CALCULUS OF VARIATIONS

In calculus, one studies min-max problems in which one looks for a number or for a point that minimizes (or maximizes) some quantity. The calculus of variations is about min-max problems in which one is looking not for a number or a point but rather for a function that minimizes (or maximizes) some quantity.

For example: given two points $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$, find the shortest curve (that is a graph) joining the two points. That is, find a function $y(\cdot):\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}$ with $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$ that makes the arclength

$$
\mathcal{L}[y(\cdot)]=\int_{x_{0}}^{x_{1}} \sqrt{1+\dot{y}^{2}} d x
$$

as small as possible. (Here \dot{y} denotes $y^{\prime}(x)=\frac{d y}{d x}$.)
(If we let s denote arclength, then $d s=\sqrt{d x^{2}+d y^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x$.)
More generally, given any C^{2} function

$$
L: \mathbf{R}^{3} \rightarrow \mathbf{R}
$$

we can look for a function $y(\cdot):\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}$ that makes the quantity

$$
\mathcal{L}[y(\cdot)]=\int_{x_{0}}^{x_{1}} L(x, y(x), \dot{y}(x)) d x
$$

as small as possible.
In general, the minimum might not exist. However, if the minimum does exist, then it has to satisfy a differential equation called the Euler-Lagrange Equation. If we can solve the Euler-Lagrange Equation, then we can find the minimum (if it exists.)

Theorem 1. Suppose $y(\cdot):\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}$ is a C^{2} function that minimizes

$$
\mathcal{L}[y(\cdot)]=\int_{x_{0}}^{x_{1}} L(x, y(x), \dot{y}(x)) d x
$$

subject to the boundary conditions $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$. Then $y(\cdot)$ is a solution to the differential equation

$$
\begin{equation*}
\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)=0 \tag{*}
\end{equation*}
$$

Notation: Here it's important to understand the distinction between $\frac{\partial}{\partial x}$ and $\frac{d}{d x}$. Note that L is a function of three variables which we denote x, y, and \dot{y}. As usual, $\frac{\partial L}{\partial x}, \frac{\partial L}{\partial y}$, and $\frac{\partial L}{\partial \dot{y}}$ denote its partials with respect to those variables. The composed function $L\left(x, y(x), y^{\prime}(x)\right)$ is a function of one variable (namely x); its derivative is written $\frac{d L}{d x}$. Thus $\left(^{*}\right)$ can be written as

$$
D_{2} L\left(x, y(x), y^{\prime}(x)\right)-\frac{d}{d x} D_{3} L\left(x, y(x), y^{\prime}(x)\right)
$$

Proof. Consider a C^{2} function $u:\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}$ that vanishes on the endpoints: $u\left(x_{0}\right)=u\left(x_{1}\right)=0$. Then the function $y(\cdot)+u(\cdot)$ also satisfies the boundary conditions, so

$$
\mathcal{L}[(y(\cdot)] \leq \mathcal{L}[y(\cdot)+u(\cdot)]
$$

More generally,

$$
\mathcal{L}[y(\cdot)] \leq \mathcal{L}[y(\cdot)+s u(\cdot)]
$$

for every $s \in \mathbf{R}$. Thus the function $f(s):=\mathcal{L}[y(\cdot)] \leq \mathcal{L}[y(\cdot)+s u(\cdot)]$ has its minimum at 0 , so $f^{\prime}(0)=0$ if the derivative exists.

In fact, the derivative does exist and we can calculate it as follows:

$$
\begin{aligned}
f^{\prime}(s)= & \frac{d}{d s} \int_{x_{0}}^{x_{1}} L\left(x, y(x)+s u(x), y^{\prime}(x)+s u^{\prime}(x)\right) d x \\
= & \int_{x_{0}}^{x_{1}} \frac{d}{d s} L\left(x, y(x)+s u(x), y^{\prime}(x)+s u^{\prime}(x)\right) d x \\
= & \int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y}\left(x, y(x)+s u(x), y^{\prime}(x)+s u^{\prime}(x)\right) u(x)\right. \\
& \left.+\frac{\partial L}{\partial \dot{y}}\left(x, y(x)+s u(x), y^{\prime}(x)+s u^{\prime}(x)\right) u^{\prime}(x)\right) d x
\end{aligned}
$$

so

$$
f^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y}\left(x, y(x), y^{\prime}(x)\right) u(x)+\frac{\partial L}{\partial \dot{y}}\left(x, y(x), y^{\prime}(x)\right) u^{\prime}(x)\right) d x
$$

or simply

$$
f^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y} u+\frac{\partial L}{\partial \dot{y}} \frac{d u}{d x}\right) d x
$$

Integrating the second expression by parts gives

$$
f^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y} u-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right) u\right) d x+\left.\left(\frac{\partial L}{\partial \dot{y}} u\right)\right|_{x_{0}} ^{x_{1}}
$$

The last expression vanishes since $u\left(x_{0}\right)=u\left(x_{1}\right)=0$. Thus

$$
f^{\prime}(0)=\int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)\right) u d x
$$

Thus we have shown

$$
\int_{x_{0}}^{x_{1}}\left(\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)\right) u d x=0 .
$$

This must hold for all C^{2} functions that vanish on the boundary.
Hence

$$
\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)=0
$$

If the last step of the proof is not clear, suppose that $\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)$ were nonzero at some point. Then it would be nonzero on some open interval $(a, b) \subset\left[x_{0}, x_{1}\right]$.

Indeed, it would be everywhere >0 or everywhere <0 on that interval. Now let u be a C^{2} function that is >0 on (a, b) and 0 on $\mathbf{R} \backslash(a, b)$. For example, we could let

$$
u(x)= \begin{cases}(x-a)^{4}(b-x)^{4} & \text { if } x \in[a, b], \text { and } \\ 0 & \text { if } x \notin[a, b]\end{cases}
$$

Then the integral in (\dagger) is nonzero, a contradiction.
Note that $y(\cdot)$ being a solution of the Euler-Lagrange equation does not imply that $y(\cdot)$ minimizes \mathcal{L}. Rather, it means that $y(\cdot)$ passes the first derivative test for being a minimum. However, as in calculus, if we're lucky, then the first derivative will narrow our search down to a few possibilities.

1. Example: Shortest Curve

Let's try to find a function that minimizes the arclength of its graph

$$
\mathcal{L}[y(\cdot)]=\int_{x_{0}}^{x_{1}} \sqrt{1+\dot{y}^{2}} d x
$$

Here $L(x, y, \dot{y})=\sqrt{1+\dot{y}^{2}}$. Thus

$$
\frac{\partial L}{\partial y}=0 \quad \text { and } \quad \frac{\partial L}{\partial \dot{y}}=\frac{\dot{y}}{\sqrt{1+\dot{y}^{2}}}
$$

so the Euler-Lagrange Equation becomes

$$
\begin{aligned}
0 & =\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right) \\
& =0-\frac{d}{d x}\left(\frac{\dot{y}}{\sqrt{1+\dot{y}^{2}}}\right) \\
& =-\frac{d}{d x}\left(\frac{\dot{y}}{\sqrt{1+\dot{y}^{2}}}\right)
\end{aligned}
$$

Thus $\dot{y} / \sqrt{1+\dot{y}^{2}}$ must be constant, and therefore \dot{y} must be constant. Thus $y=$ $a x+b$ for constants a and b.

From the boundary conditions, we see that

$$
\begin{equation*}
y=\frac{y_{1}-y_{0}}{x_{1}-x_{0}} x+y_{0} . \tag{1}
\end{equation*}
$$

We have not proved that the minimum exists. However, we have proved that if the minimum does exist, it must be the function (1).

2. Example: Catenoids

The Plateau Problem is the following: given one or more closed curves in \mathbf{R}^{3}, find a surface of least possible area among all surfaces having those curves as boundary. Let us consider a special case of the Plateau Problem: we look for a least area surface whose boundary is a pair of circles, assuming that the minimum exists and is a surface of revolution.

In other words, suppose $0<x_{0}<x_{1}$ and that $y(\cdot):\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}$ is a C^{2} function. We can rotate the graph of $y(\cdot)$ about the y-axis to get a surface S of
revolution in \mathbf{R}^{3}. The area of S is given by

$$
\int_{x_{0}}^{x_{1}} 2 \pi x \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

Let's try to find a function $y(\cdot)$ that minimizes this area (subject to specified boundary conditions $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$.)

The problem is equivalent to minimizing

$$
\mathcal{L}[y(\cdot)]=\int_{x_{0}}^{x_{1}} x \sqrt{1+\left(y^{\prime}\right)^{2}} d x
$$

Here $L(x, y, \dot{y})=x \sqrt{1+(\dot{y})^{2}}$, so

$$
\frac{\partial L}{\partial y}=0, \quad \frac{\partial L}{\partial \dot{y}}=x \frac{\dot{y}}{1+(\dot{y})^{2}},
$$

so the Euler-Lagrange Equation becomes

$$
\begin{aligned}
0 & =\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right) \\
& =0-\frac{d}{d x}\left(\frac{x \dot{y}}{\sqrt{1+\dot{y}^{2}}}\right) \\
& =-\frac{d}{d x}\left(\frac{x \dot{y}}{\sqrt{1+\dot{y}^{2}}}\right)
\end{aligned}
$$

Thus

$$
\frac{x \dot{y}}{\sqrt{1+\dot{y}^{2}}}=c .
$$

Solving for \dot{y},

$$
\left(x^{2}-c^{2}\right)(\dot{y})^{2}=c^{2}
$$

or

$$
\frac{d y}{d x}=\frac{c}{\sqrt{x^{2}-c^{2}}}
$$

so

$$
y=\int \frac{c}{\sqrt{x^{2}-c^{2}}} d x
$$

To integrate, let $x=c \cosh u$. Then $d x=c \sinh u$ and $x^{2}-c^{2}=c^{2}\left(\cosh ^{2} u-1\right)=$ $c^{2} \sinh ^{2} u$. Thus
so

$$
y=\int c d u=c u+\hat{c}
$$

$$
u=\frac{y-\hat{c}}{c}
$$

Taking cosh of both sides gives

$$
\begin{equation*}
\frac{x}{c}=\cosh \left(\frac{y-\hat{c}}{c}\right) . \tag{2}
\end{equation*}
$$

One can think of $x=\cosh y$ as the "basic" solution. All other solutions come be dilating the fundamental solution (by $(x, y) \mapsto(c x, c y))$ and then translating in the y-direction $\left(b y(x, y) \mapsto\left(x, y+\frac{\hat{c}}{c}\right)\right.$.)

Of course we try to choose c and \tilde{c} so that the solution curve passes through the point $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$.

Definition 2. The surface of revolution given by $\sqrt{x^{2}+z^{2}}=\cosh y$ is called a catenoid. More generally, if we apply a translation, rotation, and dilation to that surface, the resulting surface is also called a catenoid.
Suppose $\left(x_{0}, y_{0}\right)=(1,-h)$ and $\left(x_{1}, y_{1}\right)=(0, h)$. (Geometrically, this means that in \mathbf{R}^{3}, the boundary of our surface consists of two circles of radius 1 , one in the plane the $x=-h$ and the other in the plane $x=h$.)

Exercise 1. Show that if h is small, then there are exactly two curves of the form (2) that pass through the points $(1,-h)$ and $(1, h)$. Which one has less area?

Exercise 2. Show that if h is large, then there is no curve of the form (2) passing through $(1,-h)$ and $(1, h)$. What can you conclude?

A curious thing happened in the catenoid example above. We were looking for a function $y=y(x)$, but we ended up with a function $x=x(y)$. Suppose for example that $\left(x_{0}, y_{0}\right)=(\cosh 1,-1)$ and $\left(x_{1}, y_{1}\right)=(\cosh 2,2)$. Then

$$
x=\cosh y, \quad-1 \leq y \leq 2
$$

is a curve that has the specified endpoints. However, it cannot be written in the form $y=y(x)$.

So is our analysis valid? It is in the following sense. Suppose we allow curves C joining $\left(x_{0}, y_{0}\right)$ and $\left(x_{1}, y_{1}\right)$ that are not necessarily graphs. Then Theorem 1 does apply to each portion that is a graph.

Conserved Quantities

Note that if $L(x, \dot{y})$ is actually a function of x and \dot{y} alone, then $\frac{\partial L}{\partial y}=0$, so the Euler-Lagrange equation simplifies to

$$
\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)=0
$$

Thus $y(\cdot)$ is a solution if and only if

$$
\frac{\partial L}{\partial \dot{y}}=c
$$

for some constant c. Thus $\frac{\partial L}{\partial \dot{y}}$ is a "conserved quantity"; it doesn't change as x changes.

Similarly, if $L=L(y, \dot{y})$ a a function y and \dot{y} alone, there is also a conserved quantity:

Theorem 3. Suppose $L=L(y, \dot{y})$. Then a nonconstant function $y(\cdot)$ is solution of the Euler-Lagrange equation if and only if the quantity

$$
Q=\dot{y} \frac{\partial L}{\partial \dot{y}}-L
$$

is constant (i.e., independent of x).

Proof. Note that

$$
\frac{d Q}{d x}=\ddot{y} \frac{\partial L}{\partial \dot{y}}+\dot{y} \frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)-\frac{d L}{d x}
$$

By the chain rule,

$$
\frac{d L}{d x}=\frac{\partial L}{\partial y} \dot{y}+\frac{\partial L}{\partial \dot{y}} \ddot{y} .
$$

(Note that if $L=L(x, y, \dot{y})$, the right hand side would also include $\frac{\partial L}{\partial x}$.) Thus

$$
\frac{d Q}{d x}=\dot{y}\left(\frac{\partial L}{\partial y}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}}\right)\right)
$$

Vector-Valued Functions

The derivation of the Euler-Lagrange Equation works equally for vector-valued function $y:\left[x_{0}, x_{1}\right] \rightarrow \mathbf{R}^{n}$. Here L will be a function of $2 n+1$ variables:

$$
L=L\left(x, y_{1}, \ldots, y_{n}, \dot{y}_{1}, \ldots, \dot{y}_{n}\right)
$$

In this case, the Euler-Lagrange Equation becomes a system of differential equations:

$$
\frac{\partial L}{\partial y_{i}}-\frac{d}{d x}\left(\frac{\partial L}{\partial \dot{y}_{i}}\right)=0 \quad(1 \leq i \leq n)
$$

