Solution methods for the Unsteady Incompressible Navier-Stokes Equations
Unsteady flows

The algorithms we introduced so far are time-marching:
From an initial condition they iterate until a steady-state is reached
The “time”-evolution of the solution is NOT accurate

Typical Implicit Time-Accurate Scheme

\[\frac{\partial \phi}{\partial t} = F(\phi) \quad \text{Unsteady transport equation} \]
\[\frac{\phi^{m+1} - \phi^m}{\Delta t} = F(\phi^{m+1}) \quad \text{1st order time integration} \]
\[\frac{3\phi^{m+1} - 4\phi^m + \phi^{m-1}}{2\Delta t} = F(\phi^{m+1}) \quad \text{2nd order time integration} \]
Unsteady flows – Implicit Pressure-based

Generic Transport Equation

\[\int_V \frac{\partial \rho \phi}{\partial t} dV + \oint \rho \phi \vec{v} \cdot d\vec{A} = \oint \Gamma \phi \nabla \phi \cdot d\vec{A} + \int_V S_{\phi} dV \]

Fully Implicit Discretization

\[\int_V \frac{\partial \rho \phi}{\partial t} dV + \oint \rho^{n+1} \phi^{n+1} \vec{v}^{n+1} \cdot d\vec{A} = \oint \Gamma^{n+1} \nabla \phi^{n+1} \cdot d\vec{A} + \int_V S_{\phi}^{n+1} dV \]

Frozen Flux Formulation

\[\oint \rho \phi \vec{v} \cdot d\vec{A} = \oint \rho^n \phi^{n+1} \vec{v}^n \cdot d\vec{A} \]
Unsteady flows – Pressure-based Methods

Iterative

Non-Iterative
Unsteady flows – Set Up

Define → Models → Solver

Solve → Iterate

Outer iteration

Inner iteration
Unsteady Flow – Impulsive start-up of a plate

Again an analytical solution of the Navier-Stokes equations can be derived:

Solution in the form $u = u(y, t)$

The only force acting is the viscous drag on the wall

Navier-Stokes equations

$$\frac{\partial u}{\partial t} = \nu \frac{\partial^2 u}{\partial y^2}$$

Velocity distribution

$$\frac{u(y, t)}{V_{\text{wall}}} = 1 - \frac{2}{\sqrt{\pi}} \int_0^{y/2\sqrt{\nu t}} e^{-\chi^2} d\chi = 1 - \text{erf}\left(\frac{y}{2\sqrt{\nu t}}\right)$$

Wall shear stress

$$\tau_{\text{wall}} = -\mu \left(\frac{\partial u}{\partial y} \right)_{y=0} = \mu \left(\frac{V_{\text{wall}}}{\sqrt{\pi \nu t}} \right)$$
Unsteady Flow – Impulsive start-up of a plate

Problem set-up

Material Properties:
\(\rho = 1 \text{kg/m}^3 \)
\(\mu = 0.1 \text{kg/ms} \)

Reynolds number:
\(\text{Re} = \rho V_{\text{wall}} L / \mu \)
\(V_{\text{wall}} = 5.605 \)
\(L = \mu V_{\text{wall}} / \tau_{\text{wall}} \)

Boundary Conditions:
Slip wall (\(u = V_{\text{wall}} \)) on bottom
No-slip wall (top)
Periodicity \(\Delta p = 0 \)

Initial Conditions:
\(u = v = p = 0 \)

Exact Solution
\(\tau_{\text{wall}} = 1 \) @ \(t = 1 \)
\(H/L \sim 10 \)

Solver Set-Up

Segregated Solver

Discretization:
2\(^{nd}\) order upwind
SIMPLE

Multigrid
V-Cycle
Unsteady Flow – Impulsive start-up of a plate

The error CAN be computed with reference to the exact solution. In this case the computed wall shear stress is plotted.

Time discretization

1st order 2nd order

Influence of the BCs

Nominal 1st order accuracy

Nominal 2nd order accuracy

This test-case is available on the class web site.
Unsteady Flow – Density based formulation

Vector form of the (compressible) NS equations

\[
\frac{\partial}{\partial t} \int_V W \, dV + \oint [F - G] \cdot dA = \int_V H \, dV
\]

\[
W = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{pmatrix}, \quad F = \begin{pmatrix} \rho v \\ \rho v u + p_i \\ \rho v v + p_j \\ \rho v w + p_k \end{pmatrix}, \quad G = \begin{pmatrix} 0 \\ \tau_{xi} \\ \tau_{yi} \\ \tau_{zi} \\ \tau_{ij} v_j + q \end{pmatrix}
\]

Change of variables

\[
\frac{\partial W}{\partial Q} \frac{\partial}{\partial t} \int_V Q \, dV + \oint [F - G] \cdot dA = \int_V H \, dV
\]

\[
\tilde{Q} = [p, \vec{V}, T]^T
\]

Preconditioning

\[
\Gamma \frac{\partial}{\partial t} \int_V Q \, dV + \oint [F - G] \cdot dA = \int_V H \, dV
\]
Unsteady Flow – Density based formulation

For time-accurate simulations the preconditioning cannot be used (it alters the propagation speed of the acoustic signals)

Time integration:

Implicit - n is the time step loop, k is the inner iteration loop

Δt determines the time accuracy, $\Delta \tau$ is a pseudo-time step determined by stability conditions (a CFL number)

$$\left[\frac{\Gamma}{\Delta \tau} + \frac{\epsilon_0}{\Delta t} \frac{\partial W}{\partial Q} \right] \Delta Q^{k+1} + \frac{1}{V} \oint [F - G] \cdot dA$$

$$= H + \frac{1}{\Delta t} \left(\epsilon_0 W^k - \epsilon_1 W^n + \epsilon_2 W^{n-1} \right)$$

$\epsilon_0 = \epsilon_1 = 1/2, \epsilon_2 = 0$ First order

$\epsilon_0 = 3/2, \epsilon_1 = 2, \epsilon_2 = 1/2$ Second order
Reynolds-Averaged Navier-Stokes Equations

\[
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\frac{\mu}{\rho} \frac{\partial u_i}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(-u_i' u_j' \right)
\]

Define Reynolds-averaged quantities

\[
u_i(x_k, t) = U_i(x_k) + u'(x_k, t)
\]

\[
U_i(x_k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T u(x_k, t) dt
\]

Substitute and average:

\[
\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{1}{\rho} \frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left(\frac{\mu}{\rho} \frac{\partial U_i}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(-u_i' u_j' \right)
\]

\[
R_{ij} = -u_i' u_j'
\]

Closure problem
Unsteady RANS?

Every turbulent flow is unsteady BUT not all the unsteadiness is *turbulence*!

RANS averaging based on time average can be applied only to “statistically” steady flows. What if flow has a large scale periodicity (vortex shedding)?

We can define the Reynolds-Averaging procedure in terms of *Ensemble Average*:

\[
U_i(x_k, t) = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} u_i^{(n)}(x_k, t)
\]

\[
u_i(x_k, t) = U_i(x_k, t) + u'(x_k, t)
\]
Turbulent Vortex Shedding
Turbulent Vortex Shedding