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1(a) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets
U,C ⊂ Rn, and (ii) give the proof that Rn \ C open implies C closed.

Note: In lecture we proved Rn \ C is open ⇐⇒ C is closed; in (ii) you are only being asked to
give the proof of “⇒.”

Solution: U open means that for each y ∈ U there is a ρ > 0 such that Bρ(y) ⊂ U . C closed
means that C contains all its limit points. That is if {xk} is a convergent sequence in Rn and
xk ∈ C for each k, then limxk ∈ C.

Suppose {xk} is a convergent sequence, xk ∈ C for all k, x = limxk, and Rn \ C is open. Suppose
for the sake of contradiction that x /∈ C, i.e. x ∈ Rn \ C. Since the latter set is open, there exists
δ > 0 such that Bδ(x) ⊂ Rn \C. By the definition of convergence, there exists N such that k ≥ N
implies ‖xk − x‖ < δ. Thus, xN ∈ Bδ(x) ⊂ Rn \C, contradicting xN ∈ C. Thus proves that x ∈ C,
i.e. C contains all of its limit points.

1(b) (4 points) (i) Give the definition of f : Rn → Rk being continuous, and (ii) show that if
f : Rn → Rk is continuous and U ⊂ Rk is open, C ⊂ Rk is closed then f−1(U) = {x : f(x) ∈ U}
is open and f−1(C) = {x : f(x) ∈ C} is closed.

Solution: (i) f is continuous if for all a ∈ Rn and ε > 0 there exists δ > 0 such that ‖x− a‖ < δ
implies ‖f(x)− f(a)‖ < ε.

(ii) Either of the two conclusions follows from the other as e.g. Rn \ f−1(U) = f−1(Rk \ U), i.e.
the complement of f−1(U) is f−1(C) with C = Rk \U , so if the ‘closed’ claim is shown, the ‘open’
one follows as a set is open if and only if its complement is closed. However, we proceed directly
instead. To see the openness claim, suppose U is open, and a ∈ f−1(U), i.e. f(a) ∈ U . As U is
open, there exists ε > 0 such that Bε(f(a)) ⊂ U , i.e. if y ∈ Rk with ‖y − f(a)‖ < ε then y ∈ U .
By the definition of continuity there exists δ > 0 such that ‖x− a‖ < δ implies ‖f(x)− f(a)‖ < ε,
so if x ∈ Bδ(a) then ‖f(x) − f(a)‖ < ε and so f(x) ∈ U , i.e. x ∈ f−1(U). This shows that
Bδ(a) ⊂ f−1(U), so f−1(U) is open. To see the closedness claim, suppose that C is closed and {xj}
is a sequence in f−1(C) (i.e. f(xj) ∈ C) converging to some x ∈ Rn. Since f is continuous, thus
sequentially continuous, lim f(xj) = f(x), so {f(xj)} is a convergent sequence of points in C, with
limit f(x). Since C is closed, f(x) ∈ C, so x ∈ f−1(C). Thus, f−1(C) contains its limit points, so
it is closed.
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2(a) (3 points.) Let f : R2 → R be defined by f(x, y) = 1
5(x5 + y5) + 1

3x
3 − 2x − y. Find all

the critical points (i.e. points where ∇Rnf = 0) of f , and discuss whether these points are local
max/min for f . Justify all claims either with proof or by using a theorem from lecture.

Solution: Df(x, y) = (x4+x2−2, y4−1) = ((x2−1)(x2+2), (y2+1)(y2−1)) = ((x−1)(x+1)(x2+
2), (y−1)(y+1)(y2 +1)), so there are 4 critical points (1, 1), (−1,−1), (1,−1), (−1, 1). The Hessian

matrix at (x, y) is

(
4x3 + 2x 0

0 4y3

)
which gives positive definite quadratic form 6λ2 + 4µ2 at (1, 1)

and negative definite quadratic form −6λ2− 4µ2 at (−1,−1). Hence by the Second Derivative test
from lecture (applicable because f is C2, in fact C∞), we see that f has a a local minimum at (1, 1)
and a local maximum at (−1,−1). At the point (−1, 1) the Hessian quadratic form is −6λ2 + 4µ2

which changes sign (has positive max on S1 and a negative min on S1), and hence, as we proved in
lecture/section, it is neither a local max nor a lcoal min for f . Similarly the point (1,−1) is neither
a local max nor a local min for f .

2(b) (2 points.) Let f : R2 → R be defined by f(x, y) =
√

1 + x2 + y2. Find the tangent space
of the graph of f at (2, 2, 3) ∈ R3.

Solution: From lecture/homework the tangent space is Span{D1G(0), D2G(0)}, where G is the
graph map G(x, y) = (x, y,

√
1 + x2 + y2)T. Thus D1G(x, y) = (1, 0, x√

1+x2+y2
)T and D2G(x, y) =

(0, 1, y√
1+x2+y2

)T, and hence the tangent space is Span{(1, 0, 23)T, (0, 1, 23)T}.
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3(a) (3 points): (i) State the definition of “
∑∞

n=0 an converges,” resp. “
∑∞

n=0 an converges abso-
lutely,” and (ii) show that if

∑∞
n=0 anc

n converges then
∑∞

n=0 anx
n converges absolutely for x ∈ R

with |x| < |c|.

Solution: (i)
∑∞

n=1 an convergent means that the sequence of partial sums {sn}n=1,2,... is conver-
gent, and in this case we say s = lim sn is “the sum of the series” (and we write s =

∑∞
n=1 an).∑∞

n=1 an absolutely convergent means that
∑∞

n=1 |an| is convergent. (ii) We may assume c 6= 0
since otherwise the conclusion is empty. Suppose

∑∞
n=0 anc

n converges. Since for any convergent
series the terms converge to 0, lim anc

n = 0, so as every convergent sequence is bounded, there
exists M > 0 such that |ancn| ≤ M for all n. Then |anxn| = |ancn||x/c|n ≤ M |x/c|n. Now,
the series

∑∞
n=0M |x/c|n is a convergent geometric series since |x/c| < 1, so its partial sums are

bounded (as they converge to the actual sum of the series). Correspondingly, the partial sums of∑∞
n=0 |anxn| are also bounded:

∑N
n=0 |anxn| ≤

∑N
n=0M |x/c|n. Since a series with non-negative

terms converges if and only if its partial sums are bounded,
∑∞

n=0 |anxn| converges, i.e.
∑∞

n=0 anx
n

converges absolutely.

3(b) (3 points) If cosx, sinx are defined by cosx =
∑∞

k=0(−1)k x2k

(2k)! and sinx =
∑∞

k=0(−1)k x2k+1

(2k+1)! ,

prove, for all x ∈ R, d
dx cosx = − sinx, d

dx sinx = cosx, and sin2 x+ cos2 x = 1.

Solution: First note that the series are convergent for all x ∈ R (e.g. by the ratio test), and hence
by a theorem of lecture the series give C1 functions which can be differentiated simply by taking
the termwise differentiated series. Thus

d
dx cosx =

∞∑
k=1

(−1)k2kx2k−1/(2k)!

= −
∞∑
k=1

(−1)k−1x2k−1/(2k − 1)! = −
∞∑
k=0

(−1)kx2k+1/(2k + 1)! = sinx

d
dx sinx =

∞∑
k=0

(−1)k(2k + 1)x2k/(2k + 1)!

=
∞∑
k=0

(−1)kx2k/(2k)! = cosx.

and then d
dx(sin2 x+ cos2 x) = 2 sinx cosx− 2 cosx sinx = 0, so that sin2 x+ cos2 x is a constant C

on all of R. However cos 0 = 1 and sin 0 = 0, so C = 1.
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4(a) (4 points.) (i) Give the definition of a curve γ : [a, b] → Rn having finite length, and for
curves of finite length state the definition of the “length of a curve γ : [a, b]→ Rn.” (ii) Show that

if γ : [a, b]→ Rn has the property that γ|(a,b] is C1 and limc→a
∫ b
c ‖γ

′(t)‖ dt exists then γ has finite

length, equal to limc→a
∫ b
c ‖γ

′(t)‖ dt.
Hint: Any curve is continuous by definition. Use this, and the definition of length together with the theorem from
lecture for C1 curves.

Solution: (i) A curve (a continuous map) γ : [a, b] → Rn has finite length if the set {`(γ,P) :
P partition of [a, b]} is bounded above, in which case `(γ) is the supremum of this set. Here
`(γ,P) =

∑N
j=1 ‖γ(tj)− γ(tj−1)‖, where P is the partition a = t0 < t1 < . . . < tN = b.

(ii) For c > a, γ|[c,b] is C1 by assumption, so by the theorem from class, it is finite length with

`(γ|[c,b]) =
∫ b
c ‖γ

′(t)‖ dt. In particular, for any partition P ′ of [c, b], `(γ|[c,b],P ′) ≤
∫ b
c ‖γ

′(t)‖ dt.
Now, if P is any partition a = t0 < t1 < . . . < tN = b of [a, b], let c = t1, so c = t1 < t2 < . . . < tN =

b is a partition P ′ of [c, b], and so `(γ,P) = ‖γ(c)− γ(a)‖+ `(γ,P ′) ≤ ‖γ(c)− γ(a)‖+
∫ b
c ‖γ

′(t)‖ dt.
Since γ is continuous on [a, b], so is the function f(t) = ‖γ(t) − γ(a)‖ (being the composite of
continuous functions); since [a, b] is compact, f is bounded, say f(t) ≤M for all t ∈ [a, b]. Moreover,

as S(τ) =
∫ b
τ ‖γ

′(t)‖, dt is a decreasing function of τ (as the integrand is non-negative),

` = lim
τ→a

S(c),

which exists by assumption, is actually sup{S(τ) : τ ∈ (a, b]}, so is in particular ≥
∫ b
c ‖γ

′(t)‖ dt.
Thus, `(γ,P) ≤M + `, proving that the length of the polygonal approximations is bounded above
by M+`, and thus γ has finite length. In particular, for any c ∈ (a, b), `(γ) = `(γ|[a,c])+`(γ|[c,b]) as
shown on the problem set, so `(γ) is an upper bound for {`(γ|[c,b]) : c ∈ (a, b]}, and thus `(γ) ≥ `.
Now, by the continuity of γ, given ε > 0 there is δ > 0 such that t < a+δ implies ‖γ(t)−γ(a)‖ < ε.
If P is a partition of [a, b] as above, add a new division point σ ∈ (t0,min(t1, δ)) to obtain a new
partition Q. Then

`(γ,P) = ‖γ(t1)− γ(t0)‖+ `(γ|[t1,b],P
′) ≤ ‖γ(σ)− γ(t0)‖+ ‖γ(t1)− γ(σ)‖+ `(γ|[t1,b],P

′) = `(γ,Q),

and
`(γ,Q) = ‖γ(σ)− γ(t0)‖+ `(γ|[σ,b],Q ′) ≤ ε+ `(γ|[σ,b]) ≤ ε+ `.

So for any ε > 0, ` + ε is an upper bound for the lengths of the polygonal approximations to γ,
so `(γ) ≤ ` + ε, i.e. as ε > 0 is arbitary, `(γ) ≤ `. Since the opposite inequality is already shown,
`(γ) = `.

Note: One can streamline the argument somewhat to show the bound `(γ,P) ≤ ` + ε directly,
without showing `(γ,P) ≤ `+M first.

4(b) (3 points.) (i) Show that the map γ : [0, 1]→ R2 given by γ(0) = 0, γ(t) = (t cos log t, t sin log t)
is continuous, C1 on (0, 1], but not on [0, 1], and (ii) show that γ has finite length, and compute it.

Note: γ is called a logarithmic spiral. You may use the results of 4(a) even if you have not proved them.

Solution: (i) The given map is C1 in (0, 1] by the chain rule, and continuous at 0 since sin, cos are

bounded by 1; in fact, 0 ≤ t < ε implies ‖γ(t)‖ = t
√

cos2 log t+ sin2 log t = t < ε. On the other
hand, it is not C1 since for t > 0 γ ′(t) = (cos log t − sin log t, sin log t + cos log t), and limt→0 γ

′(t)
does not exist as is shown by taking tn = e−2nπ with γ ′(tn) = (1, 1) while for t ′n = e−2nπ+π,
γ ′(t ′n) = (−1,−1), with lim tn → 0, lim t ′n = 0, while if the limit existed, it would have to be equal



Name: Page 5/4

to both of the unequal limits lim γ ′(tn) and lim γ ′(t ′n). Thus, the derivative cannot be continuous
at 0, so γ is not C1. (A different way to argue is that γ is not even differentiable at 0: one needs
to evaluate the difference quotients γ(t)/t, t > 0, and let t → 0; since γ(t)/t = (cos log t, sin log t),
arguing as above shows that the limit does not exists.)

(ii) By part (a), it suffices to check that limc→0

∫ 1
c ‖γ

′(t)‖ dt exists. But for t > 0,

‖γ ′(t)‖ =
√

(cos log t− sin log t)2 + (sin log t+ cos log t)2

=

√
2 cos2 log t+ 2 sin2 log t =

√
2

so `(γ|[c,1]) =
√

2(1 − c), and thus limc→0 `(γ|[c,1]) =
√

2, yielding that the curve has finite length,

which is in fact
√

2.


