
Part I

The Finite Element Method for
One-Dimensional Problems
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The one-dimensional problem is useful for displaying many of the features of the …nite ele-
ment method without the attendant complications that necessarily arise in the multi-dimensional
case. The familiar problem of an axially loaded, linear elastic bar will provide the primary moti-
vating problem. A bar is a straight but possibly non-prismatic member which is loaded along is
centroidal axis producing only axial deformation and a uniaxial state of stress. Because of the
simple deformation and stress states, bars are relatively easy to analyze. In fact, development
of the …nite element method for the analysis of bars reveals some of the essential concepts that
are required for more complex structural systems and the simplicity of the 1-d setting makes
this a worthwhile exercise. In this chapter we will review the notion of equilibrium for bars and
introduce two alternative but equivalent descriptions:

1. The strong form which is the boundary value problem (BVP) that directly expresses the
statical equilibrium of the bar, and

2. The weak form which is the principle of virtual displacements. The weak form can be
derived from the strong form or found from the principle of minimum potential energy.

Although the strong form is perhaps the most familiar description, it is the weak form that is
the starting point for developing the …nite element method and, for this reason, we will devote
some e¤ort to reviewing this important idea.

It is worthwhile noting that the form of the …nal equations for the bar problem are indentical
to the governing equations for many other important one-dimensional problems, including:

² Torsion of a circular rod,

² One-dimensional heat ‡ow,

² De‡ection of a tensioned ‡exible string,

² Simple ‡ow in pipes,

² Current in a conductor.

Accordingly, the methods developed in this section will also apply directly to these and
many other one-dimensional problems.



Chapter 1

The Axially Loaded Bar Problem

1.1 Principle of Virtual Work for “Discrete” Systems

Before we start our study of a bar structure let us undertake a brief review of the principle
of virtual work as applied to simple spring systems. We will turn to the analysis of a bar in
Sect. 1.3. Our purpose in this Section is to show that the statement of equilibrium can be
expressed equivalently either through the statical equations of equilibrium (strong form of the
problem) or through the principle of virtual displacements (weak form). It is useful to see this
equivalence in this simple setting.

1.1.1 Strong Form

Consider the simple spring system shown in Fig. 1.1.

d1 ,  P1 d2 ,  P2

k1 k2
21

Figure 1.1: A simple spring system.

The deformation of the spring system is described in terms of two degrees of freedom, denoted
d1 and d2. These are the displacements at joints 1 and 2. We call this structure discrete, in the
sense that speci…cation of the two degrees of freedom completely de…nes the deformation of the
system without any approximation. Associated with degrees of freedom 1 and 2, we introduce
two external loads denoted F1 and F2, respectively, see Fig. 1.1.

The conditions of equilibrium can be found directly using three concepts:

1. Force Equations of Equilibrium. Let the internal force (tension positive) in springs 1 and 2
be denoted N1 and N 2, respectively. Isolating joints 1 and 2 as free bodies, the equations
of equilibrium at joints 1 and 2 are,

F1 +N1 = 0 (1.1)
F2 ¡ N1 +N2 = 0 (1.2)
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In order to …nd the displacement equations of equilibrium, we need to introduce two
additional ingredients:

2. Constitutive Equation. With the spring constants k1 and k2, we can express the spring
internal forces in terms of the spring stretches ¢1 and ¢2 as

N1 = k1¢1 (1.3)
N2 = k2¢2 (1.4)

3. Compatibility. The spring stretches are related to the displacements as

¢1 = d2 ¡d1 (1.5)
¢2 = 0 ¡ d2 (1.6)

Combining (1.1)-(1.6) we have …nally the displacement equations of equilibrium,

F1 + k1 (d2 ¡d1) = 0
F2 ¡ k1 (d2 ¡d1) +k2 (¡d2) = 0

or, in matrix form, ·
k1 ¡k1

¡k1 k1 + k2

¸½
d1
d2

¾
=

½
F1
F2

¾
(1.7)

which can be solved for the dispacements in terms of the loads.

1.1.2 Weak Form

We will derive the principle of virtual displacements (PVD) for the model spring system directly
from the force equilibrium equations. This will result in an alternative but equivalent description
of equilirium of the spring system that has much practical use.

Proposition 1 The force equilibrium equations (1.1) and (1.2) are implied by requiring that

±1
£
F1 +N 1¤ + ±2

£
F2 ¡N1 +N 2¤ = 0 (1.8)

hold for all ±1 and ±2:
Proof. Let

R =
½

R1
R2

¾
=

½
F1 + N1

F2 ¡N 1 + N2

¾

and
± =

½
±1
±2

¾

Then (1.8) may be written as
± ¢ R = 0

This orthogonality condition must hold for all ± 2R2: The only possible vector R which can
satisfy this condition is R = 0 which gives

½
F1 + N1

F2 ¡N 1 + N2

¾
=

½
0
0

¾
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Thus the weak form of the problem (1.8) is an equivalent means of writing the strong form.

Remark 2 In the orthogonality condition ± ¢ R = 0, the vector R is a vector of “equation
residuals” and the vector ± is a vector of arbitrary “weights,” and the approach is called the
“method of weighted residuals.”

It is interesting to rearrange (1.8) as follows:

N1 (±2 ¡ ±1) +N2 (¡±2) = F1±1 +F2±2 (1.9)

If we think of ±1 and ±2 as “virtual displacements,” we can de…ne corresponding compatible
“virtual stretches (strains)” as follows

±¢1 = ±2 ¡ ±1 (1.10)
±¢2 = 0 ¡ ±2 (1.11)

In this case (1.9) becomes
N1±¢1 +N 2±¢2 = F1±1 + F2±2 (1.12)

which, in this form, is called the principle of virtual displacements1:

internal virtual work = external virtual work, for all virtual displacements.

The point is, (1.12) is equivalent to the force equations of equilibrium (1.1) and (1.2), providing
that:

1. (1.12) holds for all ±1 and ±2; and

2. The virtual strains and virtual displacements are comptatible as given by (1.10) and
(1.11).

Remark 3 The PVD provides the force equations of equilibrium – the unknown displacements
d1 and d2 have not appeared in the development! We will introduce these as a second and
subsiduary step.

PVD(1): The PVD can be used to obtain the displacement equations of equilibrium as follows:

1. Write the PVD
N1±¢1 +N 2±¢2 = F1±1 + F2±2

2. Require the virtual displacements to be compatible with the virtual stretches

±¢1 = ±2 ¡ ±1
±¢2 = ¡±2

1The PVD may be formally stated in the language of structural mechanics as follows: among all kinematically
admissible con…gurations of a structure, those that satisfy the equations of equilibrium make the virtual work
done by the internal stresses (internal virtual work) equal to the virtual work done by the applied loads (external
virtual work) for all kinematically admissible virtual displacements.
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resulting in,
(±2 ¡ ±1)N1 +(¡±2)N 2 = ±1F1 + ±2F2

which, after collecting terms, may be re-written as (our starting point),

±1(¡N 1 ¡ F1) + ±2(N1 ¡N2 ¡F2) = 0

Since this must hold for all virtual displacements ±1 and ±2, it implies that,

¡N1 ¡F1 = 0
N 1 ¡ N2 ¡F2 = 0

3. Finally, using the sti¤ness relationships (1.3) and (1.4) and compatibility conditions (1.5)
and (1.6) leads to, ·

k1 ¡k1
¡k1 k1 + k2

¸½
d1
d2

¾
=

½
F1
F2

¾

as found in the strong form.

PVD(2): Instead of postponing the substitution of the sti¤ness relationships (1.3) and (1.4)
and compatibility conditions (1.5) and (1.6) until Step 3, we can introduce them directly into
the PVD as follows. This variant of the approach is the most commonly used.

1. Write the PVD
N1±¢1 +N 2±¢2 = F1±1 + F2±2

2. Introduce the the sti¤ness relationships (1.3) and (1.4) and compatibility conditions (1.5)
and (1.6), giving

k1 (d2 ¡d1) ±¢1 + k2 (¡d2) ±¢2 = F1±1 + F2±2

3. Require the virtual displacements to be compatible with the virtual stretches

±¢1 = ±2 ¡ ±1
±¢2 = ¡±2

resulting in,
k1 (d2 ¡d1) (±2 ¡ ±1) + k2 (¡d2) (¡±2) = F1±1 +F2±2

which, after collecting terms, may be re-written as

±1
£
¡k1 (d2 ¡d1) ¡F1

¤
+ ±2

£
k1 (d2 ¡ d1) ¡k2 (¡d2) ¡F2

¤
= 0

Since this must hold for all virtual displacements ±1 and ±2, it implies that,

¡k1 (d2 ¡ d1)¡ F1 = 0
k1 (d2 ¡ d1)¡ k2 (¡d2)¡ F2 = 0

or ·
k1 ¡k1

¡k1 k1 + k2

¸½
d1
d2

¾
=

½
F1
F2

¾
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d1
d2 ,   P2 d3 ,   P3

k2 k3

k4

k1

2 3

1

Figure 1.2: A statically indeterminate spring system.

Remark 4 The PVD applies to both statically determinate and indeterminate systems – this
makes the PVD a very practical tool for analysis of complex systems.

Example 5 Consider the one-dimensional, statically indeterminate spring system shown in
Fig. 1.2. Use PVD(1) to obtain the equations of equilibrium in terms of displacements in matrix
form.
Let the actual and virtual displacements at node i be denoted di and ±i, respectively. Let the
internal force (tension positive) in member i be denoted N i and let the virtual deformation
(stretching positive) of member i be denoted ±¢i, then the PVD states that the equilibrium of
the spring system is expressed as,

N 1±¢1 +N2±¢2 + N3±¢3 + N4±¢4 = F1±1 + F2±2 + F3±3

which must hold for all compatible virtual displacements such that,

±¢1 = ±1
±¢2 = ±2 ¡ ±1
±¢3 = ±3 ¡ ±2
±¢4 = ¡±1

Using these conditions of compatibility in the PVD now gives,

N1±1 + N2(±2 ¡ ±1) + N3(±3 ¡ ±2) + N4(¡±1) = F1±1 +F2±2 +F3±3

Collecting terms we …nd,

±1(N 1 ¡ N2 ¡N4 ¡F1) + ±2(N 2 ¡ N3 ¡F2) + ±3(N 3 ¡ F3) = 0

Since this must hold for all virtual displacements ±i, we have,

N1 ¡ N2 ¡N 4 ¡ F1 = 0
N2 ¡N 3 ¡ F2 = 0

N 3 ¡ F3 = 0

which may easily be veri…ed to be the equations of equilibrium (using free body diagrams of the
joints). To obtain the equilibrium equations in terms of the displacements, we must now express
the internal forces Ni in terms of the member stretches

Ni = ki¢i
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and use compatibility to relate the stretches to the displacements

¢1 = d1
¢2 = d2 ¡ d1
¢3 = d3 ¡ d2
¢4 = ¡d1

giving

N1 = k1(d1)
N2 = k2(d2 ¡ d1)
N3 = k3(d3 ¡ d2)
N4 = k4(¡d1)

Using these sti¤ness relationships in the equilibrium equations above results in:
2
4

k1 +k2 + k4 ¡k2 0
¡k2 k2 +k3 ¡k3
0 ¡k3 k3

3
5

8
<
:

d1
d2
d3

9
=
; =

8
<
:

F1
F2
F3

9
=
; : (1.13)

In summary, if we consider a general system of N interconnected springs involving M
unknown displacements, the weak form (i.e. PVD) describing the equilibrium of the system
may be stated as follows:

Find the unknown displacement vector d 2 RMsuch that
NX

i=1

±¢iki¢i =
MX

i=1

±iFi (1.14)

holds for all ± and such that both ¢i and ±¢i are compatible with d and ±; respectively.

1.2 Principle of Minimum Potential Energy for “Discrete” Sys-
tems

With every statement of the principle of virtual work it is possible to associate a quadratic
functional called the potential energy such that the exact solution corresponding to the to PVD
minimizes the potential energy. We de…ne the potential energy ¦ as

¦(d) = U (d) +V (d) (1.15)

where the strain energy U and the potential of the external load V are given by

U (d) =
NX

i=1

1
2
ki

¡
¢i

¢2 (1.16)

V (d) = ¡
MX

i=1

diFi (1.17)

Let us now show that the exact solution corresponding to the to PVD, denoted dex; minimizes
the potential energy ¦.
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Proposition 6 The exact solution corresponding to the to PVD, denoted dex; minimizes the
potential energy ¦; that is

¦ (dex) = min
d2RM

¦(d)

Proof. Select any vector ± 2 RM and consider

¦(dex +±) = U (dex+ ±) +V (dex+±)

=
NX

i=1

1
2
ki

¡
¢iex+ ±¢i

¢2 ¡
MX

i=1

((dex)i + ±i)Fi

=
NX

i=1

1
2
ki

¡
¢iex

¢2 +
NX

i=1

1
2
ki

¡
±¢i

¢2 +
NX

i=1

ki¢iex±¢
i ¡

MX

i=1

(dex)i Fi ¡
MX

i=1

±iFi

= ¦(dex) +
NX

i=1

1
2
ki

¡
±¢i

¢2 +
NX

i=1

±¢iki¢iex¡
MX

i=1

±iFi (1.18)

However, by the PVD, (1.14),
NX

i=1
±¢iki¢iex ¡

MX

i=1
±iFi = 0

for any choice of ±: Also
NX

i=1

1
2
ki

¡
±¢i

¢2 > 0

for any choice of ±: It follows that

¦(dex+±) < ¦(dex)

and therefore dex is the minimizing vector of ¦(d)
This is called the principle of minimum potential energy (PMPE). Since the exact solution

minimizes ¦; we conclude that ¦ must be stationary at dex:

Proposition 7 The condition of stationarity of ¦;

lim
±!0

[¦(dex +±) ¡ ¦(dex)] = 0

is identical to the PVD.
Proof. From (1.18), it follows that

¦(dex +±) ¡ ¦(dex) =
NX

i=1

±¢iki¢iex¡
MX

i=1

±iFi + O
³¡

±¢i
¢2´

where

O
³¡

±¢i
¢2´ =

NX

i=1

1
2
ki

¡
±¢i

¢2

Hence

lim
±!0

[¦ (dex+ ±) ¡¦(dex)] =
NX

i=1

±¢iki¢iex¡
MX

i=1

±iFi (1.19)

and so the condition of stationarity returns the PVD.
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Observe also that the potential energy is negative, as follows.

Proposition 8 The potential energy is negative, that is ¦(dex) < 0
Proof. Recall that

¦ (dex) =
NX

i=1

1
2
ki

¡
¢iex

¢2 ¡
MX

i=1

(dex)i Fi

Since the PVD must hold for all ± 2 RM; it must hold also for the choice of ± = dex: In this
special case, the PVD reads

NX

i=1
ki

¡
¢iex

¢2 =
MX

i=1
(dex)i Fi

Hence

¦(dex) =
NX

i=1

1
2
ki

¡
¢iex

¢2 ¡
MX

i=1
(dex)i Fi

= ¡
NX

i=1

1
2
ki

¡
¢iex

¢2

< 0

This condition is depicted in Fig. 1.3. The PMPE states that the exact solution is the solu-
tion which minimizes the potential energy. This requires the potential energy to be stationary.
The condition of stationarity was computed above by evaluating lim±!0 [¦(dex +±) ¡ ¦(dex)]
and setting the result to zero. This operation is called the …rst variation of ¦ and is denoted
±¦; so that

±¦ := lim
±!0

[¦(dex +±) ¡ ¦(dex)]

A convenient approach for computing the …rst variation is to use the directional derivative, as
follows

±¦ =
·

d
d²

¦(dex+ ²±)
¸

²=0
In fact, let us re-evaluate ±¦ using the directional derivative,

±¦ =
·

d
d²

¦(dex+ ² ±)
¸

²=0

=
·

d
d²

U (dex+ ²±)
¸

²=0| {z }
±U

+
·

d
d²

V (dex + ² ±)
¸

²=0| {z }
±V

=

"
d
d²

NX

i=1

1
2
ki(¢iex+ ²±¢i)2

#

²=0

¡
"

d
d²

MX

i¡1
((dex)i + ² ±i)Fi

#

²=0

=

"
NX

i=1

ki(¢iex+ ² ±¢i) d
d²

(¢iex+ ²±¢i)

#

²=0

¡
"
MX

i¡1

d
d²

((dex)i Fi + ²±iFi)

#

²=0

=
NX

i=1

±¢iki¢iex¡
MX

i¡1
±iFi
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F

u eqm

u eqm

Strain
energy
U

Potental energy of
external force V

Total potential
energy

zero slope
displacement u

Figure 1.3: Principle of minumum potential energy: the equilibrium displacement minimizes
the total potential energy.

which is the same as (1.19). Let us consider some examples which apply the PMPE to …nding
the equilibrium equations.

Example 9 Consider once again the spring system shown inFig. 1.1. We will use the principle
of minimum potential energy to obtain the equations of equilibrium. For this spring system we
can immediately write the strain energy of the two springs from (1.16) as,

U (d) =
2X

i=1

1
2
ki

¡
¢i

¢2 =
1
2
k1

¡
¢1¢2 +

1
2
k2

¡
¢2¢2 (1.20)

The potential of the external loads can be written from (1.17) as,

V (d) = ¡
2X

i=1
diFi = ¡F1d1 ¡ F2d2 (1.21)

The potential energy of the spring system is then,

¦(d) = U (d) + V (d)

=
1
2
k1

¡
¢1¢2 +

1
2
k2

¡
¢2¢2 ¡ F1d1 ¡ F2d2 (1.22)

The PMPE states that the spring system is in equilibrium with displacement values d1 and d2
when ±¦ is stationary with respect to all virtual displacements ±1 and ±2, that is ±¦ = 0. Now,

±¦ (d) = ±U (d)+ ±V (d)
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and

±U (d) =
·

d
d²

U(d+ ²±)
¸

²=0

=
·

d
d²

µ
1
2
k1

¡
¢1 + ²±¢1¢2 +

1
2
k2

¡
¢2 + ²±¢2¢2

¶¸

²=0

= ±¢1k1¢1 + ±¢2k2¢2

±V (d) =
·

d
d²

V (d+ ²±)
¸

²=0

=
·

d
d²

(¡F1 (d1 + ²±1) ¡ F2 (d2 + ²±2))
¸

²=0
= ¡F1±1 ¡ F2±2

Setting ±¦ = 0 we have

±¦ = ±¢1k1¢1 + ±¢2k2¢2 ¡F1±1 ¡F2±2 = 0

which is the PVD. Using compatibility we have

¢1 = d2 ¡ d1
¢2 = ¡d2

and

±¢1 = ±2 ¡ ±1
±¢2 = ¡±2

and the PMPE now gives,

0 = (±2 ¡ ±1)k1 (d2 ¡d1) + (¡±2)k2 (¡d2)¡ F1±1 ¡ F2±2
= (±1)

¡
¡k1d2 + k1d1 ¡ F1

¢
+(±2)

¡
k1d2 ¡ k1d1 + k2d2 ¡ F2

¢

Since this must hold for all arbitrary ±1 and ±2, we have,

¡k1d2 + k1d1 ¡ F1 = 0
k1d2 ¡ k1d1 + k2d2 ¡ F2 = 0

or ·
k1 ¡k1

¡k1 k1 + k2

¸½
d1
d2

¾
=

½
F1
F2

¾

which the same as (1.7).

Remark 10 Notice that the …rst variation can be used like an ordinary derivative. For exam-
ple, in the above example we can write

U (d) =
1
2
k1

¡
¢1¢2 +

1
2
k2

¡
¢2¢2

±U (d) = k1¢1±¢1 +k2¢2±¢2
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and

V (d) = ¡F1d1 ¡F2d2
±V (d) = ¡F1±1 ¡ F2±2

so that ±¦ can be immediately written as

±¦ = ±¢1k1¢1 + ±¢2k2¢2 ¡ F1±1 ¡ F2±2

which is a very convenient approach in practice.

Example 11 Return now to the one-dimensional, statically indeterminate, spring system shown
in Fig. 1.2 and analyzed using the PVD in Section 5. We will now derive the equilibrium con-
ditions using the PMPE. The strain energy of the springs is,

U = 1
2
k1

¡
¢1¢2 + 1

2
k2

¡
¢2¢2 + 1

2
k3

¡
¢3¢2 + 1

2
k4

¡
¢4¢2

and the potential of the external loads is,

V = ¡F1d1 ¡F2d2 ¡ F3d3

The PMPE requires,

0 = ±¦
= ±U + ±V
=

¡
k1¢1¢ ±¢1 +

¡
k2¢2¢ ±¢2 +

¡
k3¢3¢ ±¢3 +

¡
k4¢4¢ ±¢4 ¡ F1±1 ¡ F2±2 ¡F3±3

Introducing the compatibility conditions between displacements and stretches,

¢1 = d1
¢2 = d2 ¡ d1
¢3 = d3 ¡ d2
¢4 = ¡d1

and similarly between virtual displacements and virtual stretches,

±¢1 = ±1
±¢2 = ±2 ¡ ±1
±¢3 = ±3 ¡ ±2
±¢4 = ¡±1

leads to the same results as Eq. (1.13), i.e.,
2
4

k1 +k2 + k4 ¡k2 0
¡k2 k2 +k3 ¡k3
0 ¡k3 k3

3
5

8
<
:

d1
d2
d3

9
=
; =

8
<
:

F1
F2
F3

9
=
; :

With this introduction to the PVD and the PMPE applied to spring models complete, let
us now turn to the analysis of bars.


