),
arguing as above shows that the limit does not exists.)

(ii) By part (a), it suffices to check that lim._,o fcl |7/ (t)]| dt exists. But for t > 0,

I7'(8)|| = v/(coslogt — sinlog t)2 + (sinlogt + coslogt)?

= \/2C0$210gt+281n210gt =2

50 £([c)) = V2(1 — ¢), and thus lim, o (i) = V2, yielding that the curve has finite length,
which is in fact /2.



