The ME111 Way to Solve “Like Totally Impossible” Problems

1. Draw a Free Body Diagram (FBD) – Look at the EXTERNAL forces and moments acting on the whole object, then break it down into sub-assemblies. **GOAL: ALL EXTERNAL FORCES & MOMENTS.**
 a. Shear and bending moment diagrams
 b. Method of joints/sections
 c. Static equilibrium conditions (\(\Sigma F = 0, \Sigma M = 0\) \(\Leftarrow\) in 3-D even!)
 d. Right Hand Rule to figure out moments – use pens, tinker toys…
 e. Make basic assumptions (no deformation under load…)
 f. Make a mock-up of it…cardboard, paper, foam, wood

2. Get Data – Tables in the book, the Web, other books, your company.
 a. Things like E, I, Z, c (listed as \(\bar{y}\) sometimes in the back), \(S_{tu}, S_y\)
 GOAL: KNOWLEDGE ABOUT SPECIFIC PROBLEM

3. Based on educated guesses/directions cut assembly into pieces and analyze critical sections.
 a. Often sections with curves, notches, cracks, holes, parts attached to walls…
 b. Look at Bending, Torsion, Shear (Juvinall 4.2 – 4.8) See where the stresses add up (look at #1)
 GOAL: INTERNAL FORCES & STRESSES

4. Find maximum stresses and strains.
 a. Mohr’s circle in 2 & 3-Dimensions
 b. Maximum Stress Theories
 GOAL: FIND IF IT’LL BEND OR BREAK

5. Use fracture mechanics and failure theory to check other failure modes
 GOAL: FIND IF IT’LL BREAK OVER TIME

6. Optimize for safety factors, weight constraints, cost, color, etc…
 GOAL: MAKE IT BE THE BEST IT CAN BE!
ANALYZING A SWING AERIAL

© Ben 2000
\[\Sigma F_x = 0 \]
\[R_x + F \sin 45^\circ = 0 \]
\[R_x = -50N \]

\[\Sigma F_y = 0 \]
\[R_y - 50N = 0 \]
\[R_y = 50N \]

\[\Sigma M = 0 \]
\[-(50N)(1m) - (50N)(1m) + M = 0 \]
\[M = 100 \, N.m \]
\[\frac{R_y}{F_y} = E_y = \frac{V}{3} \frac{V}{x} \]

\[\frac{R_x}{F_x} \quad \sigma_{xx} = \frac{E}{A} \]

\[M \quad \sigma = \frac{F_r}{J} = \frac{Mc}{I} \]

\[\frac{R_3}{F_y} \quad R_x/F_x \]

\[\frac{R_3}{F_y} \quad R_x/F_x \]

\[\frac{R_3}{F_y} \quad R_x/F_x \]

NOTE: These stresses might not be maxima! ...