CALCULUS OF VARIATIONS

In calculus, one studies min-max problems in which one looks for a number or
for a point that minimizes (or maximizes) some quantity. The calculus of variations
is about min-max problems in which one is looking not for a number or a point but
rather for a function that minimizes (or maximizes) some quantity.

For example: given two points (g, yo) and (x1,y1), find the shortest curve (that
is a graph) joining the two points. That is, find a function y(-) : [zg,z1] = R with
y(zo) = yo and y(z1) = y1 that makes the arclength

ey = | VTR de

as small as possible. (Here ¢ denotes y/(z) = %.)

If we let s denote arclength, then ds = \/dz? + dy? = /1 + ()2 dz.
dx

More generally, given any C? function
L:R?® >R,

we can look for a function y(-) : [xg,z1] — R that makes the quantity

1
L) = [ Loyt do

zo
as small as possible.

In general, the minimum might not exist. However, if the minimum does exist,
then it has to satisfy a differential equation called the Euler-Lagrange Equation.
If we can solve the Euler-Lagrange Equation, then we can find the minimum (if it
exists.)

Theorem 1. Suppose y(-) : [vg,z1] — R is a C? function that minimizes

Z1

LlyOl= [ Lz,y(x),y(z)) de

Zo

subject to the boundary conditions y(xg) = yo and y(x1) = y1. Then y(-) is a
solution to the differential equation

oL d (0L
) - (57) =0

dy dx \ Jy
Notation: Here it’s important to understand the distinction between % and %.
Note that L is a function of three variables which we denote z, y, and . As usual,

g—é, %, and % denote its partials with respect to those variables. The composed
function L(z,y(x),y’(x)) is a function of one variable (namely x); its derivative is

written 4. Thus (*) can be written as

DaL(z,y(2),/ () ~ - DL, y(a), ¥ (7))
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Proof. Consider a C? function u : [r9,71] — R that vanishes on the endpoints:
u(zg) = wu(r1) = 0. Then the function y(-) + u(-) also satisfies the boundary
conditions, so

LIy < Lly() + u()]-
More generally,

Lly()] < L[y(-) + su-
for every s € R. Thus the function f(s) := L[y(-)] <

at 0, so f'(0) = 0 if the derivative exists.
In fact, the derivative does exist and we can calculate it as follows:

su(-)

]
L[y(-)+su(-)] has its minimum

d

£ = 2 [ L) + sula). o/ (@) + 50/ (@) do

= /Il %L(w, y(x) + su(x),y (x) + su'(z)) dx

xo

- / h (‘Z’;@ y(z) + sue), ¥’ () + s ())ulz)

0

+ S ay(e) + sula). o/ (@) + su%x))u'(a:)) da

SO

ro- [ " (gju,y(w),y'(z»u(z) n gfy%(x,ym,y«x»um) dz

1 (AL OL du
! _ - -
f(O)—/x <8yu+ %dm) dz

0

or simply

Integrating the second expression by parts gives

Lo (™ /0L  d (OL oL
f “”—/zo (ay‘d<ay>> d“(ay-“)

The last expression vanishes since u(zg) = u(z1) = 0. Thus

R L) A )

f(O)—/xO <3y—d$(ay)>udx
1 OL d (0L

/m (w‘m(ay))“dw—“

This must hold for all C? functions that vanish on the boundary.
Hence

OL d (0L
(1 o~ (37) =°
oL d (9L

If the last step of the proof is not clear, suppose that By~ dx (87/) were nonzero

at some point. Then it would be nonzero on some open interval (a,b) C [zg,z1].

T1

Zo

Thus we have shown

O
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Indeed, it would be everywhere > 0 or everywhere < 0 on that interval. Now let u
be a C? function that is > 0 on (a,b) and 0 on R\ (a, ). For example, we could let

(z) = (z —a)*(b—z)* if z € [a,b], and
U it ¢ [a,0].

Then the integral in (}) is nonzero, a contradiction.

Note that y(-) being a solution of the Euler-Lagrange equation does not imply
that y(-) minimizes £. Rather, it means that y(-) passes the first derivative test for
being a minimum. However, as in calculus, if we’re lucky, then the first derivative
will narrow our search down to a few possibilities.

1. EXAMPLE: SHORTEST CURVE

Let’s try to find a function that minimizes the arclength of its graph

Lly()] = / V1T dz.

Here L(z,y,9) = v/1+ y%. Thus
L L y
a— =0 and 8— = y

Ay 9y 1+

so the Euler-Lagrange Equation becomes
0= 9L_ 4 (“)
Oy dx \ 0y
—0— d (y)
AV
d Y
i)

Thus g/+/1 4 §? must be constant, and therefore ¢ must be constant. Thus y =
ax + b for constants a and b.
From the boundary conditions, we see that
Y1 — Yo
(1) y=-"——
Tr1 — o

T+ Yo

We have not proved that the minimum exists. However, we have proved that if
the minimum does exist, it must be the function .

2. EXAMPLE: CATENOIDS

The Plateau Problem is the following: given one or more closed curves in
R?, find a surface of least possible area among all surfaces having those curves as
boundary. Let us consider a special case of the Plateau Problem: we look for a
least area surface whose boundary is a pair of circles, assuming that the minimum
exists and is a surface of revolution.

In other words, suppose 0 < mg < x1 and that y(-) : [zo,2z1] — R is a C?
function. We can rotate the graph of y(-) about the y-axis to get a surface S of
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revolution in R3. The area of S is given by

/ 2rx/1+ (v)2 dx

0
Let’s try to find a function y(-) that minimizes this area (subject to specified bound-
ary conditions y(xo) = yo and y(z1) = y1.)
The problem is equivalent to minimizing

Ly = [ oV TF R
Here L(z,y,9) = /1 + (9)?, so

oL oL g

5 =0, T =r—x
Ay 9y 1+
so the Euler-Lagrange Equation becomes

Ozf’L_d()L)
Oy dx \ Jy
:o_d<xy>
dz \ \/T+§?
_d Ty

zy

VitE

(% = A)§)? = &,

Thus

Solving for g,

or
dy c

dx o \/xQ — 62’
S0
| =
= | ——=dx.
Y 2 — 2
To integrate, let # = ccoshu. Then dz = ¢sinhw and 22 — ¢ = ¢?(cosh®u — 1) =
¢® sinh? u. Thus

y:/cdu:quré,

SO

Taking cosh of both sides gives

2) %:cosh (y;c>

One can think of x = coshy as the “basic” solution. All other solutions come
be dilating the fundamental solution (by (x,y) — (cz,cy)) and then translating in
the y-direction (by (z,y) — (z,y+ £).)

Of course we try to choose ¢ and ¢ so that the solution curve passes through the
point (zo,%0) and (z1,¥1).
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Definition 2. The surface of revolution given by vz2 + 22 = coshy is called a
catenoid. More generally, if we apply a translation, rotation, and dilation to that
surface, the resulting surface is also called a catenoid.

Suppose (xg,y0) = (1,—h) and (z1,y1) = (0,h). (Geometrically, this means that
in R3, the boundary of our surface consists of two circles of radius 1, one in the
plane the £ = —h and the other in the plane z = h.)

Exercise 1. Show that if h is small, then there are exactly two curves of the
form (2)) that pass through the points (1,—h) and (1, k). Which one has less area?

Exercise 2. Show that if h is large, then there is no curve of the form passing
through (1, —h) and (1, k). What can you conclude?

K%Kk

A curious thing happened in the catenoid example above. We were looking for a
function y = y(z), but we ended up with a function = z(y). Suppose for example
that (xo,y0) = (cosh1,—1) and (z1,y1) = (cosh2,2). Then

x=coshy, —-1<y<2

is a curve that has the specified endpoints. However, it cannot be written in the
form y = y(x).

So is our analysis valid? It is in the following sense. Suppose we allow curves C'
joining (xo,yo) and (x1,y1) that are not necessarily graphs. Then Theorem 1 does
apply to each portion that is a graph.

CONSERVED (QUANTITIES

Note that if L(x,y) is actually a function of x and ¢ alone, then % =0, so the
Euler-Lagrange equation simplifies to

d [(OL
d<ay) =0

Thus y(-) is a solution if and only if

oL

50 =c
for some constant c. Thus %13; is a “conserved quantity”; it doesn’t change as x
changes.

Similarly, if L = L(y,9) a a function y and y alone, there is also a conserved
quantity:

Theorem 3. Suppose L = L(y,y). Then a nonconstant function y(-) is solution
of the Euler-Lagrange equation if and only if the quantity

is constant (i.e., independent of x).
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Proof. Note that
dQ 0L . d (OL\ dL
= =Yooty o\ 5| o=
dx oy dx \ 0y dx
By the chain rule,
ar_or. oL,
dr oy’ T oy
(Note that if L = L(z,y,9), the right hand side would also include %.) Thus

Q _ (0L _d (9L
de 7 Oy dx\9dy))’

VECTOR-VALUED FUNCTIONS

The derivation of the Euler-Lagrange Equation works equally for vector-valued
function y : [xg,z1] — R". Here L will be a function of 2n + 1 variables:
L = L(x7y1a"'7yn7y17"'7y.n)'

In this case, the Euler-Lagrange Equation becomes a system of differential equa-
tions:

oL d (8L

- — = 1<7<n).
8yi dx 8yl> 0 ( _Z_TL)
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