ME 328: Medical Robotics
Winter 2019

Lecture 5:
Robot dynamics and simulation

Allison Okamura
Stanford University

Robot dynamics

equations of motion

describe the relationship between forces/torques and
motion (in joint space or workspace variables)

two possible goals:

|. Given motion variables (e.g. § §.¢ or 7,7), what
joint torques (7) or end-effector forces (/) would
have been the cause? (this is inverse dynamics)

2. Given joint torques (7) or end-effector forces (f),

- - —

what motions (e.g. 6.60,0 or z z,z) would result?
(this is forward dynamics)

developing equations of motion
using Lagrange’s equation

The Lagrangianis L=T -V

where T is the kinetic energy of the system and V'is
the potential energy of the system

1 , fion i d (0L oL 0.
agrange’s equation is 9 TR
: , aq]' . .
where j=1,2,...,n,and ¢, = 5 IS the generalized

velocity and @;is the nonconservative generalized
force corresponding to the generalized coordinate 4;

what are generalized coordinates?

* equations of motion can be formalized in a
number of different coordinate systems

* 7 independent coordinates are necessary to
describe the motion of a system having " degrees

of freedom

* any set of n independent coordinates is called
generalized coordinates: 41,92, - - - gn

* these coordinates may be lengths, angles, etc.

generalized forces

* When external forces act on the system, the
configuration changes: generalized coordinates 4;
change by d¢;, 7=1,2,...,n

e If Ujis the work done in changing % by 94; ,the
corresponding generallzed forceis, = L ,
where 1 =1,2,....n 0q;

» () is a force/moment and ¢; is a linear/angular
displacement. This can include dissipation (damping).

where does Lagrange’s
equation come from!

Hamilton’s principle of least action: a system moves from ¢(t1) to q(to)
in such a Way that the following integral takes on the least possible value.

Sft (g,4,1

The calculus of variations is used to obtain Lagrange’s equations of mo-
tion. We're concerned with minimizing

2 f (y(t), (t):t) dt

The minimization leads to the equation

of d of __ 0
oy dt 0y

using Lagrange’s equation to
derive equations of motion

d ¢ OL

%(a—q]) aqg Qj? Where] — 1 2
L=T-V

Substitute:

oL _ or _ oV

dg; — 0q; 04y

Last term is zero because P.E. is not dependent on velocities — gL = g—g
J

AL _ AT _ 3V
dq; — 9Jqj Oqj

dcory _ 0T |
dt(aqj) oq; 8q3 QJ, where 7 =1, 2,.

(); 1s a nonconservative generalized force corresponding to coordinate g;,
e.g. damping

For a conservative system,

d (0T oT |
dt(é)qj) dq; ! = 0, where 3 =1, 2,.

8qj

adding dissipation

since the left side of Lagrange’s equation only includes
terms for potential and kinetic energy, any dissipative
terms (e.g., damping) must be added on the right hand
side (and @, are now only the input forces/torques)

d (0L OL OR
dt 8qj an'

is a simplified form of Rayleigh’s dissipation function

example: double pendulum
(review on your own)

Velocity of mq: v = 1161
Velocity of mo: v9 = (v5,, + Ugy)
Vogp = 1191 cos(61) + l292 cos(2)
oy = 11071 sin(61) + lobs sin(6s)

example: double pendulum

Kinetic energy: . . . ,
T = smq(1101)*+5ma((1161 cos(01)+1202 cos(62))2+(1161 sin(6;) +1262 sin(63))?)

Potential energy
V =mgli(1 —cos(01)) + mag(l1(1 — cos(01)) + l2(1 — cos(62)))

mgh = mgl,cos(0,)

P.E. = mgl, - mgl,cos(0,)

The Lagrangian is:

L=T-V

L = %(m1—I—mg)l%9%+%mzl%é§+m21112é1é2 cos(61—02)+(m1+ms)gli cos(61)+
magla cos(62)

example: double pendulum

For 6q:

g—é — m11291 —+ m2l 91 -+ m2l1126’2 COS(Hl — 92)

c?t (3911) — (m1+m2)l%é1+m2l1l2é2 COS(91—62)—m211l2é2 Sin(el—eg)(él—ég)

g_gli — _llg(ml + mQ) Sin(@l) — mzlllgélég Siﬂ(@l — (92)

Thus, the differential equation for 6 becomes:

(m1 + mg)l (91 -+ m2l11292 COS(91 — 92) —+ m2l1l292 Slﬂ(@l — 92) —+ llg(ml —+
mo)sin(f1) = 0

Divide through by {; and this simplifies to:

(m1 +m2)116’1 —|-m212(92 COS(@l —92)+m2l26’2 Sln((91 —92)—|—g(m1 +m2) Sln(é’l)
0

example: double pendulum

Similarly, for 6s:

g—él; = mzl%ég -+ mzlllzél 008(91 — (92)

Cclit (gg;) — m2l2é2 -+ mzlllgél COS(6’1 — (92) — mﬂllgél Siﬂ(@l — 92)((91 — (92)

3_9[; = mal1la0102 sin(0; — 02) — lamagsin 6

Thus, the difterential equation for # becomes:
mglgeg + molile0q COS(Ql — 92) — mglllgg% Siﬂ(@l — (92) + lomogsinfy = 0

Divide through by /2 and this simplities to:
mglgeg -+ m2l16’1 COS(@l — (92) m2l16’1 SlIl((91 (92) + mogsinfy =0

So, we have developed a very complicated set of coupled equations of motion
from a very simple system!

but robots are not point masses...

h

links could be represented by solid cylinders

G
4 "
e
’).- ---------- i |
!;/

moments of inertia about center:

mr2

I
2

1
—m
12

I, =1,

moment of inertia tensor:

0
=m(3r? 4+ h?)
0

- =m(3r? + h?)
0
0

(37“2 -+ h2)

http://en.wikipedia.org/wiki/List_of moments_of inertia

what do you do if the rotation is not
about the center?

If the new axis of rotation is parallel to the original
axis of rotation, use the parallel axis theorem:

Inew —]cm + mR2

Icrm moment of inertia of the object about an
axis passing through its center of mass

M object’s mass

R perpendicular distance between the two axes

and what if the new axis of rotation is
not parallel to the original?

the moment of inertia of a continuous solid body
rotating about a known axis is calculated by

I = /V p(Pd(F)dV (7

7 radius vector (from origin to volume element of interest)

—

p(T) object’s mass density at 7

d(1) shortest distance between a point at 7 and the axis
of rotation

integrated over the volume V of the body

... but to reduce the complexity of this week’s assignment, we will
approximate the moment of inertia by assuming that we do have parallel axes

considering kinetic energy of solids

sum translational and rotational components

1 1
T = §m02 -+ §Iw2

"o ¥
| 9“l~ l ‘,3
KE IOk My~ =Kl
2 =/
: A
/ m

http://hyperphysics.phy-astr.gsu.edu/hbase/rke.html

for robot dynamics background

class: CS223A / ME320: Introduction to Robotics

dynamics and robotics textbooks such as
John J. Craig
Introduction to Robotics: Mechanics and Control

... and many others

In Assignment 3, we will give you the dynamic equations,
but it helps to understand where they come from!

questions

* how do you think an RCM robot compares
to a typical serial chain manipulator in
terms of its dynamics?

* does the daVinci have haptic feedback?

(and how do the system dynamics affect
this capability?)

Dynamic simulation

controller on one end,
system dynamics on the other

a controller computes
the desired force

e.g. f = kp+(X-Xa) desired force
(in computer)

endpoint
force/torque

in Assignment 3,
you will simulate the this force and externally applied
effects of system loads result in robot motion

dynamics e.g., solve for x in f =mi + b

simulating equations of motion

goal: given an equation of motion and applied forces,
what will the resulting robot motion be!

The dynamics equations we have are coupled, non-linear
ODEs. They are hard (likely impossible) to solve analytically.

Instead, we solve them using numerical integration.

you can do a simple calculation yourself,
l.e. integration using the trapezoidal rule, or use a handy
and more accurate/robust Matlab function
(Simulink is also an option)

There are a series of native Matlab functions that solve ODEs given initial conditions. Different
functions are appropriate for different problem types (“stiffness”, corresponding to large differences
in scales) and and order of accuracy (low to high).

Solver Problem Type Order of Accuracy | When to Use

ode45 Nonstiff Medium Most of the time. This should be the first
solver you try.

ode23 Nonstiff Low For problems with crude error tolerances or
for solving moderately stiff problems.

ode113 | Nonstiff Low to high For problems with stringent error tolerances
or for solving computationally intensive prob-
lems.

odelbs | Stiff Low to medium If ode45 is slow because the problem is stiff.

ode23s | Stiff Low If using crude error tolerances to solve stiff
systems and the mass matrix is constant.

ode23t | Moderately Stiff | Low For moderately stiff problems if you need a
solution without numerical damping.

ode23tb | Stiff Low If using crude error tolerances to solve stiff
systems.

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step
solver - in computing y(¢,), it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a “first try” for most problems.

The basic syntax for these solvers is:
[T,Y] = solver(odefun,tspan,y0)

where:

solver is one of ode4b, ode23, etc.

odefun is a function handle that evaluates the right side of the differential equations
tspan is a vector specifying the interval of integration, [t0,tf]

y0 is a vector of initial conditions

Example: First order system

Let’s say that we want to solve the function
Y+ 2y =0

for the initial condition y(0) = 10.

First, you need to create a function of the form 3y = f(t,y):
function ydot = my_function(t,y)

ydot = -2xy; 7 end of subprogram

And the code to apply initial condition and solve the system is:
tspan = [0,5]; %» time duration for calculation
yO = 10; %» initial condition

%» Note that the equation of motion is in a
% subprogram named my_func

First Order Response

[t,y] = ode45(’my_func’,tspan,y0);

%» plot the response

figure

plot(t,y)

title(’First Order Response’)
xlabel (’Time (s)’)

ylabel (’Position (m)’)

L Il
3 3.5

!
4.5

trajectory generation

reference: Chapter 7 of Introduction to Robotics by |.|. Craig (any edition)

discussion

why would you want to generate a trajectory!?

would you want to do trajectory generation in
Cartesian space or joint space!

teleoperation q autonomy

user provides the surgical planning
desired position specifies the start/

(trajectory) at each end points and
control loop desired via points

for autonomous robots, we typically specify the
trajectory based on start point, end point, via points,
motion (e.g., velocity) constraints,
and/or time constraints

discussion

what properties might you want in a trajectory!?

Trajectory generation goal

move a manipulator from an initial pose to a
final pose in a smooth manner

what does smooth mean!?
at least C| continuous position profile
at least CO continuous velocity profile

possibly continuous acceleration profile

point-to-point trajectory generation

consider the problem of moving a robot end-
effector from its initial 3D pose to a final 3D pose
in a certain amount of time

robot graphic courtesy Fidel Hernandez

a smooth path
x(t)

cubic polynomial: p(t) = | u(
2(t

N

= a(-+ alt -+ a2t2 —+ a3t3

T(t) = ago + azp1t + agot? + azst’
or y(t) — Uy0 + aylt + ay2t2 + ayStg

2(t) = a0 + a1t + a.ot% + a,3t>

=

~

derivatives: p(t) = = a; + 2a,t + 3ast?

N. .

p(t) m— _— 28.2 —+ 6&3t

NN

constraints

position and velocity at initial and final times:

p(0) =
(ty) =
(0)
5(

o T 'Y T
N N
t:

with four equations and four unknowns, you can
solve for the coefficients @ in terms of Po and Py
and the time ¢;

you can pick the time ty based on how quickly you
want to move between to the two points, or based
on a maximum velocity constraint

example trajectory

~3

0
|

3
3
[

rterr1rrrTrueil

)]]] } Seconds
6 1.2 1.8 2.4 3.0

Position

Degisec

) 1.2 1.8 2.4 3.0
Velocity

Deg/sec?

rrirrrirrrerrid

Seconds

6 1.2 1.8 2.4 3.0

Acceleratjon

position
cubic polynomial
CIl continuous

velocity
quadratic polynomial
CO continuous

acceleration
linear polynomial
not continuous (at t = 0)

now what?

now that you have created a trajectory
(i.e., you know the desired position
of the robot at each time step),
you can control the robot to follow
this trajectory

previously, we generated this trajectory
using the “master” of the teleoperator

discussion

why is a smooth trajectory important!?
why might you want a smoother trajectory!?
how could you compute this!?

what do the produced trajectories look like spatially? what
if you design in joint space instead of Cartesian space?

how might via points be useful?
how would you generate trajectories for them!?

discussion

how would you compute ¢y based on a
defined maximum velocity!?

what kind of trajectory would you want for a
robot that inserts a needle into solid tissue?

bloodbot (Imperial College of London)

Overview

gnd, Similar to

user input or Assignment 2
trajectory '

dynamic model or
physical robot

v v

Xd(t) oD
controller

x(t)

forces

>+

x'(€) = 1(x(t), gpa(X(), x4(1)))

the ODE we solve numerically

Assignment 3

Problem 0: Commentary on seminar
Problem |: Read papers, answer questions

Problem 2: Modeling and simulation of medical
robot dynamics

Problem 3: Effects of dynamics on robot control

To be posted tomorrow, due Thursday, Jan. 31 at 4 pm

FRIDAY’S SEMINAR IS AT 8:30 am! (in 320-105)

