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Resampling
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Sampling distribution of a statistic

For this lecture:

I There is a population model that gives the distribution (cdf)
G of an outcome Y .

I We observe data Y that comes from this population model.

I We compute a statistic T (Y) given the data; an example
might be an estimate for a parameter.

I The sampling distribution of T (Y) is the distribution of
values for the statistic that are obtained over many “parallel
universes”, where the same process is repeated.

In this lecture we develop a flexible and powerful approach to
estimating the sampling distribution of any statistic: the bootstrap.
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Idea behind the bootstrap

The basic idea behind the bootstrap is straightforward:

I The data Y are a sample from the population model.

I If we resample (with replacement) from Y, this “mimics”
sampling from the population model.

In the bootstrap, we draw B new samples (of size n) from the
original data, and treat each of these as a “parallel universe.”

We can then pretend this is the sampling distribution, and compute
what we want (e.g., standard errors, confidence intervals, etc.).
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Why bootstrap?

We’ve seen that the sampling distribution of the MLE is
asymptotically normal, and we can characterize the mean (it is
unbiased) and variance (in terms of Fisher information).

So why do we need the bootstrap?

I Sample sizes might be “small” (asymptopia is not a good
assumption).

I Assumptions we made in the population model might have
been violated.

I We might want sampling distributions for much more complex
estimation procedures, where no closed form expression exists.
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Formal definition
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The bootstrap algorithm

We are given a sample Y of n observations.

For 1  b  B:

I Draw n samples uniformly at random, with replacement, from

Y. Denote the i’th observation in the b’th sample by Ỹ (b)
i .

I Compute the value of the statistic from the b’th sample as

Tb = T (Ỹ
(b)
).

The histogram (i.e., empirical distribution) of {Tb, 1  b  B} is
an estimate of the sampling distribution. We call this the
bootstrap distribution.
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The bootstrap algorithm
A picture:
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An analogy

The following analogy is helpful to keep in mind. For the sampling
distribution we have:

Bootstrapping treats the sample Y as if it represents the true
population model:
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When is bootstrap problematic?

From the preceding slides, several things have to happen for the
bootstrap distribution to be “close” to the sampling distribution:

I B should be “large enough” that any randomness due to
resampling is not consequential in our estimated distribution.
(What is large enough? In practice, limited primarily by
computational time.)

I The original data sample Y should be generated as
i.i.d. samples from the population model, and Y should be
large enough to be “representative” of the original population
model (su�cient sample size, no sampling bias).

The first we can control. The second requires contextual
knowledge of how Y was actually generated.
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When is bootstrap problematic?

Bootstrap estimation is a very powerful technique for
approximating the sampling distribution, because it makes very few
assumptions about the nature of the population model.

That said, it is not immune to yielding inaccurate results; for
example, for “extreme value” statistics (e.g., when T is the
maximum or minimum of the data), the bootstrap can yield badly
biased estimates.

In practice, for estimating things like standard errors of estimators,
the bootstrap is a fairly reliable technique (assuming the two
conditions on the preceding slide hold).
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Standard errors

We use the bootstrap distribution just like we use the sampling
distribution.

For example, the bootstrap estimate of the standard error cSEBS is
the standard deviation of the bootstrap distribution.
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Confidence intervals

Since we have an estimate of the sampling distribution, we can use
it to construct confidence intervals. Two approaches to building
95% confidence intervals:

I The normal interval: [T (Y)� 1.96cSEBS, T (Y) + 1.96cSEBS].
This approach assumes that the sampling distribution of
T (Y) is normal, and uses the standard error accordingly.

I The percentile interval: Let Tq be the q’th quantile of the
bootstrap distribution. Then the 95th percentile bootstrap
interval is: [T0.025, T0.975].

In general the percentile interval works well when the
sampling distribution is symmetric, but not necessarily normal.
(Many other types of intervals as well...)
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Example 1: Test scores

In a past o↵ering of MS&E 226, the mean score on the in-class
midterm was µ̂ = 36.9 (with n = 168). What is the standard error?

By the central limit theorem, the sample mean has standard error
approximately �̂/

p
n = 0.59, where �̂ = 7.7 is the sample standard

deviation.

What does the bootstrap suggest?
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Example 1: Mean of in-class midterm scores

Here is how we can directly code the bootstrap in R for the sample
mean:

n_reps = 10000
n = 168

# Test scores are in "scores"
boot.out = sapply(1:n_reps,
function(i) {

mean(sample(scores, n, replace = TRUE))
})

Now boot.out contains n_reps replicates of the sample mean.
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Example 1: Mean of in-class midterm scores

Code to run bootstrap in R (using boot library):

# create function for mean
mean.boot = function(data, indices) {
d = data[indices]
return(mean(d))

}
# Test scores are in "scores"
boot.out = boot(scores, mean.boot, 10000)

boot.out$t contains the means across parallel universes. Use
boot.ci for confidence intervals.
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Example 1: Mean of in-class midterm scores

Results:
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cSEBS = 0.59, matching the normal approximation (because the
central limit theorem is pretty good here).

17 / 30



Example 2: Median of in-class midterm scores

For the median, we don’t have an easy way to approximate the
standard error; so we turn to the bootstrap. Results:
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cSEBS = 1.78. Note that the actual median in the class was 40.0.
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Example 3: Funnels (survival analysis)

Suppose as an online retailer you have a three stage checkout flow:
customers (1) add an item to their cart, (2) enter their credit card
info, and (3) hit “Purchase”.

In practice, customers might abandon before completing these
activities.

Suppose you’ve collected data on n customers, where
Yi 2 {1, 2, 3} denotes the latest stage the customer completed.

Let �i be the probability that a customer that completes stage s
will also complete stage s+ 1, for s = 1, 2. We estimate these as
follows:

�̂1 =
|{i : Yi � 2}|
|{i : Yi � 1}| ; �̂2 =

|{i : Yi = 3}|
|{i : Yi � 2}| .

But standard errors are not easy to compute, since these are
quotients; the bootstrap is an easy approach to get standard errors.
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Example 4: Clustered data

This example came up when working on a project with Netflix; it is
a common example of computing standard errors correctly when
you have clustered observations.

It is also a useful example to see how you can sometimes apply the
bootstrap even in settings where the data is not perfectly
independent and identically distributed.
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Example 4: Clustered data

Suppose we collect data on viewing behavior of n = 100 users.
Each user i has ki sessions; and the average bit rate of session j of
user i is rij .

So our data is {rij , 1  i  1000, 1  j  ki}.

I generated synthetic data where each user generated 10 sessions;
for each i, user i’s session had mean rate that is µi ⇠ Exp(1/1000);
and each of the ki sessions of user i are of rate N (µi, 1).

We estimate the average delivered bit rate as:

µ̂ =

Pn
i=1

Pki
j=1 rijPn

i=1 ki
.

This estimate is 908.0.
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Example 4: Clustered data

What is the standard error of this estimate? Naive approach: take
sample standard deviation of the per session bit rates, divided by
square root of number of sessions. For my synthetic dataset this
gave cSE = 9.22.

This is not quite right however, because sessions are not
independent: sessions belonging to the same user are likely to have
similar bit rate.

How to adjust for this correlation?
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Example 4: Clustered data

Recreate the data generating process with a block bootstrap:

I Sample users (n = 1000) with replacement.

I Each time a user is sampled, include all of their sessions.

I The bootstrap distribution is the resulting histogram of µ̂(b),
over each bootstrap sample b.

Using this approach gave a standard error of cSEBS = 91.6. (Why is

this ten times larger than the naive cSE?)
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Bootstrap for regression modeling
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Resampling the data

As usual for regression, we assume we are given n data points,
with observations Y and covariates X.

There are two ways to bootstrap in this case:

I Resample new bootstrap observations Ỹ
(b)
, holding X fixed.

I Resample new data X and Y.

We’ll focus on the second (also called case resampling), since it’s
both more likely to be relevant to you in practice, and it is more
robust to modeling errors (though it can be more ine�cient).
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Linear regression via OLS

Suppose we want bootstrap standard errors for OLS coe�cients;
we can get these as follows.

For 1  b  B:

I Draw n samples uniformly at random, with replacement, from
(X,Y). Denote the i’th outcome (resp. covariate) in the b’th

sample by Ỹ (b)
i (resp., X̃

(b)
i ).

I Given the resulting data (X̃
(b)
, Ỹ

(b)
) in the b’th sample, run

OLS and compute the resulting coe�cient vector �̂
(b)
.

This gives the bootstrap distribution of �̂, and we can use it to,
e.g., compute standard errors or confidence intervals (or even bias)
for each of the coe�cients.
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Example 5: Heteroskedastic data

Suppose for 1  i  100, Xi ⇠ N (0, 1), and Yi = Xi + "i, where
"i ⇠ N (0, X4

i ). This data exhibits heteroskedasticity: the error
variance is not constant.

In this case the linear normal model assumptions are violated.
What is the e↵ect on the standard error that R reports?

We use the bootstrap to find out.
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Example 5: Heteroskedastic data

Here is the code to run the bootstrap:

df = data.frame(X,Y)
coef.boot = function(data, indices) {
fm = lm(data = data[indices,], Y ~ 1 + X)
return(coef(fm))

}
boot.out = boot(df, coef.boot, 50000)
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Example 5: Heteroskedastic data

If we run lm(data = df, Y ~ 1 + X), then R reports a standard
error of 0.26 on the coe�cient on X, which is 1.42.

But using the bootstrap approach, we compute a standard error of
0.62!

Because of the failure of the regression assumption, the bootstrap
reports a standard error which is higher than the (optimistic)
standard error reported using the assumption of constant variance.
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Other applications

The bootstrap is an incredibly flexible tool, with many variations
developed to make it applicable in a wide range of settings.
For example, it can be used to measure variability in model
estimates for more other modeling strategies (e.g., ridge, lasso).
In fact, it can even be used to estimate test error in a prediction
setting (instead of cross validation). (The basic idea here is that
bias and variance are measured over “parallel universes” of the
training data; the bootstrap let’s us simulate these parallel
universes.)
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