
CALCULUS OF VARIATIONS

In calculus, one studies min-max problems in which one looks for a number or
for a point that minimizes (or maximizes) some quantity. The calculus of variations
is about min-max problems in which one is looking not for a number or a point but
rather for a function that minimizes (or maximizes) some quantity.

For example: given two points (x0, y0) and (x1, y1), find the shortest curve (that
is a graph) joining the two points. That is, find a function y(·) : [x0, x1]→ R with
y(x0) = y0 and y(x1) = y1 that makes the arclength

L[y(·)] =

∫ x1

x0

√
1 + ẏ2 dx

as small as possible. (Here ẏ denotes y′(x) = dy
dx .)

(If we let s denote arclength, then ds =
√
dx2 + dy2 =

√
1 + ( dy

dx )2 dx.)

More generally, given any C2 function

L : R3 → R,

we can look for a function y(·) : [x0, x1]→ R that makes the quantity

L[y(·)] =

∫ x1

x0

L(x, y(x), ẏ(x)) dx

as small as possible.
In general, the minimum might not exist. However, if the minimum does exist,

then it has to satisfy a differential equation called the Euler-Lagrange Equation.
If we can solve the Euler-Lagrange Equation, then we can find the minimum (if it
exists.)

Theorem 1. Suppose y(·) : [x0, x1]→ R is a C2 function that minimizes

L[y(·)] =

∫ x1

x0

L(x, y(x), ẏ(x)) dx

subject to the boundary conditions y(x0) = y0 and y(x1) = y1. Then y(·) is a
solution to the differential equation

(*)
∂L

∂y
− d

dx

(
∂L

∂ẏ

)
= 0.

Notation: Here it’s important to understand the distinction between ∂
∂x and d

dx .
Note that L is a function of three variables which we denote x, y, and ẏ. As usual,
∂L
∂x , ∂L

∂y , and ∂L
∂ẏ denote its partials with respect to those variables. The composed

function L(x, y(x), y′(x)) is a function of one variable (namely x); its derivative is
written dL

dx . Thus (*) can be written as

D2L(x, y(x), y′(x))− d

dx
D3L(x, y(x), y′(x)).
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Proof. Consider a C2 function u : [x0, x1] → R that vanishes on the endpoints:
u(x0) = u(x1) = 0. Then the function y(·) + u(·) also satisfies the boundary
conditions, so

L[(y(·)] ≤ L[y(·) + u(·)].
More generally,

L[y(·)] ≤ L[y(·) + su(·)]
for every s ∈ R. Thus the function f(s) := L[y(·)] ≤ L[y(·)+su(·)] has its minimum
at 0, so f ′(0) = 0 if the derivative exists.

In fact, the derivative does exist and we can calculate it as follows:

f ′(s) =
d

ds

∫ x1

x0

L(x, y(x) + su(x), y′(x) + su′(x)) dx

=

∫ x1

x0

d

ds
L(x, y(x) + su(x), y′(x) + su′(x)) dx

=

∫ x1

x0

(
∂L

∂y
(x, y(x) + su(x), y′(x) + su′(x))u(x)

+
∂L

∂ẏ
(x, y(x) + su(x), y′(x) + su′(x))u′(x)

)
dx

so

f ′(0) =

∫ x1

x0

(
∂L

∂y
(x, y(x), y′(x))u(x) +

∂L

∂ẏ
(x, y(x), y′(x))u′(x)

)
dx

or simply

f ′(0) =

∫ x1

x0

(
∂L

∂y
u+

∂L

∂ẏ

du

dx

)
dx

Integrating the second expression by parts gives

f ′(0) =

∫ x1

x0

(
∂L

∂y
u− d

dx

(
∂L

∂ẏ

)
u

)
dx+

(
∂L

∂ẏ
u

)∣∣∣∣x1

x0

.

The last expression vanishes since u(x0) = u(x1) = 0. Thus

f ′(0) =

∫ x1

x0

(
∂L

∂y
− d

dx

(
∂L

∂ẏ

))
u dx

Thus we have shown ∫ x1

x0

(
∂L

∂y
− d

dx

(
∂L

∂ẏ

))
u dx = 0.

This must hold for all C2 functions that vanish on the boundary.
Hence

(†) ∂L

∂y
− d

dx

(
∂L

∂ẏ

)
= 0.

�

If the last step of the proof is not clear, suppose that ∂L
∂y −

d
dx

(
∂L
∂ẏ

)
were nonzero

at some point. Then it would be nonzero on some open interval (a, b) ⊂ [x0, x1].
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Indeed, it would be everywhere > 0 or everywhere < 0 on that interval. Now let u
be a C2 function that is > 0 on (a, b) and 0 on R\ (a, b). For example, we could let

u(x) =

{
(x− a)4(b− x)4 if x ∈ [a, b], and

0 if x /∈ [a, b].

Then the integral in (†) is nonzero, a contradiction.
Note that y(·) being a solution of the Euler-Lagrange equation does not imply

that y(·) minimizes L. Rather, it means that y(·) passes the first derivative test for
being a minimum. However, as in calculus, if we’re lucky, then the first derivative
will narrow our search down to a few possibilities.

1. Example: Shortest Curve

Let’s try to find a function that minimizes the arclength of its graph

L[y(·)] =

∫ x1

x0

√
1 + ẏ2 dx.

Here L(x, y, ẏ) =
√

1 + ẏ2. Thus

∂L

∂y
= 0 and

∂L

∂ẏ
=

ẏ√
1 + ẏ2

,

so the Euler-Lagrange Equation becomes

0 =
∂L

∂y
− d

dx

(
∂L

∂ẏ

)
= 0− d

dx

(
ẏ√

1 + ẏ2

)

= − d

dx

(
ẏ√

1 + ẏ2

)
.

Thus ẏ/
√

1 + ẏ2 must be constant, and therefore ẏ must be constant. Thus y =
ax+ b for constants a and b.

From the boundary conditions, we see that

(1) y =
y1 − y0
x1 − x0

x+ y0.

We have not proved that the minimum exists. However, we have proved that if
the minimum does exist, it must be the function (1).

2. Example: Catenoids

The Plateau Problem is the following: given one or more closed curves in
R3, find a surface of least possible area among all surfaces having those curves as
boundary. Let us consider a special case of the Plateau Problem: we look for a
least area surface whose boundary is a pair of circles, assuming that the minimum
exists and is a surface of revolution.

In other words, suppose 0 < x0 < x1 and that y(·) : [x0, x1] → R is a C2

function. We can rotate the graph of y(·) about the y-axis to get a surface S of
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revolution in R3. The area of S is given by∫ x1

x0

2πx
√

1 + (y′)2 dx

Let’s try to find a function y(·) that minimizes this area (subject to specified bound-
ary conditions y(x0) = y0 and y(x1) = y1.)

The problem is equivalent to minimizing

L[y(·)] =

∫ x1

x0

x
√

1 + (y′)2 dx

Here L(x, y, ẏ) = x
√

1 + (ẏ)2, so

∂L

∂y
= 0,

∂L

∂ẏ
= x

ẏ

1 + (ẏ)2
,

so the Euler-Lagrange Equation becomes

0 =
∂L

∂y
− d

dx

(
∂L

∂ẏ

)
= 0− d

dx

(
xẏ√

1 + ẏ2

)

= − d

dx

(
xẏ√

1 + ẏ2

)
.

Thus
xẏ√

1 + ẏ2
= c.

Solving for ẏ,
(x2 − c2)(ẏ)2 = c2,

or
dy

dx
=

c√
x2 − c2

,

so

y =

∫
c√

x2 − c2
dx.

To integrate, let x = c coshu. Then dx = c sinhu and x2 − c2 = c2(cosh2 u− 1) =
c2 sinh2 u. Thus

y =

∫
c du = cu+ ĉ,

so

u =
y − ĉ
c

.

Taking cosh of both sides gives

(2)
x

c
= cosh

(
y − ĉ
c

)
.

One can think of x = cosh y as the “basic” solution. All other solutions come
be dilating the fundamental solution (by (x, y) 7→ (cx, cy)) and then translating in
the y-direction (by (x, y) 7→ (x, y + ĉ

c ).)
Of course we try to choose c and c̃ so that the solution curve passes through the

point (x0, y0) and (x1, y1).
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Definition 2. The surface of revolution given by
√
x2 + z2 = cosh y is called a

catenoid. More generally, if we apply a translation, rotation, and dilation to that
surface, the resulting surface is also called a catenoid.

Suppose (x0, y0) = (1,−h) and (x1, y1) = (0, h). (Geometrically, this means that
in R3, the boundary of our surface consists of two circles of radius 1, one in the
plane the x = −h and the other in the plane x = h.)

Exercise 1. Show that if h is small, then there are exactly two curves of the
form (2) that pass through the points (1,−h) and (1, h). Which one has less area?

Exercise 2. Show that if h is large, then there is no curve of the form (2) passing
through (1,−h) and (1, h). What can you conclude?

***

A curious thing happened in the catenoid example above. We were looking for a
function y = y(x), but we ended up with a function x = x(y). Suppose for example
that (x0, y0) = (cosh 1,−1) and (x1, y1) = (cosh 2, 2). Then

x = cosh y, −1 ≤ y ≤ 2

is a curve that has the specified endpoints. However, it cannot be written in the
form y = y(x).

So is our analysis valid? It is in the following sense. Suppose we allow curves C
joining (x0, y0) and (x1, y1) that are not necessarily graphs. Then Theorem 1 does
apply to each portion that is a graph.

Conserved Quantities

Note that if L(x, ẏ) is actually a function of x and ẏ alone, then ∂L
∂y = 0, so the

Euler-Lagrange equation simplifies to

d

dx

(
∂L

∂ẏ

)
= 0.

Thus y(·) is a solution if and only if

∂L

∂ẏ
= c

for some constant c. Thus ∂L
∂ẏ is a “conserved quantity”; it doesn’t change as x

changes.
Similarly, if L = L(y, ẏ) a a function y and ẏ alone, there is also a conserved

quantity:

Theorem 3. Suppose L = L(y, ẏ). Then a nonconstant function y(·) is solution
of the Euler-Lagrange equation if and only if the quantity

Q = ẏ
∂L

∂ẏ
− L

is constant (i.e., independent of x).
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Proof. Note that

dQ

dx
= ÿ

∂L

∂ẏ
+ ẏ

d

dx

(
∂L

∂ẏ

)
− dL

dx

By the chain rule,

dL

dx
=
∂L

∂y
ẏ +

∂L

∂ẏ
ÿ.

(Note that if L = L(x, y, ẏ), the right hand side would also include ∂L
∂x .) Thus

dQ

dx
= ẏ

(
∂L

∂y
− d

dx

(
∂L

∂ẏ

))
.

�

Vector-Valued Functions

The derivation of the Euler-Lagrange Equation works equally for vector-valued
function y : [x0, x1]→ Rn. Here L will be a function of 2n+ 1 variables:

L = L(x, y1, . . . , yn, ẏ1, . . . , ẏn).

In this case, the Euler-Lagrange Equation becomes a system of differential equa-
tions:

∂L

∂yi
− d

dx

(
∂L

∂ẏi

)
= 0 (1 ≤ i ≤ n).
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