
Yinyu Ye
Department of Management Science and 

Engineering
Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapters 4.2, 4.5, 5.3

Optimization Algorithms and the LP Methods

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #10 1



• Distinctions between optimization problems stem from

• differentiable versus non-differentiable functions;
• unconstrained versus constrained variables;
• one-dimensional versus multi-dimensional variables;
• convex versus non-convex minimization.

• Algorithms can be divided as

• Finite versus convergent iterative methods: algorithms obtain a 
solution in a finite number of iterations; or instead that are 
convergent—generate a sequence of trial or approximate 
solutions that converge to an exact “solution.”

• 0-order, first-order versus second-order methods: algorithms 
are based on just function values, or in addition first-order 
derivatives of functions, or in addition the second-order 
derivatives.

Problem Classes
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In fact, there are several possibilities for defining what an optimal solution 

is. Once the definition is chosen, there must be a way of testing whether 

or not a given solution met the definition.

Typically, one seeks a local minimizer; or ideally, one seeks a global 

minimizer. But these tasks are generally harder since the validation is 

already difficult.

Therefore, in most cases, algorithms seek a KKT solution together with its 

multipliers as they can be tested effectively, either the first-order or 

second-order optimality conditions.

For convex optimization, a KKT solution suffices! In fact, a KKT solution 

may also suffice for some special nonconvex optimization with a high 

probability. More importantly, it seems to work in practice most of times.

The Meaning of a “Solution”
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Optimization algorithms tend to be iterative procedures.

Starting from a given point/solution x0, they generate a sequence {xk , k = 

1, 2, ...} of iterates (or trial solutions) that can be feasible or infeasible. 

For constrained problems, the sequence is associated with the Lagrange 

multiplier sequence {yk , k = 1, 2, ...}. Hopefully, the limit of the sequence 

meet the optimality conditions, and it converges fast (convergence 

speed).

We study algorithms that produce iterates according to well determined 

rules–Deterministic Algorithm rather than some random selection 

process–Randomized Algorithm.

The rules to be followed and the procedures that can be applied depend 

to a large extent on the characteristics of the problem to be solved.

Iterative Algorithms
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The iterative scheme is of the form

xk+1  = xk + αk d
k

where dk is a search direction vector, both feasible and descent, and 
scalar αk is called the step-size or step-length. One popular choice is 
dk=-∇ f (xk) – the negative (reduced-)gradient vector.

For constrained problems, we also update multipliers/dual-variables: 
yk+1  ← yk according to some rules.

The key is that once xk is known, then dk is chosen as some function of 

(xk,yk), (xk-1,yk-1)… and the scalar αk may be chosen in accordance with 

some line (one-dimensional optimization) search rules.

Indeed, once the search direction is chosen, the objective function 

can be written as ф(α):=f(xk + α dk), which is just function of α . 

Therefore, α is chosen such as the new iterate remains feasible and 

the objective is reduced the most.

Search Direction and Step Size
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Recall Descent Directions at a BFS of LP
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Recall at a BFS: AB xB +ANxN = b, with 

xB ≥ 0 and xN = 0 . Then we can express xB in 

terms of xN, xB =(AB )-1b-(AB )-1ANxN .

Then,  cTx= cT
B xB + cT

NxN =(cT
N - cT

B (AB )-1AN) xN + cT
B(AB )-1b and

increase any one variable of xN is an extreme feasible direction. 

Thus, for the BFS to be optimal, any (extreme) feasible direction 

must be an ascent direction, or rN=(cT
N - cT

B (AB )-1AN) ≥ 0 is 

necessary and sufficient for the current BFS being optimal!

This vector r=(cT - yTA) and yT= cT
B (AB )-1 are called the reduced 

cost (or reduced gradient) and shadow/dual price vectors for the 

current BFS. Note that reduced cost coefficients for basic 

variables are all zeros. If anyone of rN is negative, then an 

improving (extreme) feasible direction is found by increasing the 

corresponding non-basic variable value.
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min −x1 −2x2

s.t. x1 +x3 = 1
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In the LP production example, suppose the basic variable 

set  B = {3, 4, 5} and N={1,2}.

Thus, one can increase either x1 or x2 to reduce the 
objective function value



Improving Direction and Step Size 
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Let us increased the value of x2 (the entering/incoming variable) 
that would reduce the objective value while keep other non-basic 
variables unchanged. Then how much increase such that the 
solution stay feasible or the current basic variables remain 
nonnegative:

In general, it would be the maximal possible value increase of the 
selected non-basic variable xe such that xB = (AB )-1b  - (AB )-1Aexe

remains nonnegative where Ae is the incoming column.

In this particular example, we will have 

x2=1, and x3=1,x4=0,x5=0.5 (can be done by a min-ratio-test)

Then we reach a new BFS with basic variable set B={3,2,5} where x2

is incoming variable and x4 outgoing variable. 

+x3 = 1

= 1x2 +x4

+x2 +x5 = 1.5
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x3 x2 x5

1 0 0

AB = 0 1 0

0 1 1

x3 x2 x5

1 0 0

A-1
B = 0 1 0

0 -1 1

min -x1 -2x2

s.t. x1 +x3 = 1

x2 +x4 = 1

x1 +x2 +x5 = 1.5

New basis B={3,2,5} and N={1,4} 

cT
B=(0  -2  0)                                                                         cT

N=(-1  0)

x1 x4

1 0

AN = 0 1

1 0

yT=cT
BA-1

B=(0  -2  0)                                                      rT
N=cT

N-yTAN=(-1  2)

Not optimal yet, x1 would be incoming/entering. 
Now compute A-1

BA1=(1  0  1)T, and 
do min-ratio-test (1  1  0.5)./(1  0  1)+=(1  ∞  0.5) 

xT
B=(1  1  0.5)              

Thus x1=0.5 (incoming) and x5=0 (outgoing) with the new basis 
B={3,2,1} and N={4,5}   <= One can check it is Optimal



Summary of the Simplex Method
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1. Initialize: with a minimization problem with respect to a BFS with basis 
index set B and let N denote the rest index set:

xB= (AB)-1b(≥0), xN=0
2. Pricing: Compute the corresponding shadow-price vector y and the reduced 

vector r:

yT = cT
B(AB)-1 or solve yT AB = cT

B ,then let  rN=cT
N-yTAN

and find (Dantzig or “greedy” rule): re  = minj∈ N {rj }. (break ties arbitrarily)
3. Test of Termination: If re  ≥ 0, Stop -- the solution is already optimal. 

Otherwise select entering/incoming variable xe If the vector (AB)-1Ae

contains a positive entry; If not, the objective value is unbounded -- Stop.
4. Step Sizing: Perform the Min-Ratio-Test to determine the step size:

α=min{ xB ./[(AB)-1Ae]+ }.
5. Basis Update: Set xe = α, who is entering the basis, and elect a current basic 
variables with zero value (break ties arbitrarily) who becomes the outgoing
variable; so that we reach a new (adjacent) BFS – Go To Step 1.

Theorem: If the reduced cost coefficient is positive for every nonbasic
variable, then the optimal BFS is unique.



How to determine a starting basic feasible solution (BFS) for general LP?

One technique is constructing a so-called Phase I Problem, and uses the 

Simplex Method itself to solve the Phase I LP problem for which a starting 

BFS is known, and for which an optimal basic solution is a BFS for the 

original LP problem if it’s feasible. For example, for the standard equality 

form with the right-hand-side nonnegative, the Phase-I problem is

min     z1+z2+…+zm, s.t.   Ax+z=b, (x,z) ≥0.

If Phase I results in the discovery of a BFS for the original problem, then 

we can initiate Phase II wherein the Simplex Method is applied to the 

solving the original problem. 

The combination of Phases I and II gives rise to the Two-Phase Simplex 

Method. 

11Yinyu Ye,  Stanford, MS&E211 Lecture Notes #10

Two-Phase Simplex Method for LP



Assume that the total supply equal the total demand. Thus, exactly one equality 

constraint is redundant.

At each step the simplex method attempts to send units along a route that is 

unused (non-basic) in the current BFS, while eliminating one of the routes that is 

currently being used (basic).
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The Transportation Simplex Method
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Transportation and Supply Chain Network
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1 2 3 4 Supply

1 12 13 4 6 500

2 6 4 10 11 700

3 10 9 12 4 800

Demand 400 900 200 500 2000
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The Transportation Data Table



1. Start with the cell in the northwest corner cell

2. Allocate as many units as possible, consistent with the available supply 

and demand.

3. Move one cell to right if there is remaining supply; otherwise, move one 
cell down.

4. goto Step 2.
500

700

800

400 900 200 500
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Transportation Simplex Method: Phase I



400 100

700

800

0 900 200 500
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North-West Corner Method: Compute a BFS
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North-West Corner Method: Compute a BFS

400 100 0

700

800

0 800 200 500
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North-West Corner Method: Compute a BFS

400 100 0

700 0

800

0 100 200 500
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North-West Corner Method: Compute a BFS

400 100 0

700 0

100 700

0 0 200 500
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North-West Corner Method: Compute a BFS

400 100 0

700 0

100 200 500

0 0 0 500
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North-West Corner Method: Compute a BFS

400 100 0

700 0

100 200 500 0

0 0 0 0
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A BFS as a “Tree” Structure in the Network
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1. Determine the shadow prices (for each supply side ui

and each demand side vj ) from every USED cell (basic 
variable) 

yT = cT
B(AB)-1 => yTAB = cT

B => ui + vj = cij

One can always set vn = 0 by viewing the last demand 
constraint redundant. Then do back-substitution…
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(Tailored) Transportation Simplex Method: Phase II
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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Step 1: Compute Shadow Prices
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1. Determine the shadow prices (for each supply side ui and each 
demand side vj ) from every USED cell (basic variable) 

yT = cT
B(AB)-1 => yT AB = cT

B => ui + vj = cij

One can always set vn = 0 by viewing the last demand constraint 
redundant; then do back-substitution…

2. Calculate the reduced costs for the UNUSED cells 
(non-basic variable) 

rN=cT
N-yTAN =>  rij = cij − ui − vj

If the reduced cost for every unused cell is nonnegative,
then STOP: declare OPTIMAL
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Transportation Simplex Method: Phase II
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Step 2: Compute Reduced Costs
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Step 2: Compute Reduced Costs
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Reduced costs are computed in RED



1. Determine the shadow prices (for each supply side ui and each 
demand side vj ) from every USED cell (basic variable) 

yT = cT
B(AB)-1 => yT AB = cT

B => ui + vj = cij

One can always set vn = 0 by viewing the last demand constraint 
redundant; then do back-substitution…

2. Calculate the reduced costs for the UNUSED cells (non-basic variable) 
rN=cT

N-yTAN =>  rij = cij − ui − vj

If the reduced cost for every unused cell is nonnegative, then STOP:
declare OPTIMAL
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Transportation Simplex Method: Phase II

3.Select an unused cell with the most negative reduced cost as in-

coming. Using a minRT, chain-reaction-cycle, determine the max

units (α) that can be allocated to the in-coming cell and adjust the 

allocation appropriately. Update the values of the new set of USED 

(basic) cells (a new BFS).
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Step 3: Chain Reaction Cycle
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Step 3: Chain Reaction Cycle
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Step 3: Chain Reaction Cycle
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Step 3: Chain Reaction Cycle
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Step 3: Chain Reaction Cycle
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13 -α 4 +α
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α = 100, and the cost is reduced by 1200
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Find the Cycle on the “Tree” Structure
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Step 3: Update to the New BFS
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A New “Tree” Structure in the Network
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1. Determine the shadow prices (for each supply side ui and each demand side vj ) 
from every USED cell (basic variable) 

yT = cT
B(AB)-1 => yT AB = cT

B => ui + vj = cij

One can always set vn = 0 by viewing the last demand constraint redundant; then 
do back-substitution…

2. Calculate the reduced costs for the UNUSED cells (non-basic variable) 
rN=cT

N-yTAN =>  rij = cij − ui − vj

If the reduced cost for every unused cell is nonnegative, then STOP: declare
OPTIMAL
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Transportation Simplex Method: Phase II

3. Select an unused cell with the most negative reduced cost as in-coming. Using 

the minRT, chain-reaction-cycle, determine the max units (α) that can be 

allocated to the in-coming cell and adjust the allocation appropriately. Update 

the values of the new set of USED (basic) cells (a new BFS).

Go to Step 1



Some Issues for the Simplex Method
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In theory, one can select any in-coming nonbasic variable as long as its 

reduced cost is negative.

For maximization problem you really don’t need to transform it into a 

minimization problem: goal is to make reduced profit non-positive

If one of its basic variable has value 0, then BFS is degenerate. Thus, the 

maximum amount increase, α, equals 0. You may pretend it’s ε > 0 but 

arbitrarily small and continue the transformation process.

Generally, a special care needs to be taken for degenerate cases to avoid 

possible cycling, that is, no progress can be made and the method never 

reaches an optimal corner solution.  



400 400

0 700 700

200 200 500 900

400 900 200 500
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Degeneracy in BFS

Basic

You may find α =0 in this case, 
but you continue the update…



Initially, the basic variables are {x5, x6} and it is a degenerate BFS. The simplex 

method sequence shown in the table below leads back to the original system after 

6 pivots.

Pivot number 1 2 3 4 5 6

Basic var. out x6 x5 x2 x1 x4 x3

Basic var. in x2 x1 x4 x3 x6 x5

Cycling Example

46
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Cycle-Broken Rules
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Double Smallest Rule: among the nonbasic variables with the negative 

reduced cost coefficients, select one with the smallest index to enter; 

among the basic variables with the smallest ratio, select one with the 

smallest index to exit

Random Selection Rule: among the nonbasic variables with the negative 

reduced cost coefficients, randomly select one to enter; among the basic 

variables with the smallest ratio, randomly select one to exit.



Worst-Case Convergence Speed

The optimal solution is  x3 = 81 and  x1 = x2 = 0.
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The simplex method, using the greedy rule, 
needs 23 – 1 steps to reach the optimal 
solution.

One can extend this (Klee-Mindy) example 
with n variables such that the simplex 
method with the greedy rule needs 2n-1 
steps to convergence.

Hamiltonian Path on a 3-Cube

The Simplex method converges in 
finite number of steps.

(0,0,0) (1,0,0)

(1,1,0)
(0,1,0)

(0,1,1) (1,1,1)

(1,0,1)(0,0,1)
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The Ellipsoid Method

• Let y be the center of an ellipsoid E. Through it we place 
a hyper-plane and divide E into two half-ellipsoids, say E+

and E-.

• Compute the min-volume ellipsoid E’ that contains E+.

V(E’)  e-.5/(n+1)V(E).

•
y

E
-

E
+

E’
E
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The Ellipsoid Method (continued)

• First polynomial-time algorithm for Linear Programming

•
y

E
-

E
+

E’
E

•
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