
Markov Decision Processes Lecture Notes 01

Specification
Authors: Benjamin Van Roy September 22, 2025

1 MDP Specification via Transition Probabilities

A Markov decision process (MDP) models the evolution of an environment’s state over time as it is influenced
by actions applied by an agent and random events. The agent and environment interact through an interface
as illustrated in Figure 1. At each time t, the agent observes a state St and applies an action At.

Figure 1: An agent-environment interface.

1.1 The Tuple

When the state space is finite or countably infinite, it is common to specify an MDP via a tuple (S,A, P),
where S is the state space, A is the action space, and P encodes transition probabilities. In particular, for
any states s, s′ ∈ S and action a ∈ A, Pass′ is the probability that the next state will be s′ if the current
state is s and the action a is applied. In other words, each state realization St+1 is sampled according to
probabilities (PAt,St,s : s ∈ S).

1.2 Examples

1.2.1 Queueing

Consider a queue of customers waiting at a service station, as illustrated in Figure 2. At each time, an
additional customer arrives with probability q. The station can operate in a fast or slow mode of service. If
there are customers in the queue, the fast mode removes one with probability pfast and the slow mode, pslow.
The fast mode is more expensive and only used as wait times become large.

Figure 2: Queueing at a service station.

1

It is natural to model queue length dynamics in terms of an MDP (S,A, P) with S = {0, 1, 2, . . .} and
A = {fast, slow}. Each state St is the current queue length, and the action At indicates whether the fast or
slow service mode is applied. Transition probabilities are provided in Table 1.

Pass′ s′ = s− 1 s′ = s s′ = s+ 1
s = 0 0 1− q q
s > 0 (1− q)pa qpa + (1− q)(1− pa) q(1− pa)

Table 1: Queue transition probabilities. The rows provide formulas that apply when s = 0 or s > 0,
respectively.

1.2.2 Routing

Consider a directed graph with vertices V and directed edges E . Navigation through the graph can be
modeled in terms of an MDP (S,A, P), with S = V, A = V, and

Pass′ =

{
1 if (s, a) ∈ E and s′ = a
0 otherwise.

The state St indicates a current vertex, and the action At identifies a next vertex to target. The state St+1

is At if there is an edge but otherwise remains at St+1 = St. Actions route the state, forming a path through
the graph.

Figure 3: A directed graph.

Figure 3 provides an example where V = {1, . . . , 10}. If S0 = 1 then an action A0 = 8 transitions to
S1 = 8. On the other hand, an action A0 = 9 would result in S1 = 1 because there is no edge leading from
vertex 1 to vertex 9.

1.2.3 Tetris

The game of Tetris is naturally modeled as an MDP (S,A, P). The state encodes the current configuration
of the 20x10 cell Tetris board, as illustrated in Figure 4. The action set is A = {left, right, drop, none}.
Transition probabilities Pass′ encode dynamics. This includes how the falling tetromino moves as actions
are applied, how rows of the brick wall vanish when complete, and how new tetromino’s are sampled and
appear.

2

Figure 4: A Tetris board.

2 MDP Specification via Transition Function

There are multiple equivalent ways of specifying an MDP. In this section, we introduce an alternative to
the (S,A, P) tuple. This alternative facilitates a more intuitive interpretation of some models, for example,
where the state space is a Euclidean space or most naturally thought of as embedded in a Euclidean space.

2.1 The Tuple

We consider specifying an MDP in terms of a tuple (S,A,W, f, ν), where W is the disturbance space, f is
a transition function, and ν is a probability distribution over W. States generated by the MDP then evolve
according to St+1 = f(St, At,Wt+1), where Wt+1 is sampled independently from ν(·|St, At).

Consider an MDP with a countable state and action spaces. By countable, we mean finite or countably
infinite. Without loss of generality we can index states with natural numbers so that S = {1, 2, 3, . . . , N},
where N could be a positive integer or infinity. Such an MDP can alternately be specified by (S,A,W, f, ν)
or (S,A, P). Given the former specification, the latter can be derived by letting Pass′ = ν({w ∈ W : s′ =
f(s, a, w)}). Given the latter specification, the former can be derived by letting each ν(·|s, a) be a uniform

distribution over the unit interval and f(s, a, w) = s′ if w ∈ [pa,s,s′−1, pass′), where pass′ =
∑s′

s′′=1 Pass′′ for
s′ = 0, 1, 2, . . . , N .

2.1.1 Examples

2.1.2 Linear Systems

A stochastic linear system is naturally modeled as an MDP (X ,U ,W, f, ν). Note that we have denoted
the state and action spaces by X and U to be consistent with the linear systems literature. The state and
disturbance spaces are X = W = RN and the action space is U = RM . The update function is

f(x, u, w) = Ax+Bu+ w.

The disturbance distribution is often assumed to be Guassian: ν(·|s, a) ∼ N (0,Σ).
To offer a concrete instance of such a stochastic linear system, consider pursuit of a target in one di-

mension, along the lines illustrated in Figure 5. Let xt,1 and xt,2 be the position and velocity along that
dimension of a vehicle. Let ut be the force applied to accelerate. These state variables then evolve according
to

xt+1,1 = xt,1 + xt,2 and xt+1,2 = xt,2 +
ut

m
,

3

where m denotes the mass of the vehicle. The expression ut/m derives from Newton’s second law: force =
mass× acceleration. Let xt,3 be the position of a target, which moves randomly according to

xt+1,3 = xt,3 + ζt+1,

where ζt+1 is iid N (0, σ2). This system is naturally modeled as an MDP (X ,U ,W, f, ν) with X = R3, U = R,
W = R3, f(x, u, w) = Ax+Bu+ w, where

A =

 1 1 0
0 1 0
0 0 1

 B =

 0
1/m
0

 Σ =

 0 0 0
0 0 0
0 0 σ2

 .

Figure 5: Pursuit of a target in one dimension.

We could alternatively formulate an MDP with a two-dimensional state space, focusing on the difference
in position between the vehicle and the target rather than the two positions individually. In particular,
let xt,1 be the difference in position, and let xt,2 be the velocity. The dynamics of these quantities can be
modeled by an MDP (X ,U ,W, f, ν) with X = R2, U = R, W = R2, f(x, u, w) = Ax+Bu+ w, where

A =

[
1 1
0 1

]
B =

[
0

1/m

]
Σ =

[
σ2 0
0 0

]
.

Whether this second MDP is a suitable alternative for our purposes depends on whether our objective
depends only on the distance between the vehicle and target or also on the individual positions of the two
objects. As we will see in a future lecture, we accommodate objectives obtained by combining rewards, each
determined by a state-action pair. States must encode information required to compute rewards.

2.1.3 Inventory

Consider a retailer that sells one product. At each time, the retailer holds some number of units in stock
and can place an order for more. Within each timestep, a random number of customers make purchases.
Ordered units arrive at the end of the timestep.

Such an inventory system can be modeled as an MDP (S,A,W, f, ν), with state, action, and disturbance
spaces S = A = W = {0, 1, 2, . . .}. The state is the current inventory level, the action is the number of units
ordered, and the disturbance is the demand. The update function is

f(s, a, w) = max(s+ a− w, 0).

Hence, the next inventory level St+1 is the sum of the current level St and the order quantity a minus the
demand w, unless this is negative, in which case the inventory level becomes zero. The demand distribution
could be ν(·|s, a) ∼ Poisson(λ) to model the number of customers arriving within a timestep if they arrive
at rate λ according to a Poisson process.

We could alternatively model an inventory system that accommodates backorders. This can be done
with a state space S = {. . . ,−2,−1, 0, 1, 2, . . .}. Negative states indicate backorders: units of demand from
customers that arrived over previous timesteps and who are waiting for their purchases to be filled. For such
an inventory system, the update function is

f(x, u, w) = s+ a− w.

4

2.1.4 Investment

Consider an investor who at each time balances his wealth between one risk-free and N risky securities.
The dynamics of his wealth can be modeled via an MDP (S,A,W, f, ν), with S = R+, A = {a ∈ RN

+ : a ≥
0,
∑N

n=1 an ≤ 1}, and W = RN+1
+ . The state is his current wealth in dollars, the action indicates investments

in each of the N risky securities as fractions of wealth, and the disturbance provides returns for the risky
securities. The return of the riskless security is a fixed constant z. The update function is

f(s, a, w) = zs+

N∑
n=1

(wn − z)ans.

Note that w0 is the return of the riskless security, and w1, . . . , wN are the returns of the risky securities.
States thus evolve according to

St+1 = f(St, At,Wt+1).

Each riskless return Wt+1,0 is deterministic. Risky returns could be modeled as Wt+1,n = eXt+1,n , where
Xt+1 ∼ N (0,Σ) is an independent N -dimensional random Gaussian vector. This induces a multidimensional
lognormal distribution ν(·|s, a). Note that it is more natural to model returns as lognormal rather than
normal because they are always positive.

2.1.5 Dialog

Consider an agent that engages in sequential correspondence, with information conveyed via messages ex-
changed with another party. The agent assigns an initial state S0, which indicates that the conversation has
not yet begun. The agent then transmits a message A0 and receives a response O1. Such exchanges continue.
This interaction could be mediated, for example, by a text interface. For example, the first message A0 could
be “How can I help you?” The response O1 could then be “How does one replace a light bulb?” Subsequent
messages transmitted by the agent could seek clarification regarding the task at hand and guide the process
through completion.

To study the dynamics of such dialogue, we could assume that responses are generated by a language
model. Figure 6 provides a block diagram that illustrates the operation of a recurrent neural network (RNN)
language model. The RNN streams tokenized text. Tokenization breaks down text into small units called
tokens. Each token typically represents a word, some form of punctuation, or an end-of-message indicator.
Let K denote the size of the token dictionary. The RNN maintains a state vector, which is updated after
each token. The RNN generates a predictive distribution p(·|s) of the next token by multiplying this state
s ∈ RN by an K ×N unembedding matrix B and then applying a softmax. In other words, the probability
assigned to token k is p(·|s) = e(Bs)k/

∑K
k′=1 e

(Bs)k′ .

Figure 6: A recurrent neural network language model.

To model dialog in terms of an MDP (S,A,W, f, ν), we take take the state space to be the RNN state
space S = RN and the action and disturbance spaces to be the set of possible messages A = W = {x ∪K :
x ∈ ∪N

m=1{1, . . . ,K − 1}m}, where the end-of-message indicator is indexed by K. The disturbance Wt+1 is
the next response. Its distribution ν(·|St, At) is induced by the RNN. In particular, a response consisting of

tokens τ1, . . . , τM = K is assigned probability
∏M

m=1 p(τm|sm), where s0 is the state immediately preceding

5

this response and sm+1 = sm ∪ τm. Finally, f(St, At,Wt+1) is the state of the RNN after processing the
entire dialogue through the end of the response Wt+1.

3 Policies

The history Ht = (S0, A0, S1, A1, . . . , St) records past states and actions. Let H = S × ∪∞
t=0(A×S)t be the

set of all such finite sequences. A policy π maps the history to action probabilities. In particular, for each
h ∈ H and a ∈ A, π(a|h) denotes the probability assigned to action a given history h. Under a policy π,
each action At is sampled from π(·|Ht).

3.1 Stationary Policies

A policy is stationary if it depends on the history Ht only through the most recent state St. With some
abuse of notation, for a stationary policy π, we alternatively write action probabilities as π(·|St) ≡ π(·|Ht).

3.2 Deterministic Stationary Policies

A deterministic stationary policy is a stationary policy that, for each state, assigns all probability to a single
action. In other words, for state each s ∈ S, there is an action a ∈ A such that π(a|s) = 1. With some abuse
of notation, for a deterministic stationary policy, we sometimes write that action a as π(s).

3.3 Examples

To offer an example, for the queueing system of Section 1.2.1, it is natural to consider a policy that applies
the fast service mode when the queue length exceeds some threshold and, otherwise, the slow mode. This is
a deterministic stationary policy. If the threshold is ten, this policy takes the form

π(s) =

{
fast if s > 10
slow otherwise.

It might also be natural to consider a stochastic (not deterministic) stationary policy that applies the fast
model with a probability that increases with queue length. For example, we could have

π(fast|s) = 1− es/10 and π(slow|s) = es/10.

The so-called (S, s) policy is commonly applied to inventory systems of the sort discussed in Section 2.1.3.
This policy is parameterized by two thresholds, often denoted by S and s. The idea is to order the number
of units required to bring the inventory level up to S whenever the level is at or below s. If S = 100 and
s = 50, this deterministic stationary policy takes the form

π(s) =

{
S − s if s ≤ s
0 otherwise.

4 Dynamics, Objectives, and Optimization Algorithms

An MDP represents a hypothesis about how the state of an environment evolves over time and how that
evolution can be influenced by an agent’s actions. Given an MDP and a policy, one can analyze dynamics;
that is, how the environment behaves under this hypothesis and policy. For example, one could predict the
fraction of time the environment will spend in a particular state and the average and standard deviation of
sojourn times.

To offer prescriptive advice on what policy to use, we need an objective. We will formulate objectives in
terms of reward functions r : S×A → R that attribute rewards Rt+1 = r(St, At) to state-action pairs. Hence,

6

the reward function generates a scalar sequence R1, R2, R3, To arrive at a single scalar objective, we must
combine these rewards in some way. For example, we could compute the discounted return

∑∞
t=0 γ

tRt+1,
where γ ∈ [0, 1) is a discount factor that assigns a level of priority to nearer over longer term rewards. The
discounted return depends on the random future evolution of state. An ex-ante analysis must instead be
based on an expectation E [

∑∞
t=0 γ

tRt+1], which averages over random future outcomes.
Given an MDP, reward function, and way of combining rewards accrued over times, there are a variety of

optimization algorithms. Such algorithms aim to identify optimal, near-optimal, or, at least, satisficing
policies.

Over the next few lectures, we will cover approaches to analyzing dynamics, specifying objectives, and
designing and applying optimization algorithms.

7

