Advanced Physical Models

• Heat Transfer
• Buoyancy
 • Combustion and reaction modeling
 • Multiphase flows
 • Solidification and melting
Heat Transfer

Thermal analysis are crucial in many industrial applications.

Turbulence is enhanced in internal turbine cooling passages to improve heat transfer.

Roughness elements (ribs) are placed in the channels.
Heat Transfer

“passage of thermal energy from a hot to cold material”

This “passage” occurs typically in three modes

1) **Conduction**: diffusion process. Heat is transferred by direct contact
2) **Convection**: associated to a fluid motion. Heat is transferred by conduction enhanced by the motion of the fluid particles
 1) Natural convection: the fluid motion is generated by the heat transfer: the fluid close to a hot surface becomes lighter and rises. The driving force is buoyancy - gravity driven motion
 2) Forced convection: the fluid motion is driven by external means
3) **Radiation**: wave propagation process. The heat is transferred by means of electromagnetic waves
Heat Transfer Modeling

An energy equation must be solved together with the momentum and the continuity equations

For incompressible flows the energy equation is **decoupled** from the others (\(\rho \) is NOT a function of the temperature)

For laminar flows the energy equation can be solved directly; for turbulent flows after Reynolds-averaging the equation contains an unclosed correlation:

\[
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\mu \frac{\partial U_i}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(-u'_i u'_j \right)
\]

Momentum

\[
\frac{\partial T}{\partial t} + U_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\frac{\mu}{Pr} \frac{\partial T}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(-T'u'_j \right)
\]

Energy
Heat Transfer Modeling

\[\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\frac{\mu}{\rho} \frac{\partial U_i}{\partial x_j} \right] \]

Momentum

\[\frac{\partial T}{\partial t} + U_j \frac{\partial T}{\partial x_j} = \frac{\partial}{\partial x_j} \left[\frac{1}{\rho} \left(\frac{\mu}{Pr} + \frac{\mu_t}{Pr_t} \right) \frac{\partial T}{\partial x_j} \right] \]

Energy

The Prandtl number is the measure of the momentum diffusivity vs. the thermal diffusivity

\[Pr = c_p \frac{\mu}{\kappa} \]

\(Pr \) is order 1 for gases (typically 0.7 for air)

\(Pr_t \) is an additional parameter in the turbulence model (typically 0.9)
Set-Up for Heat Transfer Calculations

Define → Models → Energy

Activate the energy equation

Define → Materials

Specify material properties
Wall thermal boundary conditions

The options are:

1) Fixed temperature
2) Fixed thermal flux (temperature gradient)
Flow-thermal simulations

For the energy equations all the numerical options (discretization, under-relaxation, etc.) are available

For incompressible fluids the temperature and momentum equations are decoupled
Periodic flows

Many heat-transfer devices are characterized by geometrically periodic configurations (ribbed passages)

Temperature behaves like the pressure: it varies in the streamwise direction but its variation (gradient) is periodic

The energy equations can be rewritten in terms of a scaled temperature:

$$\theta = \frac{T - T_{wall}}{T_b - T_{wall}}$$

And the modified energy equation can be solved with periodic BC
Wall heat transfer (temperature gradients) are strongly connected to wall friction coefficients and therefore to turbulence modeling.
Example: Ribbed Channel Flow

Problem set-up

- **Material Properties:**
 - \(\rho = 1 \text{kg/m}^3 \)
 - \(\mu = 0.0001 \text{kg/ms} \)
 - \(C_p = 1000 \text{J/kg/°K} \)
 - \(k = 0.142 \text{ W/m °K} \)

- **Reynolds number:**
 - \(h = 1 \text{m}, L=10 \text{m}, H=L \)
 - \(Re_h = \rho U_b h/\mu = 10,000 \)

- **Boundary Conditions:**
 - Periodicity: \(m=\rho U_b H=10 \text{Kg/s} \)
 - No-slip walls

- **Initial Conditions:**
 - \(u = 1; v = p = 0 \)

- **Turbulence model:**
 - \(k-\varepsilon \)

Solver Set-Up

- **Segregated Solver**
- **Discretization:**
 - 2\(^{nd}\) order upwind
- **SIMPLE**
- **Multigrid**
 - V-Cycle
Grids in Ribbed Channel Flows

Grid points are clustered at the walls and in the shear layers.

Unstructured gridding allows to separate the bottom and top BLs having different resolutions in the streamwise direction.
Heat Transfer Predictions

CASE 2
Re = 40000

\(N_u \) vs \(x/e \)

Legend:
- KE - 2L
- KE - DF
- V2F
- Exp.
Conjugate Heat Transfer

In many cases the correct prediction of the thermal field in a device requires the inclusion of conduction effects in solids.

Conjugate simulations are referred to coupled fluid-solid temperature calculations.

![Diagram of a Gas Turbine Rotor Blade](image)
Set-Up Conjugate Heat Transfer

We need to specify two zones (fluid and solid) in the grid generation
And then specify the material properties

Define → Materials → Fluid

Define → Materials → Solid
Wall thermal boundary conditions

The boundary between the two zones is ALWAYS a wall and a shadow zone is created automatically by Fluent.
Natural Convection

The fluid motion is induced by the heat transfer

Density and temperature are related; hotter gases rise...

\[\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p \]

Thermal expansion coefficient is a characteristic property of fluids

The momentum equation must be written in compressible form (density is varying) and includes a source term

\[S_i = \rho \, g_i \]
Boussinesq approximation

Treat the fluid as incompressible provides faster convergence and simplifies the analysis

Rewrite the forcing term in the NS equations using linearization of the buoyancy force

\[(\rho - \rho_0)g \approx -\rho_0 \beta (T - T_0)g\]

The momentum and energy equations are coupled by via the temperature!

Typically called Boussinesq fluids...
Setting up Natural Convection Simulations

Operating conditions allow to specify gravity and Boussinesq parameter (reference temperature)

\(\beta \) is specified as a material property
Fire Simulations
Helium Plume - not heat transfer, just buoyancy
Multi-Fluid mixing problem

Describe the system as a mixture of two fluids, introduce the concept of mixture fraction ($\phi=0$ fluid A, $\phi=1$ fluid B)

Mixture properties are described as a function of ϕ

The fluid might have density variation (ρ_A, ρ_B) this is mapped into a variation in the mixture fraction $\rho=\rho(\phi)$

We can still use Boussinesq-like relationship and drive the flow by variations in mixture fraction
Raileght-Taylor instability

http://www.llnl.gov/casc/asciturb/movies.html
Radiative Heat Transfer

Transfer of heat due to electromagnetic waves

Complex physical phenomena due to its wave nature and the interactions with the environment

Several models depending on the conditions
Radiative Heat Transfer - Surface to Surface

Simplest approach - no interaction with the environment

View factors

$F_{12} = \text{fraction of thermal power leaving object 1 and reaching object 2}$

The end result is a quantification of the net flux out and in each of the surfaces in the model

The boundary condition is based on a energy balance
Radiative Heat Transfer

More sophisticated models attempt to reproduce the interaction between the environment and the electromagnetic waves.
Comments on Thermo-fluid simulations

In incompressible flows the energy equation is decoupled from the momentum equations and can be solved a posteriori with the velocity field frozen.

Additional modeling is involved for the solution of thermal equation in the RANS context (therefore additional approximations and errors).

Wall quantities (temperature and heat flux) are very sensitive to the modeling of near-wall turbulence.

Conjugate heat transfer (coupled fluid/solid) are often necessary to describe accurately a physical device.

Natural convection introduces a coupling between velocity and temperature field.