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Abstract Linear Programming Model
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Some Properties of Linear Programming
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• Add a constant to the objective function does not change the 
optimality
• Scale the objective coefficients does not change the optimality

• Scale the right-hand-side coefficients does not change the optimality 

but the solution scaled accordingly

• Reorder the decision variables (together with their corresponding 

objective and constraint coefficients) does not change the optimality

• Reorder the constraints (together with their right-hand-side 

coefficients) does not change the optimality

•Multiply both sides of an equality constraint by a constant does not 

change the optimality



LP in Compact Vector and Matrix Form
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We now review some basic math notations and concepts



Vectors and Matrices

• Column or Row Vector: point aϵRn , jth element: aj

• Transpose: aT.

• Matrix: A ϵ Rmxn, ith row: ai. , jth column: a.j , ijth
element: aij

• All one vector: e or 1, All-zero matrix:  0 , and 
identity matrix:  I

• Diagonal matrix: X  = Diag(x)

• Symmetric matrix: Q = QT

• Positive Definite (PD):  iff xTQx > 0, for all x ≠ 0

• Positive Semi-definite (PSD):  iff xTQx ≥ 0, for all x
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Matrix Inverse

• Inverse of a square matrix: A-1 such that A-1 A=I.

Application of inverse:

Suppose there are b unit resources, and a units of the 
resources can be used to produce one-unit product, and 
each unit product can sell for $c. How much does each unit 
resource worth? 

ax= b, x=a-1b, cx=ca-1b=(ca-1)b, 

Now consider multi-product and multi-recourses:

Ax=b,  x=A-1b, cTx=cTA-1b=(cTA-1)b

That is, the vector cTA-1 contains the (shadow) prices for 
each resources, respectively.
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Affine, Convex and Conic Combination

• When x and y are two distinct points in Rn and α runs over R,  
{ z : z = αx + (1- α)y } is the line determined by x and y, called 
the affine combination of x and y.

• When 0 ≤ α ≤ 1, z is called the convex combination of x and y
and it is the line segment between x and y

• When  α ≥0 and β ≥0, { z : z = αx + βy } is called the conic 
combination of x and y and it is the ray between x and y
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Convex Sets
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• Set Ω is said to be a convex set iff for every x1, x2 ϵ Ω and 
every real number α ϵ [0, 1], the convex combination point 

α x1 + (1- α) x2  ϵ Ω.

• The convex hull of a set Ω is the intersection of all convex 
sets containing Ω

• Intersection of convex sets is convex

• Unit-disk {(x1,x2): (x1)2+(x2)2 ≤ 1} is a convex set.

• Ellipsoid {x: xTQx ≤ 1} , where Q is PD, is a convex set.



Convex and Concave Functions
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• f is a convex function iff for 0 ≤ α ≤ 1,

f (αx + (1 - α) y) ≤ α f(x) + (1 - α)f(y)

• f is a concave function iff -f is a convex function

• f is a strictly convex function iff for x ≠ y,

f (0.5x + 0.5y) < 0.5 f(x) + 0.5 f(y)

• The minimizer of a strictly convex function is unique if it exists

• Gradient vector ∇f(x)=(∂f/∂xi): it is the steepest ascent direction of 
the function value;

• Hessian matrix ∇2f(x)=(∂2f/∂xixj): the function f(.) is convex (strictly 
convex) iff its Hessian matrix is PSD (PD) everywhere.

• Sample convex functions:║x║, ║x║2, log(1+ea’x)

• linear function cTx is both convex and concave 

• Quadratic function xTQx is convex iff Q is positive semidefinite.



Verification of Convex Sets and Convex Functions
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• The epigraph {(z,x): c(x) ≤ z} is a convex set iff c(.) is a convex 
function.

• The lower level set {x: c(x) ≤ 0} is a convex set if c(.) is a convex 
function.

• The upper level set {x: c(x) ≥ 0} is a convex set if c(.) is a concave 
function.

• Sum of convex functions is convex. 

• Sum of concave functions is concave

• The composite function : f(φ(x)) is convex if  f(.) is a monotonically 
increasing&convex function and φ(x) is a convex function.

– exp(x2+y2)

• maxi(fi(x)) is convex if fi(x) is convex for all i.

• Convex Optimization: minimize a convex (or maximize a concave) 
function subject to a convex constraint set.
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Hyperplane and Half-Spaces
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LP Feasible Region in the Inequality Form
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x simultaneously satisfy

This is the intersection of 

the m Half-spaces, and it is

a convex (polyhedron) set
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Corner or Extreme Points

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #4 16

Convex Hull:

Extreme Points: A point in the set that is not on the line segment 
(convex combination) of other two different points in the convex 
hull of the set. For LP in inequality form, an extreme point is the 
intersection of n hyperplanes associated with the inequality 
constraints that is also feasible – called Basic Feasible Solution.



Feasible Direction I
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Direction Vector: A direction is notated by a vector d

It is always associated with a given point x

Together a point and a direction vector define a ray:

x + ϵd, for all ϵ > 0

where d and αd are considered the same direction for all  
α > 0

Feasible Direction: A direction, d, is said to be “feasible” (relative 
to a given feasible point x) if x + ϵd is feasible for some ϵ > 0 and 
small enough.

Extreme Feasible direction: direction to its nearby extreme points.

For LP, all feasible directions at a feasible point form a convex 
(cone) set: conic combination of feasible (extreme) directions from 
the point.



Feasible Direction II
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Feasible direction d is location-dependent of the point:

Interior Point is a point x where every direction is feasible

Two extreme

directions



LP Problem in the Inequality Form
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Recall the Production Problem

Objective contour

c
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Fundamental Facts of Linear Programming
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All LP problems fall into one of three cases:
•Problem is infeasible: Feasible region is empty.

•Problem is unbounded: Feasible region is unbounded towards 

the optimizing direction.

•Problem is feasible and bounded; and in this case:
– there exists an optimal solution or optimizer.
– There may be a unique optimizer or multiple optimizers.
– All optimizers form a convex set, and they are on a face of 

the feasible region.

– There is always at least one corner (extreme) optimizer if 

the feasible region has a corner point.

LP is a (convex) optimization problem where local optimality 
implies global optimality
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Optimality Certification of the Production Problem
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All (extreme) feasible 
directions are un-improving
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Feasible Directions at the Optimal Corner 
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Objective contour
c

At the optimal corner, c  
must a conic combination 

of a2 and a3 , the two 
normal direction vectors of 
the intersection constraints. 
Or it has an obtuse angle 
with any (extreme) feasible 
directions.

Recall conic comb means 

there are multipliers λ2 ≥0

and λ3 ≥0, such as

c= λ2 a2+ λ3 a3, 

where multipliers λ’s are 

called “shadow prices” of 

the resources of the 

production LP.
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Computation and Interpretation of “Shadow Prices” 

There are multipliers λ2 ≥0

and λ3 ≥0, such as

c= λ2 a2+ λ3 a3, 

Calculate λ2 and λ3?
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How to Certify a Corner Solution being an Optimizer
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• Every feasible direction at the point is an un-improving (non-ascent 
in this case) direction, that is, cTd ≤0 in this case (where c is the 
steepest ascent direction of the objective function).

• Recall at the optimal corner, objective direction c is a conic 
combination of the normal directions, aj1 and aj2, at the corner 
point, that is, there are multipliers λj1 ≥0 and λj2 ≥0, such as  

c= λj1 aj1+ λj2 aj2, in the 2-dimensional case.

• Theorem: For LP of inequality form in n-dimensional case, a 
feasible corner is maximal if and only if its objective vector

c= λ1 ai1+…+ λn ain

with nonnegative multipliers λ’s where vectors ai1,…, ain are the 
normal directions of hyperplanes associated with the corner point.
• This is the essential idea led to the Simplex method by Dantzig: if c 

has an acute angle with a norm vector, then go along the extreme 
feasible direction, while stay feasible, till hit the next corner point…



Simplex Method

George B. Dantzig’s Simplex Method for linear 
programming stands as one of the most significant 
algorithmic achievements of the 20th century. It is 
now over 60 years old and still going strong.

The basic idea of the simplex method to confine 
the search to corner points of the feasible region 
(of which there are only finitely many) in a most 
intelligent way. 

The key for the simplex method is to make 
computers see corner points; and the key for 
interior-point methods is to stay in the interior of 
the feasible region.
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