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Robot dynamics



equations of motion

describe the relationship between forces/torques and 
motion (in joint space or workspace variables)

two possible goals:

1. Given motion variables (e.g.           or           ), what 
joint torques (   ) or end-effector forces (   ) would 
have been the cause? (this is inverse dynamics)

~✓, ~̇✓, ~̈✓ ~x, ~̇x, ~̈x
~⌧ ~f

2. Given joint torques (   ) or end-effector forces (   ), 
what motions (e.g.           or           ) would result? 
(this is forward dynamics)

~✓, ~̇✓, ~̈✓ ~x, ~̇x, ~̈x
~⌧

~f



developing equations of motion 
using Lagrange’s equation

The Lagrangian is L = T � V

where    is the kinetic energy of the system and    is 
the potential energy of the system

T V

Lagrange’s equation is
d

dt

✓
@L

@q̇j

◆
� @L

@qj
= Qj

where                     , and              is the generalized 
velocity and     is the nonconservative generalized 
force corresponding to the generalized coordinate

j = 1, 2, . . . , n q̇j =
@qj
@tQj

qj



what are generalized coordinates?

• equations of motion can be formalized in a 
number of different coordinate systems

•    independent coordinates are necessary to 
describe the motion of a system having    degrees 
of freedom

• any set of    independent coordinates is called 
generalized coordinates: 

• these coordinates may be lengths, angles, etc.

n

n

n
q1, q2, . . . qn



generalized forces

• When external forces act on the system, the 
configuration changes:  generalized coordinates     
change by      , 

• If     is the work done in changing     by       , the 
corresponding generalized force is               ,
where

•       is a force/moment and     is a linear/angular 
displacement. This can include dissipation (damping).

qj

�qj

j = 1, 2, . . . , n

Uj
qj

�qj

Qj =
Uj

�qjj = 1, 2, . . . , n

qjQj



where does Lagrange’s 
equation come from?

d
dt(

@L
@q̇j

)� @L
@qj

= Qj , where j = 1, 2, . . . , n

where q̇j =
@qj
@t is the generalized velocity and Qj is the nonconservative

generalized force corresponding to the generalized coordinate qj .

Where does it come from?

Hamilton’s principle of least action: a system moves from q(t1) to q(t2)
in such a way that the following integral takes on the least possible value.

S =
R t2
t1

L(q, q̇, t)dt

The calculus of variations is used to obtain Lagrange’s equations of mo-

tion. We’re concerned with minimizingR t2
t1

f (y(t), ẏ(t); t) dt

The minimization leads to the equation
@f
@y � d

dt
@f
@ẏ = 0

If there is more than one set of variables in the functional f (e.g. yi and ẏi)
then you get one equation for each set.

To use for coupled systems, we need potential and kinetic energy expressions

in matrix form.

Define:

xi, displacement of mass mi

Fi, force applied in the direction of xi at mass mi
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using Lagrange’s equation to 
derive equations of motion

This can be rewritten in matrix form:

T =
1
2 ẋ

TM ẋ

where:

ẋ =

2

6664

ẋ1(t)
ẋ2(t)
.
.
.

ẋn(t)

3

7775

M = diag(m1,m2, . . . ,mn)

In general, the mass matrix M might not be diagonal, for example if we

use a di↵erent set of generalized coordinates, such as the relative displace-

ments of the masses, rather than the absolute (ground-referenced) displace-

ment.

We can also use generalized coordinates:

V =
1
2q

TKq
K ! generalized sti↵ness matrix

T =
1
2 q̇

TM q̇
M ! generalized mass matrix

Note: In general, M need not be diagonal

Using Lagrange’s Equation to derive Equations of Motion

d
dt(

@L
@q̇j

)� @L
@qj

= Qj , where j = 1, 2, . . . , n

L = T � V

Substitute:
@L
@q̇j

=
@T
@q̇j

� @V
@q̇j

Last term is zero because P.E. is not dependent on velocities ! @L
@q̇j

=
@T
@q̇j

@L
@qj

=
@T
@qj

� @V
@qj

d
dt(

@T
@q̇j

)� @T
@qj

+
@V
@qj

= Qj , where j = 1, 2, . . . , n

Qj is a nonconservative generalized force corresponding to coordinate qj ,
e.g. damping
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For a conservative system,
d
dt(

@T
@q̇j

)� @T
@qj

+
@V
@qj

= 0, where j = 1, 2, . . . , n

Example: Torsional System

Let q1 = ✓1, q2 = ✓2, q3 = ✓3

Kinetic energy:

T =
1
2J1✓̇

2
1 +

1
2J2✓̇

2
2 +

1
2J3✓̇

2
3

Potential energy:

V =
1
2k1✓

2
1 +

1
2k2(✓2 � ✓1)2 +

1
2k3(✓3 � ✓2)2

External moments are M1, M2, M3

Generalized force:

If Fxk, Fyk, Fzk are the external forces acting on the kth mass of the system

in the x, y, z directions:

Qj =
P

k(Fxk
@xk
@qj

+ Fyk
@yk
@qj

+ Fzk
@zk
@qj

)

Where xk, yk, zk are the displacements of the kth mass in the x, y, z direc-

tions.

For a torsional system F is replaced by M , moment.

Qj =
P3

k=1Mk
@✓k
@qj

=
P3

k=1Mk
@✓k
@✓j

Q1 = M1
@✓1
@✓1

+M2
@✓2
@✓1

+M3
@✓3
@✓1

= M1

Q2 = M1
@✓1
@✓2

+M2
@✓2
@✓2

+M3
@✓3
@✓2

= M2
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adding dissipation

since the left side of Lagrange’s equation only includes 
terms for potential and kinetic energy, any dissipative 
terms (e.g., damping) must be added on the right hand 
side (and       are now only the input forces/torques)Qj

d

dt

✓
@L

@q̇j

◆
� @L

@qj
= Qj �

@R

@q̇j

R =
1

2

X

j

bj q̇
2
j

is a simplified form of Rayleigh’s dissipation function 



example: double pendulum
(review on your own)



example: double pendulum

Double Pendulum Example

Velocity of m1: v1 = l1✓̇1
Velocity of m2: v2 = (v22x + v22y)

1
2

v2x = l1✓̇1 cos(✓1) + l2✓̇2 cos(✓2)
v2y = l1✓̇1 sin(✓1) + l2✓̇2 sin(✓2)

Kinetic energy:

T =
1
2m1(l1✓̇1)2+

1
2m2((l1✓̇1 cos(✓1)+l2✓̇2 cos(✓2))2+(l1✓̇1 sin(✓1)+l2✓̇2 sin(✓2))2)

Potential energy

V = m1gl1(1� cos(✓1)) +m2g(l1(1� cos(✓1)) + l2(1� cos(✓2)))
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3

The Lagrangian is:

L = T � V
L =

1
2(m1+m2)l21✓̇

2
1+

1
2m2l22✓̇

2
2+m2l1l2✓̇1✓̇2 cos(✓1�✓2)+(m1+m2)gl1 cos(✓1)+

m2gl2 cos(✓2)

For ✓1:
@L
@✓̇1

= m1l21✓̇1 +m2l21✓̇1 +m2l1l2✓̇2 cos(✓1 � ✓2)

d
dt

⇣
@L
@✓̇1

⌘
= (m1+m2)l21✓̈1+m2l1l2✓̈2 cos(✓1�✓2)�m2l1l2✓̇2 sin(✓1�✓2)(✓̇1�✓̇2)

@L
@✓1

= �l1g(m1 +m2) sin(✓1)�m2l1l2✓̇1✓̇2 sin(✓1 � ✓2)

Thus, the di↵erential equation for ✓1 becomes:

(m1 + m2)l21✓̈1 + m2l1l2✓̈2 cos(✓1 � ✓2) + m2l1l2✓̇22 sin(✓1 � ✓2) + l1g(m1 +

m2) sin(✓1) = 0

Divide through by l1 and this simplifies to:

(m1+m2)l1✓̈1+m2l2✓̈2 cos(✓1�✓2)+m2l2✓̇22 sin(✓1�✓2)+g(m1+m2) sin(✓1) =
0

Similarly, for ✓2:
@L
@✓̇2

= m2l22✓̇2 +m2l1l2✓̇1 cos(✓1 � ✓2)

d
dt

⇣
@L
@✓̇2

⌘
= m2l2✓̈2 +m2l1l2✓̈1 cos(✓1 � ✓2)�m2l1l2✓̇1 sin(✓1 � ✓2)(✓̇1 � ✓̇2)

@L
@✓2

= m2l1l2✓̇1✓̇2 sin(✓1 � ✓2)� l2m2g sin ✓2

Thus, the di↵erential equation for ✓2 becomes:

m2l22✓̈2 +m2l1l2✓̈1 cos(✓1 � ✓2)�m2l1l2✓̇21 sin(✓1 � ✓2) + l2m2g sin ✓2 = 0

Divide through by l2 and this simplifies to:

m2l2✓̈2 +m2l1✓̈1 cos(✓1 � ✓2)�m2l1✓̇21 sin(✓1 � ✓2) +m2g sin ✓2 = 0

So, we have developed a very complicated set of coupled equations of motion

from a very simple system!

For the initial conditions ✓1 =
⇡
2 and ✓2 = ⇡, you get the response be-

low. If you perturbed these initial conditions slightly, you would get a very
di↵erent response. This is evidence of a chaotic system. If you linearized

the equations or added damping, you would get a much more predictable
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but robots are not point masses...
links could be represented by solid cylinders

Iz =
mr2

2

Ix = Iy =
1

12
m

�
3r2 + h2

�

http://en.wikipedia.org/wiki/List_of_moments_of_inertia

moment of inertia tensor:

moments of inertia about center:



what do you do if the rotation is not 
about the center?

If the new axis of rotation is parallel to the original 
axis of rotation, use the parallel axis theorem:

Inew = Icm +mR2

Icm

m

R

moment of inertia of the object about an 
axis passing through its center of mass

object’s mass

perpendicular distance between the two axes



and what if the new axis of rotation is 
not parallel to the original?

the moment of inertia of a continuous solid body 
rotating about a known axis is calculated by

radius vector (from origin to volume element of interest)

object’s mass density at 

shortest distance between a point at       and the axis 
of rotation 

I =

Z

V
⇢(~r)d(~r)dV (~r)

⇢(~r)

~r

~r

d(~r) ~r

integrated over the volume     of the body V

... but to reduce the complexity of this week’s assignment, we will 
approximate the moment of inertia by assuming that we do have parallel axes



considering kinetic energy of solids

sum translational and rotational components

T =
1

2
mv2 +

1

2
I!2

http://hyperphysics.phy-astr.gsu.edu/hbase/rke.html



for robot dynamics background

class: CS223A / ME320: Introduction to Robotics

dynamics and robotics textbooks such as
John J. Craig

Introduction to Robotics: Mechanics and Control

… and many others

In Assignment 3, we will give you the dynamic equations, 
but it helps to understand where they come from!



questions

• how do you think an RCM robot compares 
to a typical serial chain manipulator in 
terms of its dynamics?

• does the da Vinci have haptic feedback? 
(and how do the system dynamics affect 
this capability?)



Dynamic simulation



controller on one end, 
system dynamics on the other

endpoint
force/torque

desired force
(in computer)

a controller computes 
the desired force

this force and externally applied 
loads result in robot motion

e.g. f = kp*(x-xd)

e.g., solve for x in f = mẍ+ bẋ

in Assignment 3,
you will simulate the 

effects of system 
dynamics



simulating equations of motion

goal: given an equation of motion and applied forces,
what will the resulting robot motion be?

The dynamics equations we have are coupled, non-linear 
ODEs. They are hard (likely impossible) to solve analytically.

Instead, we solve them using numerical integration. 

you can do a simple calculation yourself,
i.e. integration using the trapezoidal rule, or use a handy 

and more accurate/robust Matlab function 
(Simulink is also an option)



Numerical Solutions

In this course, we have primarily solved dynamic systems analytically, invoking Matlab to facilitate
plotting and data manipulation. However, Matlab can also be a powerful tool for solving ordinary
di↵erential equations (ODEs) directly.

There are a series of native Matlab functions that solve ODEs given initial conditions. Di↵erent
functions are appropriate for di↵erent problem types (“sti↵ness”, corresponding to large di↵erences
in scales) and and order of accuracy (low to high).

Solver Problem Type Order of Accuracy When to Use

ode45 Nonsti↵ Medium Most of the time. This should be the first
solver you try.

ode23 Nonsti↵ Low For problems with crude error tolerances or
for solving moderately sti↵ problems.

ode113 Nonsti↵ Low to high For problems with stringent error tolerances
or for solving computationally intensive prob-
lems.

ode15s Sti↵ Low to medium If ode45 is slow because the problem is sti↵.
ode23s Sti↵ Low If using crude error tolerances to solve sti↵

systems and the mass matrix is constant.
ode23t Moderately Sti↵ Low For moderately sti↵ problems if you need a

solution without numerical damping.
ode23tb Sti↵ Low If using crude error tolerances to solve sti↵

systems.

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step
solver - in computing y(tn), it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a “first try” for most problems.

The basic syntax for these solvers is:
[T,Y] = solver(odefun,tspan,y0)

where:
solver is one of ode45, ode23, etc.
odefun is a function handle that evaluates the right side of the di↵erential equations
tspan is a vector specifying the interval of integration, [t0,tf]
y0 is a vector of initial conditions

Example: First order system

Let’s say that we want to solve the function

ẏ + 2y = 0

for the initial condition y(0) = 10.
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ode23tb Sti↵ Low If using crude error tolerances to solve sti↵
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The basic syntax for these solvers is:
[T,Y] = solver(odefun,tspan,y0)

where:
solver is one of ode45, ode23, etc.
odefun is a function handle that evaluates the right side of the di↵erential equations
tspan is a vector specifying the interval of integration, [t0,tf]
y0 is a vector of initial conditions

Example: First order system

Let’s say that we want to solve the function

ẏ + 2y = 0

for the initial condition y(0) = 10.
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solution without numerical damping.
ode23tb Sti↵ Low If using crude error tolerances to solve sti↵

systems.

ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair. It is a one-step
solver - in computing y(tn), it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a “first try” for most problems.

The basic syntax for these solvers is:
[T,Y] = solver(odefun,tspan,y0)

where:
solver is one of ode45, ode23, etc.
odefun is a function handle that evaluates the right side of the di↵erential equations
tspan is a vector specifying the interval of integration, [t0,tf]
y0 is a vector of initial conditions

Example: First order system

Let’s say that we want to solve the function

ẏ + 2y = 0

for the initial condition y(0) = 10.
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First, you need to create a function of the form ẏ = f(t, y):
function ydot = my_function(t,y)

ydot = -2*y; % end of subprogram

And the code to apply initial condition and solve the system is:
tspan = [0,5]; % time duration for calculation

y0 = 10; % initial condition

% Note that the equation of motion is in a

% subprogram named my_func

[t,y] = ode45(’my_func’,tspan,y0);

% plot the response

figure

plot(t,y)

title(’First Order Response’)

xlabel(’Time (s)’)

ylabel(’Position (m)’)

The resulting plot is shown below:
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Example: Second order system

We will now look at the response of a second order system, an inverted pendulum with the following
equation of motion:

✓̈ � g

l
sin(✓) = 0
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y0 = 10; % initial condition

% Note that the equation of motion is in a
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[t,y] = ode45(’my_func’,tspan,y0);
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xlabel(’Time (s)’)
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trajectory generation

reference: Chapter 7 of Introduction to Robotics by J. J. Craig (any edition)



discussion

why would you want to generate a trajectory?

would you want to do trajectory generation in 
Cartesian space or joint space?



teleoperation autonomy

user provides the 
desired position 

(trajectory) at each 
control loop

surgical planning 
specifies the start/

end points and 
desired via points

for autonomous robots, we typically specify the 
trajectory based on start point, end point, via points, 

motion (e.g., velocity) constraints, 
and/or time constraints



discussion

what properties might you want in a trajectory?



Trajectory generation goal

move a manipulator from an initial pose to a 
final pose in a smooth manner

what does smooth mean?

at least C1 continuous position profile

at least C0 continuous velocity profile

possibly continuous acceleration profile



point-to-point trajectory generation

consider the problem of moving a robot end-
effector from its initial 3D pose to a final 3D pose 

in a certain amount of time

robot graphic courtesy Fidel Hernandez

p(0) p(tf )p(t) =

2

4
x(t)
y(t)
z(t)

3

5



a smooth path

cubic polynomial: p(t) =

2

4
x(t)
y(t)
z(t)

3

5 = a0 + a1t+ a2t2 + a3t3

or 

x(t) = ax0 + ax1t+ ax2t2 + ax3t3

y(t) = ay0 + ay1t+ ay2t2 + ay3t3

z(t) = az0 + az1t+ az2t2 + az3t3

derivatives: ṗ(t) =

2

4
ẋ(t)
ẏ(t)
ż(t)

3

5 = a1 + 2a2t+ 3a3t2

p̈(t) =

2

4
ẍ(t)
ÿ(t)
z̈(t)

3

5 = 2a2 + 6a3t



constraints
position and velocity at initial and final times: 

with four equations and four unknowns, you can 
solve for the coefficients     in terms of      and  

and the time

p(0) = p0

p(tf ) = pf

ṗ(0) = 0
ṗ(tf ) = 0

a p0 pf

you can pick the time      based on how quickly you 
want to move between to the two points, or based 

on a maximum velocity constraint

tf

tf



example trajectory
Example

Position

Acceleration

Velocity

A single-link robot with a rotary joint

• Must start and stop at rest

• Must start from θ0 = 15° and stop at θf = 75°
• Must do so in tf = 3 seconds

344.4200.2000.15)( ttt −++=θ

233.1300.40)(
.

ttt +=θ

tt 66.2600.40)(
..

−=θ

position
cubic polynomial
C1 continuous

velocity
quadratic polynomial

C0 continuous

acceleration
linear polynomial

not continuous (at t = 0)



now what?

now that you have created a trajectory
(i.e., you know the desired position  

of the robot at each time step),
you can control the robot to follow

this trajectory

previously, we generated this trajectory
using the “master” of the teleoperator



discussion

why is a smooth trajectory important?
why might you want a smoother trajectory?

how could you compute this?

what do the produced trajectories look like spatially? what 
if you design in joint space instead of Cartesian space? 

how might via points be useful?
how would you generate trajectories for them?



discussion

how would you compute     based on a  
defined maximum velocity?

what kind of trajectory would you want for a 
robot that inserts a needle into solid tissue?

tf

bloodbot (Imperial College of London)



Overview

user input or 
trajectory

x(t)
PD 

controller plant
xd(t)

gpd, similar to 
Assignment 2

dynamic model or 
physical robot

-+

x’(t) = f(x(t), gpd(x(t), xd(t)))

forces

the ODE we solve numerically



Assignment 3
Problem 0: Commentary on seminar

Problem 1: Read papers, answer questions

Problem 2: Modeling and simulation of medical  
                robot dynamics

Problem 3: Effects of dynamics on robot control

To be posted tomorrow, due Thursday, Jan. 31 at 4 pm

 FRIDAY’S SEMINAR IS AT 8:30 am! (in 320-105) 


