Grid Generation
TGrid
What is TGrid?

- A robust and highly automated unstructured volume mesh generator:

 • **Gambit**
 - Surface Meshers exporting .msh formats
 - ANSA
 - Hypermesh
 - ICEM
 - Filters for third-party file formats
 - ANSYS (Prep7)
 - NASTRAN
 - PATRAN (Neutral)
 - I-DEAS (Universal)
 - MSC/Aries
 - HYPERMESH
 - ProE
 - STL

 • **TGrid**
 - Uses Wrapper for generating tri surface mesh
 - Includes tools for repairing/improving boundary mesh
 - Generates triangles (tris), quadrilaterals (quads) in 2D
 - Generates tets, hexcore, prisms, pyramids in 3D
 - Uses Delaunay Triangulation for tris/tets
 - Uses Advancing Layer Method for prisms
 - Includes tools to manipulate face/cell zones

 - boundary mesh + (optionally) volume mesh

 - volume mesh

 - FLUENT6
Gambit vs. TGrid

Gambit is a grid-generator and a geometry modeler
TGrid is a “pure” grid generator

Gambit is a general purpose grid generator for unstructured grids
TGrid is more focused on tet-based algorithms

Gambit-GUI is “more” user-friendly
TGrid-GUI is aligned with Fluent solver interface
Gambit and TGrid

- TGRID has powerful boundary repair and mesh generation tools, which can be used to:
 - Repair and refine surface meshes
 - Improve mesh quality and remove disconnects
 - Refine mesh based on proximity, curvature or geometric features.
 - Generate surface wrapper mesh on highly complex and “dirty” geometry.
 - Easily handle small features, gaps and disconnects.
 - Grow prism boundary layers on complex geometry.
 - Robust prism growth capabilities.
 - Advanced control of volume meshing.
 - Pinpoint meshing problems and use mesh initialization/refinement controls.
Grid generation techniques

From S. Owen, 2005

GAMBIT
TGrid
Tetrahedral Meshes

- Start from 3D boundary mesh containing only triangular faces.
- Generate mesh consisting of tetrahedra.
- Advanced control of volume meshing.
 - Set initialization and refinement controls
 - View unmeshed nodes to pinpoint problem areas.
 - Perform local refinement in a defined region.

Surface mesh for a grid containing only tetrahedra
Hybrid Meshes

- Start from 3D boundary mesh containing triangular and/or quadrilateral faces.

- Obtain better quality/more efficient mesh using:
 - Prisms (wedges) for greater resolution in boundary layer
 - Tetrahedra ("tets") for rest of domain

- Robust Prism Growth capabilities:
 - Different prism layers can be grown on adjacent geometry.
 - Four different types of prism layers available.
 - Handle complex geometry, thin gaps and sharp corners.
 - Remesh adjacent mesh.

Grid with prisms in a boundary layer region
HexCore Meshes

- Start from 3D boundary mesh containing only triangular faces
 - Automatic hexcore creation
- Suitable for curved/complex geometries with large open spaces
- Significantly smaller mesh size compared with purely tet cells
 - Fully compatible with boundary layer prism meshes

Hexcore mesh consists of two regions; an inner region of Cartesian hex cells and an outer region of tetrahedral cells
Starting Up

◆ To start TGrid
 ● On a Windows system: click on the TGrid shortcut icon and then select 2d or 3d.
 ● On a UNIX system: type `tgrid 2d` or `tgrid 3d`.
◆ Console window will appear.
◆ Text interface and complete graphical user interface (GUI)
◆ User interface similar in layout and operation to FLUENT6 interface.

◆ Complete on-line help using hypertext format
Tri/Tet Mesh Generation

Two phases:

- **Initial mesh generation**: Create initial mesh of the volume. Coarse, highly skewed elements used as a starting point for the final volume mesh.

- **Refinement on initial mesh**: Add nodes and cells to initial mesh trying to improve quality.

 ![Boundary refinement](image1)

 ![Cell zone refinement](image2)

- **Initialisation** and refinement can be automatic or manual.
Tri/Tet Mesh Quality Measure

- The chief measure of mesh quality is the Tri/Tet Skewness Method.
 - Equilateral Volume Deviation – Measures the degree of deviation of the area of the triangle from that of an ideal (equilateral) face or cell which would fit into it’s circumcircle.
 - Skewness = \frac{\text{Ideal face area} - \text{actual face area}}{\text{Ideal face area}}
 - Normalized Equiangle Deviation – Measures the degree of deviation of the internal angles of the mesh face from an ideal face with equal internal angles.
 - Skewness is plotted on a scale of 0 (good) to 1 (bad or degenerate element)
 - In TGrid, the scale from 0 to 1 divided into 100 equal divisions.
Tri/Tet Mesh Quality Measure

Two methods for determining skewness:

1. Based on the equilateral volume:
 - Skewness = \frac{\text{optimal cell size} - \text{cell size}}{\text{optimal cell size}}
 - Applies only to triangles and tetrahedra
 - Default method for tris and tets

2. Based on the deviation from a normalized equilateral angle:
 - Skewness (for a quad) = \max\left[\frac{\theta_{\max} - 90}{90}, \frac{90 - \theta_{\min}}{90}\right]
 - Applies to all cell and face shapes
 - Always used for prisms and pyramids
Tri/Tet Mesh Quality Measure

- Change in size should be gradual (smooth).
- Aspect ratio is ratio of longest edge length to shortest edge length.
 - Equal to 1 (ideal) for an equilateral triangle or a square.

- Smooth change in cell size
- Large jump in cell size

- Aspect ratio = 1
- High-aspect-ratio quad
- High-aspect-ratio triangle
Improving Quality

- A volume mesh is considered to be “bad” if it satisfies one or more the following conditions:
 - Very high skewness (skewness > 0.95)
 - Degenerate cells (skewness ~ 1)
 - High aspect ratio cells (Aspect ratios > 100)
 - Negative volumes

- Cell Quality can be improved by:
 - Improving surface mesh quality
 - Moving mesh nodes
 - Use CAD or other upstream preprocessors to fix geometric problems
 - Remove Boundary Slivers panel
 - Refine Boundary Slivers text command
Delaunay Violation

- A Delaunay violation occurs if a node of a triangle lies inside an adjacent triangle’s circumcircle.
 - Eg: Long and thin triangles which have high skewness.

- Edge Swapping is typically used to remove the Delaunay violations.
 - Replace or “Swap” the diagonal of the quadrilateral formed by the two triangles with the other diagonal.

- Many tools in TGRID detect and remove Delaunay violations using edge swapping.