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Why linear regression?
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Methods

In today’s data science environment, there is an unmistakable
emphasis on methods: computational approaches to generalization.

This might mislead you into thinking that all that matters in
generalization is data and methods.

But this is not a course primarily about methods.
Indeed, we spend quite a bit of time one method: linear regression!

Why?
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Linear regression as a guide

There’s a number of “standard” reasons for teaching linear
regression:

It’s widely used, and can be computed in closed form using linear
algebra techniques.
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Linear regression as a guide

But the primary reason we focus on linear regression is this:

Despite being a single method, it can be used for prediction, or
inference, or causality!

In this sense, linear regression is a method that serves as a “guide”
to the world of generalization.
Instead of focusing on methods, we focus on the concepts that
distinguish these ways of thinking.
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Summarizing relationships

6 / 46



Example data: Houses

Recall the data on Saratoga County houses in 2006:

> sh

price livingArea age bedrooms bathrooms heating new

1 132500 906 42 2 1.0 electric No

2 181115 1953 0 3 2.5 hot water/steam No

3 109000 1944 133 4 1.0 hot water/steam No

4 155000 1944 13 3 1.5 hot air No

5 86060 840 0 2 1.0 hot air Yes

6 120000 1152 31 4 1.0 hot air No

...

We will treat price as our outcome variable.
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Modeling relationships

Formally:

I Let Yi, i = 1, . . . , n, be the i’th observed (real-valued)
outcome.
Let Y = (Y1, . . . , Yn)

I Let Xij , i = 1, . . . , n, j = 1, . . . , p be the i’th observation of
the j’th (real-valued) covariate.
Let Xi = (Xi1, . . . , Xip).
Let X be the matrix whose rows are Xi.
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X and Y notation

House data with this notation:

> sh

price livingArea age bedrooms bathrooms heating new

1 Y1 X11 X12 X13 X14 X15 X16

2 Y2 X21 X22 X23 X24 X25 X26

3 Y3 X31 X32 X33 X34 X35 X36

4 Y4 X41 X42 X43 X44 X45 X46

5 Y5 X51 X52 X53 X54 X55 X56

6 Y6 X61 X62 X63 X64 X65 X66

...
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names

Names for the Yi’s:
outcomes, response variables, target variables, dependent variables

Names for the Xij ’s:
covariates, features, regressors, predictors, explanatory variables,
independent variables

X is also called the design matrix.
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Continuous variables

Variables such as price and livingArea are continuous variables:
they are naturally real-valued.

For now we only consider outcome variables that are continuous
(like price).
Note: even continuous variables can be constrained:

I Both price and livingArea must be positive.

I bedrooms must be a positive integer.
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Categorical variables

Other variables take on only finitely many values, e.g.:

I new is Yes or No if the house is or is not new construction.
I heating is one of the following:

I electric
I hot water/steam
I hot air

These are categorical variables (or factors).
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Modeling relationships

Goal:

Find a functional relationship f such that:

Yi ≈ f(Xi)

This is our first example of a “model.”

We use models for lots of things:

I Associations and correlations

I Predictions

I Causal relationships
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Linear regression models
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Linear relationships

We first focus on modeling the relationship between outcomes and
covariates as linear.

In other words: find coefficients β̂0, . . . , β̂p such that: 1

Yi ≈ β̂0 + β̂1Xi1 + · · ·+ β̂pXip.

This is a linear regression model.

1We use “hats” on variables to denote quantities computed from data. In
this case, whatever the coefficients are, they will have to be computed from the
data we were given.
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Matrix notation

We can compactly represent a linear model using matrix notation:

I Let β̂ = [β̂0, β̂1, · · · β̂p]> be the (p+ 1)× 1 column vector of
coefficients

I Expand X to have p+ 1 columns, where the first column
(indexed j = 0) is Xi0 = 1 for all i.

I Then the linear regression model is that for each i:

Yi ≈ Xiβ̂,

or even more compactly

Y ≈ Xβ̂.
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Matrix notation

A picture of Y, X, and β̂:
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Example in R

ggplot(data = sh, aes(x = livingArea, y = price)) +

geom_point()
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Looks like price is positively correlated with living_area.
Use ggplot via tidyverse.
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Example in R

Let’s build a simple regression model of price against
livingArea.

> fm = lm(data = sh, price ~ 1 + livingArea)

> summary(fm)

...

Coefficients:

Estimate ...

(Intercept) 13439.394 ...

livingArea 113.123 ...

...

In other words: price ≈ 13,439.394 + 113.123 × livingArea.

Note: summary(fm) produces lots of other output too! We are going to

gradually work in this course to understand what each of those pieces of output

means.
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Example in R

Here is the model plotted against the data:
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> ggplot(data = sh, aes(x = livingArea, y = price)) +

geom_point() +

geom_smooth(method="lm", se=FALSE)
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Example in R: Multiple regression

We can include multiple covariates in our linear model.

> fm = lm(data = sh, price ~ 1 + livingArea + bedrooms)

> summary(fm)

...

Coefficients:

Estimate ...

(Intercept) 36667.895 ...

livingArea 125.405 ...

bedrooms -14196.769 ...

(Note that the coefficient on livingArea is different now...we will
discuss why later.)
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How to choose β̂?

There are many ways to choose β̂.

We focus primarily on ordinary least squares (OLS):

Choose β̂ so that

SSE = sum of squared errors =
n∑

i=1

(Yi − Ŷi)2

is minimized, where

Ŷi = Xiβ̂ = β̂0 +

p∑
j=1

β̂jXij

is the fitted value of the i’th observation.

This is what R (typically) does when you call lm.
(Later in the course we develop one justification for this choice.)
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What is ordinary least squares doing?

OLS tries to minimize the sum of squared distances from each
point to the regression surface:
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Questions to ask

Here are some important questions to be asking:

I Is the resulting model a good fit?

I Does it make sense to use a linear model?

I Is minimizing SSE the right objective?

We start down this road by working through
the algebra of linear regression.
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Ordinary least squares: Solution
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OLS solution

From here on out we assume that p < n and
X has full rank = p+ 1.

(What does p < n mean, and why do we need it?)

Theorem
The vector β̂ that minimizes SSE is given by:

β̂ =
(
X>X

)−1
X>Y.

(Check that dimensions make sense here: β̂ is (p+ 1)× 1.)
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OLS solution: Geometry

The SSE is the squared Euclidean norm of Y − Ŷ:

SSE =

n∑
i=1

(Yi − Ŷi)2 = ‖Y − Ŷ‖2 = ‖Y −Xβ̂‖2.

Note that as we vary β̂ we range over
linear combinations of the columns of X.

The collection of all such linear combinations is
the subspace spanned by the columns of X.

So the linear regression question is

What is the “closest” such linear combination to Y?
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OLS solution: Geometry

What is the “closest” such linear combination to Y?

This “closest” combination is the projection of Y into the
subspace spanned by the columns of X:246 3. Linear Methods for Regression

x1

x2

y

ŷ

FIGURE 3.2. The N-dimensional geometry of least squares regression with two
predictors. The outcome vector y is orthogonally projected onto the hyperplane
spanned by the input vectors x1 and x2. The projection ŷ represents the vector
of the least squares predictions

The predicted values at an input vector x0 are given by f̂(x0) = (1 : x0)T β̂;
the fitted values at the training inputs are

ŷ = Xβ̂ = X(XTX)−1XTy, (3.7)

where ŷi = f̂(xi). The matrix H = X(XTX)−1XT appearing in equation
(3.7) is sometimes called the “hat” matrix because it puts the hat on y.

Figure 3.2 shows a different geometrical representation of the least squares
estimate, this time in IRN . We denote the column vectors ofX by x0,x1, . . . ,xp,
with x0 ≡ 1. For much of what follows, this first column is treated like any
other. These vectors span a subspace of IRN , also referred to as the column
space of X. We minimize RSS(β) = ∥y −Xβ∥2 by choosing β̂ so that the
residual vector y − ŷ is orthogonal to this subspace. This orthogonality is
expressed in (3.5), and the resulting estimate ŷ is hence the orthogonal pro-
jection of y onto this subspace. The hat matrix H computes the orthogonal
projection, and hence it is also known as a projection matrix.

It might happen that the columns of X are not linearly independent, so
that X is not of full rank. This would occur, for example, if two of the
inputs were perfectly correlated, (e.g., x2 = 3x1). Then XTX is singular
and the least squares coefficients β̂ are not uniquely defined. However,
the fitted values ŷ = Xβ̂ are still the projection of y onto the column
space of X; there is just more than one way to express that projection
in terms of the column vectors of X. The non-full-rank case occurs most
often when one or more qualitative inputs are coded in a redundant fashion.
There is usually a natural way to resolve the non-unique representation,
by recoding and/or dropping redundant columns in X. Most regression
software packages detect these redundancies and automatically implement

2Figure courtesy of Elements of Statistical Learning.
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Hat matrix (useful for later) [∗]

Since: Ŷ = Xβ̂ = X(X>X)−1X>Y, we have:

Ŷ = HY,

where:
H = X(X>X)−1X>.

H is called the hat matrix.

It projects Y into the subspace spanned by the columns of X.

It is symmetric and idempotent (H2 = H).
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Residuals and R2
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Residuals

We call r̂ = Y − Ŷ = Y −Xβ̂ the vector of residuals.

Our analysis shows us that: r̂ is orthogonal to every column of X.
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Residuals with an intercept term

When there is an intercept term,
one of the columns of X is the all 1’s vector.

So r̂ must be orthogonal to the all 1’s vector:
r̂ · 1 =

∑n
i=1 r̂i = 0.

r̂i = Yi − Ŷi, so equivalently,
∑n

i=1 Yi =
∑n

i=1 Ŷi.

Can conclude:

Y =
1

n

n∑
i=1

Yi =
1

n

n∑
i=1

Ŷi = Ŷ .

In words: the residuals sum to zero, and
the original and fitted values have the same sample mean.
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Residuals

Since r̂ is orthogonal to every column of X,
we use the Pythagorean theorem to get:

‖Y‖2 = ‖r̂‖2 + ‖Ŷ‖2.

Using equality of sample means we get:

‖Y‖2 − nY 2
= ‖r̂‖2 + ‖Ŷ‖2 − nŶ

2
.
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Residuals

How do we interpret:

‖Y‖2 − nY 2
= ‖r̂‖2 + ‖Ŷ‖2 − nŶ

2
?

Note 1
n−1(‖Y‖

2 − nY 2
) is the sample variance of Y. 3

Note 1
n−1(‖Ŷ‖

2 − nŶ
2
) is the sample variance of Ŷ.

So this relation suggests how much of the variation in Y is
“explained” by Ŷ.

3Note that the (adjusted) sample variance is usually defined as
1

n−1

∑n
i=1(Yi − Y )2. You should check this is equal to the expression on the

slide!
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R2

Formally:

R2 =

∑n
i=1(Ŷi − Ŷ )2∑n
i=1(Yi − Y )2

is a measure of the fit of the model, with 0 ≤ R2 ≤ 1.4

When R2 is large, much of the outcome sample variance is
“explained” by the fitted values.

Note that R2 is an in-sample measurement of fit:

We used the data itself to construct a fit to the data.

4Note that this result depends on Y = Ŷ , which in turn depends on the fact
that the all 1’s vector is part of X, i.e., that our linear model has an intercept
term.
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Example in R

The full output of our model earlier includes R2:

> fm = lm(data = sh, price ~ 1 + livingArea)

> summary(fm)

...

Multiple R-squared: 0.5075,Adjusted R-squared: 0.5072

...

Here Multiple R-squared is the R2 value. (We will discuss adjusted

R2 later in the course.)
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Example in R
We can plot the residuals for our earlier model:
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> fm = lm(data = sh, price ~ 1 + livingArea)

> qplot(fitted(fm), residuals(fm), alpha = I(0.1))

Note: We generally plot residuals against fitted values, not the original

outcomes. Try plotting residuals against the original outcomes to see what

happens!
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ChatGPT on R2

I asked ChatGPT to help me understand R2. It said this:

R2 ... is a statistic used in the context of statistical models

whose main purpose is either the prediction of future outcomes

or the testing of hypotheses, on the basis of other related infor-

mation. It provides a measure of how well observed outcomes

are replicated by the model, as the proportion of total variation

of outcomes explained by the model.

Do you agree with its description?
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Questions

I What do you hope to see when you plot the residuals?

I Why might R2 be high, yet the model fit poorly?

I Why might R2 be low, and yet the model be useful?

I What happens to R2 if we add additional covariates to the
model?
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More on OLS assumptions
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Key assumptions

We assumed that p < n and X has full rank p+ 1.

What happens if these assumptions are violated?
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Collinearity and identifiability

If X does not have full rank, then X>X is not invertible.

In this case, the optimal β̂ that minimizes SSE is not unique.

The problem is that if a column of X can be expressed as a linear
combination of other columns, then the coefficients of these
columns are not uniquely determined.5

We refer to this problem as collinearity. We also say the resulting
model is nonidentifiable.

5In practice, X may have full rank but be ill conditioned, in which case the
coefficients β̂ = (X>X)−1X>Y will be very sensitive to the design matrix.
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Collinearity: Example

If we run lm on a less than full rank design matrix, we obtain NA
in the coefficient vector:

> sh$livingArea_copy = sh$livingArea

> fm = lm(data = sh, price ~ 1 + livingArea + livingArea_copy)

> coef(fm)

(Intercept) livingArea livingArea_copy

13439.3940 113.1225 NA
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High dimension

If p ≈ n, then the number of covariates is of a similar order to the
number of observations.

Assuming the number of observations is large, this is known as the
high-dimensional regime.

When p+ 1 ≥ n, we have enough degrees of freedom (through the
p+ 1 coefficients) to perfectly fit the data. (What is the R2 of
such a model?)

Note that if p ≥ n, then in general the model is nonidentifiable.
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Proof of OLS [∗]
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OLS solution: Algebraic proof [∗]
Based on [SM], Exercise 3B14:

I Observe that X>X is symmetric and invertible. (Why?)

I Note that: X>r̂ = 0, where r̂ = Y −Xβ̂ is the vector of
residuals.
In other words: the residual vector is orthogonal to every
column of X.

I Now consider any vector γ that is (p+ 1)× 1. Note that:
Y −Xγ = r̂+X(β̂ − γ).

I Since r̂ is orthogonal to X, we get:

‖Y −Xγ‖2 = ‖r̂‖2 + ‖X(β̂ − γ)‖2.

I The preceding value is minimized when X(β̂ − γ) = 0.

I Since X has rank p+ 1, the preceding equation has the
unique solution γ = β̂.
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